Topología Diferencial 2007

Práctica Seis Fibrados vectoriales

- 1. Probar que, si ξ y ξ' son fibrados triviales sobre un espacio B, entonces $\xi \oplus \xi'$ también es trivial.
- 2. Sea $C \to S^1$ la banda de Möbius abierta. Probar que $C \oplus C$ es isomorfo al fibrado trivial $S^1 \times \mathbb{R}^2$.
- 3. Probar que el fibrado estándar de línea $E \to \mathbb{R}P^1 = S^1$ sobre el espacio proyectivo real de dimensión 1 es isomorfo a la banda de Möbius abierta $C \to S^1$.
- 4. Sea $p: E \to B$ fibrado vectorial, $X \subset B$ subespacio y $f: A \to B$ continua. Probar que si $E|_X$ es trivial, entonces $f^*(E)|_{f^{-1}(X)}$ es trivial. En particular, si E es trivial sobre B, $f^*(E)$ lo es sobre A.
- 5. Sea $C \to S^1$ la banda de Möbius abierta y sea $f: S^1 \to S^1$ la función definida por $f(z) = z^2$. Probar que $f^*(C)$ es el fibrado de línea trivial.
- 6. Probar las siguientes propiedades del pullback de fibrados:
 - a) $(fg)^*(E) = g^*(f^*(E))$
 - b) $id^*(E) = E$
 - c) $f^*(E \oplus E') = f^*(E) \oplus f^*(E')$.
- 7. Probar que un fibrado vectorial admite k secciones linealmente independientes si y sólo si tiene un subfibrado trivial k-dimensional.
- 8. Sea $p:E\to B$ fibrado vectorial y $E'\subset E$ un subfibrado. Construir el fibrado vectorial cociente $E/E'\to B$.
- 9. Probar que el complemento ortogonal de un subfibrado es independiente, salvo isomorfismos, de la elección del producto interno.
- 10. Sea $\xi = (p : E \to B)$ un \mathbb{R} -fibrado vectorial de dimensión n. Consideramos a \mathbb{R}^n con la orientación usual dada por la base canónica. Una orientación en ξ consiste en una orientación en cada espacio vectorial E_b de tal forma que existan trivializaciones locales $h: p^{-1}(U) \to U \times \mathbb{R}^n$ que cubran al espacio, cuyas restricciones $h_b: E_b \to \mathbb{R}^n$ preserven las orientaciones. El fibrado se dice orientable si admite una orientación. Probar que una variedad diferenciable es orientable si y sólo si su fibrado tangente es un fibrado orientable.
- 11. Sea $p: E \to M$ un \mathbb{R} -fibrado diferenciable sobre una variedad M. Probar que, si M es variedad orientable y el fibrado es orientable, entonces E es una variedad orientable.
- 12. (Difícil) Probar que todo \mathbb{R} -fibrado vectorial diferenciable sobre una variedad simplemente conexa es orientable.
- 13. Calcular $Vect^n(S^1)$ y $Vect^n(\mathbb{R}^m)$.
- 14. Sea $p: E \to M$ un \mathbb{R} -fibrado diferenciable sobre una variedad M. Probar que la inclusión de M en E mediante la sección cero es un retracto por deformación.