Topología Diferencial 2005

Práctica Seis Teoría de Morse y Aplicaciones (Parte I)

- 1. Probar que la función determinante definida en la matrices $n \times n$ es función de Morse para n = 2 y no es Morse para n > 2.
- 2. Sea $H: \mathbb{R}^n \times I \to \mathbb{R}$ una función C^{∞} y sea $H_t(x) = H(x,t)$. Probar que si H_0 es Morse en algún entorno de un compacto $K \subset \mathbb{R}^n$, entonces existe un $\varepsilon > 0$ tal que H_t es Morse en algún entorno de K para todo $t < \varepsilon$. En particular, si f es una función de Morse definida en una variedad compacta M y se tiene $H: M \times I \to \mathbb{R}$ una homotopía C^{∞} con $H_0 = f$, entonces H_t es Morse para t suficientemente chico.
- 3. Sea M subvariedad de \mathbb{R}^n . Probar que existe alguna transformación lineal $T:\mathbb{R}^n\to\mathbb{R}$ que restringida a M es función de Morse.
- 4. Sea M variedad compacta. Probar que existen funciones de Morse definidas en M que toman valores distintos en puntos críticos distintos.

Tipos homotópicos y valores críticos: Cruzando niveles críticos.

- 5. Sabemos que la esfera S^n tiene estructura de CW-complejo con 2 k-celdas por cada $0 \le k \le n$ (además de la estructura usual con una 0-celda y una n-celda). ¿Puede encontrar una función de Morse definida en la esfera que tenga 2 puntos críticos de índice k para cada $0 \le k \le n$?
- 6. Completar las demostraciones de los teoremas I y II expuestos en la clase, teniendo en cuenta las sugerencias dadas allí.
- 7. Sea $f: M \to \mathbb{R}$ una función C^{∞} y sean $a < b \in \mathbb{R}$, tal que $f^{-1}([a,b]) \subset M$ es compacto y no contiene puntos críticos. Probar que existe un difeomorfismo $\psi: f^{-1}(a) \times [a,b] \to f^{-1}([a,b])$ tal que $f\psi$ es la proyección en la segunda coordenada. (Sugerencia: seguir la demostración del teorema I dada en clase).
- 8. (G. Reeb) Sea M compacta y sin borde de dimensión n. Si M admite una función de Morse con solo dos puntos críticos, entonces M es homeomorfa a la esfera S^n .
- 9. (Este ejercicio es más complicado y generaliza el resultado del ejercicio anterior) Si M es compacta y sin borde de dimensión n y existe una función C^{∞} , $f: M \to \mathbb{R}$ con solo dos puntos críticos (quizás degenerados), entonces el complemento de cada punto crítico es difeomorfo a \mathbb{R}^n y M resulta homeomorfa a S^n .