Topología Diferencial 2007

Práctica Cuatro Teoría de Morse (Parte I)

- 1. Probar que la función determinante definida en la matrices $n \times n$ es función de Morse para n = 2 y no es Morse para n > 2.
- 2. Sea $H: \mathbb{R}^n \times I \to \mathbb{R}$ una función C^{∞} y sea $H_t(x) = H(x,t)$. Probar que si H_0 es Morse en algún entorno de un compacto $K \subset \mathbb{R}^n$, entonces existe un $\varepsilon > 0$ tal que H_t es Morse en algún entorno de K para todo $t < \varepsilon$. En particular, si f es una función de Morse definida en una variedad compacta M y se tiene $H: M \times I \to \mathbb{R}$ una homotopía C^{∞} con $H_0 = f$, entonces H_t es Morse para t suficientemente chico.
- 3. Sea M subvariedad de \mathbb{R}^n . Probar que existe alguna transformación lineal $T:\mathbb{R}^n\to\mathbb{R}$ que restringida a M es función de Morse.
- 4. Sea M variedad compacta. Probar que existen funciones de Morse definidas en M que toman valores distintos en puntos críticos distintos.
- 5. Sabemos que la esfera S^n tiene estructura de CW-complejo con 2 k-celdas por cada $0 \le k \le n$ (además de la estructura usual con una 0-celda y una n-celda). ¿Puede encontrar una función de Morse definida en la esfera que tenga 2 puntos críticos de índice k para cada $0 \le k \le n$?
- 6. Generalizar el Teorema 2 visto en clase: Sea $f: M \to \mathbb{R}$ diferenciable con las mismas hipótesis del teorema 2 pero con la diferencia que $f^{-1}(c)$ tiene ahora finitos puntos críticos no degenerados p_1, \ldots, p_r de índices $\lambda_1, \ldots, \lambda_r$ respectivamente. Entonces existe un $\varepsilon > 0$ tal que $M_{c+\varepsilon}$ es homotópicamente equivalente a $M_{c-\varepsilon} \cup e^{\lambda_1} \cup \ldots \cup e^{\lambda_r}$.