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RANDOM WALK AND THE THEORY OF BROWNIAN MOTION* 
MARK KAC,t Cornell University 

1. Introduction. In 1827 an English botanist, Robert Brown, noticed that 
small particles suspended in fluids perform peculiarly erratic movements. This 
phenomenon, which can also be observed in gases, is referred to as Brownian 
motion. Although it soon became clear that Brownian motion is an outward 
manifestation of the molecular motion postulated by the kinetic theory of mat- 
ter, it was not until 1905 that Albert Einstein first advanced a satisfactory 
theory. 

The theory was then considerably generalized and extended by the Polish 
physicist Marjan Smoluchowski, and further important contributions were 
made by Fokker, Planck, Burger, Fiirth, Ornstein, Uhlenbeck, Chandrasekhar, 
Kramers and others [1]. On the purely mathematical side various aspects of 
the theory were analyzed by Wiener, Kolomgoroff, Feller, Levy, Doob, and 
Fortet [2]. Einstein considered the case of the free particle# that is, a particle 
on which no forces other than those due to the molecules of the surrounding 
medium are acting. His results can be briefly summarized as follows. 

Consider the motion of the projection of the free particle: on a straight line 
which we shall call the x-axis. What one wants is the probability 

P 2 

fP2(xo x; t)dx 

that at time t the particle will be between xi and X2 if it was at xo at time t = 0. 
Einstein was then able to show that the "probability density" P(xo I x; t) ? must 
satisfy the partial differential equation 

dP d2P 
(1) = D 

dt - d x2 

where D is a certain physical constant. The conditions imposed on P are 

(a) P_ 0 
00 

(2) (b) fP(xo Ix; t)dx = 1 
_00 

(c) lim P(x0 l x; t) = 0, for x 5 xo. 
t- 0 

* This is an extended version of an address delivered at the annual meeting of the Association 
at Swarthmore, Pennsylvania, December 26-27, 1946. 

t John Simon Guggenheim Memorial Fellow. 
t In what follows we shall identify this projection with the particle itself and hence consider the 

so-called one-dimensional Brownian motion. 
? The notation P(xo I x; t) and P(n I m; s) for conditional probabilities is that used by Wang and 

Uhlenbeck [1]. It does not conform with the notation adopted in the statistical literature. Had we 
adopted the latter notation we would write P(x; t| xo) and P(m; s| In). 
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Conditions (a) and (b) are the usual ones imposed upon a probability density 
and condition (c) expresses the certainty that at t=0 the particle was at xo. 
It is well known that (1) and (2) imply that 

(3) P(xo I x; t) = ,\/ e - )2/4D t 

and that the solution (3) is unique. 
The greatness of Einstein's contribution was not, however, solely due to 

the derivation of (1), and hence (3). From the point of view of physical ap- 
plications it was equally, or perhaps even more, important that he was able to 
show that 

2RT 
(4) D= 

Nf 

where R is the universal gas constant, T the absolute temperature, N the 
Avogadro number, and f the friction coefficient. The friction coefficient f, in the 
case the medium is a liquid or a gas at ordinary pressure, can in turn be ex- 
pressed in terms of viscosity and the size of the particle [3]. 

It was relation (4) that made possible the determination of the Avogadro 
number from Brownian motion experiments, an achievement for which Perrin 
was awarded the Nobel prize in 1926. However, the derivation of (4) belongs 
to physics proper, and presents no particular mathematical interest; we shall 
therefore not be concerned with it in the sequel. 

As soon as the theory for the free particle was established, a natural ques- 
tion arose as to how it should be modified in order to take into account outside 
forces as, for example, gravity. Assuming that the outside force acts in the 
direction of the x-axis and is given by an expression F(x), Smoluchowski has 
shown that (1) should in this case be replaced by 

OP 1 a d2p 
(5) dt = - --(PF) + D dx Ot f Ox O x2 
Two cases of special interest and importance are: 

F(x)= -a; field of constant force (for example, gravity). 
F(x) -bx; elastically bound particle (for example, small pendulum). 

At this point it must be strongly emphasized that theories based on (1) and 
(5) are only approximate. They are valid only for relatively large t and, in the 
case of an elastically bound particle, only in the overdamped case, that is, when 
the friction coefficient is sufficiently large. These limitations of the theory were 
already recognized by Einstein and Smoluchowski but are often disregarded 
by writers who stress that in Brownian motion the velocity of the particle is 
infinite. This paradoxical conclusion is a result of stretching the theory beyond 
the bounds of its applicability. An improved theory (known as "exact") was 
advanced by Uhlenbeck and Ornstein and by Kramers. The Uhlenbeck-Orn- 
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stein approach was further elaborated by Chandrasekhar and Doob. 
In what follows we shall be concerned with a discrete approach to the Ein- 

stein-Smoluchowski (approximate) theory. This approach was first suggested 
by Smoluchowski himself; it consists in treating Brownian motion as a discrete 
random walk. Smoluchowski used this approach only in connection with a free 
particle but we shall also treat other classical cases. Moreover, a re-interpreta- 
tion of one of the discrete models will allow us to discuss the important question 
of recurrence and irreversibility in thermodynamics. 

The main advantages of a discrete approach are pedagogical, inasmuch as 
one is able to circumvent various conceptual difficulties inherent to the continu- 
ous approach. It is also not without a purely scientific interest and it is hoped 
that it may suggest various generalizations which will contribute to the develop- 
ment of the Calculus of Probability. 

2. The free particle. Imagine a particle which moves along the x-axis in such 
a way that in each step it can move either A to the right or A to the left, the du- 
ration of each step being r. The fact that we are dealing with a free particle is 
interpreted by assuming that the probabilities of moving to the right or to the 
left are equal, and hence each equal 1. Instead of P(xo Ix; t) we now consider 
P(nA ImA; sr) = P(n m; s) which is the probability that the particle is at mA 
at time sr, if at the beginning it was at nA. Noticing that P(nI m; s) is also the 
probability that after s games of "heads or tails" the gain of a player is v=m-n, 
we can write 

1 ~~~~Si 

(28 (s +I,(sI|I) if I v I < s and vI + s is even, 

0 otherwise. 
Suppose now that A and T approach 0 in such a way that 

2 

(7) - = D, nA- xo, sr=t. 

It then follows from the classical Laplace-De Moivre theorem [4] that 

1 flX2 
(8) rim E P(n I m; s) = , e-_Xo)2/4Dtdx 

Xlk<v&,< X2 2,\/rDt Ir 
and hence the fundamental result of Einstein emerges as a consequence of what 
in probability theory we call a "limit theorem." 

It is both important and instructive to point out a striking formal connec- 
tion between the discrete (random walk) and the continuous (Einstein) ap- 
proaches. We notice that P(n I m; s) satisfies the difference equation 

(9) P(n I m; s + 1) = IP(n I m- 1; s) + 'P(n I m + 1; s), 
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which we write in the equivalent form 

P(nA I mA; (s + 1)r) - P(nA mA; S-) 

(10) A2 P(nA I (m + 1)A; sr) - 2P(nA I MA; Sr) + P(nA I (M - 1)A; ST) 

In the limit (7) this difference equation goes over formally into the differential 
equation 

ap a2p 
(ll)~~~~~ = D y 

At aX2 

which as noted before was the basis of Einstein's theory. This formal connec- 
tion between the two approaches can be made rigorous, but we shall not go 
into this. However, we shall use it as a guiding heuristic principle in constructing 
models of Brownian motion when outside forces are taken into account. 

Finally, let us mention that it is the relation 

A2 

2= Di 2,r 

which is responsible for the conclusion that the velocity of a Brownian particle 
is infinite. In fact, in our model, the ratio A/r plays the role of the instantaneous 
velocity and it obviously approaches infinity as i\->O. 

3. Particle in a field of constant force and in the presence of a reflecting 
barrier. We again consider random walk along the x-axis in which a particle can 
move A to the right or A to the left, the duration of each step being r. We now 
introduce the following new assumptions: 

(a) The probability of a move to the right is q = w-f3A, and consequently the 
probability of a move to the left is p= 2 +fA. Here : is a certain physical con- 
stant, and A must be chosen sufficiently small so that q >0. 

(b) When the particle reaches the point x = 0 (reflecting barrier) it must, in 
the next step, move A to the right. - 

Without the assumption (b) the problem would be quite simple and of no 
great physical interest. In actual experiments with heavy Brownian particles, 
like those of Perrin, the bottom of the container acts as a reflecting barrier and 
the elucidation-of its influence on the Brownian motion is of considerable theo- 
retical interest. 

This problem has been solved by Smoluchowski, on the basis of his equa- 
tion (5) but we shalt show that one can solve the discrete problem and obtain 
Smoluchowski's result by passing to a limit. 

Assuming that the particle starts from nA >O (n an integer) we seek an ex- 
plicit expression for P(n m; s). We first notice that P(n I m; s) satisfies, for 
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m > 2, the difference equation 

(12) P(n I m; s + 1) = qP(n I m- 1; s) + pP(n m + 1; s), 

and that for m = 1 and m = O we have 

(12a) P(n| 1; s + 1) = P(n I 0; s) + pP(n| 2; s), 
(12b) P(n| 0; s + 1) = PP(n I 1; s). 

We also have the initial condition, 

(13) P(n I M; O) = 6(m, n), 

where 5(m, n) denotes, as usual, the Kronecker delta. 
The difference equation (12) when rewritten in the form analogous to (10) 

can be shown to go over formally (in the limit A-lO, r-*O, A2/2r =D, nL-*>xo, 
mA-->x, sr = t) into the differential equation 

(14) = D + 4,BD -, At Ox, dx 
which is of the form (5) with F(x)= - a =-4Df. 

To find P(n I m; s) we use a method which is basic in the study of the so-called 
Markoff chains, of which our problem is but a particular example, and which in 
its essentials goes back to Poincare [5]. Let (p)8 be the (infinite) vector 

P(n 0; s)1 
P(n| 1; s) 

(15) (P)8 = P(n 2; s) 

and A the infinite matrix 

O p 0 0 0*.. 
1 0 p 0 0*.. 

(16) A= 0 q 0 p 0... 
0 0 q 0 p... 

Then, the diff,erence equation (12), (12a) and (12b), can be written in the matrix 
form as 

(17) (P)8+1 = A(p)8. 

Thus it follows immediately that 

(18) (P)s = A8(p)oq 
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where (p)0 is the vector 

0 

(P)o 1 

0 

1 being the nth component, the components being numbered from zero on. In- 
terpreting (18), we see that 

(19) P(n I m; s) = the (m, n) element of A8. 

To make use of (19), we notice that if R>n+s and we consider the finite matrix 
AR, which is the upper left R by R submatrix of A, then for m <R 

(20) the (in, n) element of A = the (m, n) element of AR, 

or equivalently, 

(21) the (in, n) element of A" = lim of the (m, n) element of AR. 

For each R there exist matrices PR and QR such that 

(22) PRQR = I 

and 
[Xo(R) 0 

(23) AR = PR M1(R) QR, 

_ XR-1(R)j 

Xo(R), X1(R), * R*1, (R) being the eigenvalues of the matrix AR. To simplify 
the notation we write X, for X,(R). 

Multiplying the matrix AR s times by itself and making use of (22), we ob- 
tain 

xo O 

(24) AR = PR XlQR 

and one can calculate the (m, n) element of A' explicitly provided the diag- 
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onalization (23) can be performed explicitly. This indeed is the case. 
Let (x)o; (x)i, * , (X)R-i be the "right" and (y)o, (y)i, - *, (y)R-1 the 

"left" eigenvectors belonging respectively to the eigenvalues 'Xo, X, 'X , i,-. 
In other words, for k = O, 1, * , R-1, we have 

AR(x)k = Xk(X)k, 

AR(Y)k = Xk(y)k, 

where A' is the transpose of AR. 
Suppose furthermore that the vectors can be so normalized that 

(25) (X)k*(y)k = 1, k = O, 1, * I R - 1, 

where (X)k* (Y)i is the inner (dot) product of the vectors. Since it is well known 
that 

(X)j (y)k = 0 for Xj 7 Xk 

we see that, in the case when all the eigenvalues are distinct, we can take as PR 
the matrix whose columns are the vectors (x)k and for QR the matrix whose rows 
are the vectors (y)k. 

In order to determine the eigenvalues and the right eigenvectors we consider 
the system of linear equations 

pxi = XXo 

XO + pX2 = XX1 

(26) qxl + pX3 = XX2. 

qXR-2 = XXR-1, 

and the extended infinite system 

pxi = XXo 

X0 + pX2 = XX1 

(27) 

qXR-1 + PXR+1 = XXR 

If we can find non-trivial solutions of (27), for which 

(28) XR = 0, 

we will have found solutions of (26). 
It turns out that (28) will yield an equation in X which has R distinct roots 

and thus our procedure gives us all eigenvalues, and consequently all right 
eigenvectors. Multiplying the members of the equations of (27) by 1, 



376 RANDOM WALK AND THE THEORY OF BROWNIAN MOTION [September, 

Z, z2,..., and adding, we obtain formally 
00 00 00 

xoz + q> XkZk+l + p kZk-l = X kZk 
1 1 0 

or, upon introducing the abbreviation, 
00 

(29) f(z) = XkZ k, 
0 

we have 

(30) XoZ + qz[f(z) - Xo] + [f(z)-Xo] = Xf(Z). 
z 

From (30) we obtain 

p r l- z 
(31) f(z) = q p - 1 + 12 - XZ 

q q jq 2 z pj 

and since this function is analytic in the neighborhood of zero the formal pro- 
cedure used above can be justified. 

Let pi and P2 be the reciprocals of the roots of 

(32) qz2 - XZ + p = 0. 

We have then 

p 1 1-Xz 
(33) f(Z) = q V 1 + p( 1-XPz)(I-P2Z) 

and introducing partial fractions, 

1-Xz 1 X-pi 1 1 p2-X 
(34) = _ 

( p(l-p1Z)(1-P2Z) P P2-Pl 1 - p P2 P1 1-P2Z 

Thus 

XO /X Pl k P2-X k\ 
(35) Xk pi + P P2) for k > 1, 

q P2-P1 P2-Pl 

and, in particular, the equation XR = 0 assumes the form 

(36) 
X 

P1 P2 
- X 0. 

P2-P1 P2-P1 

Equation (36) must now be solved for X. Assuming R to be even, and seeking 
solutions in the form 

X = 2/ cos E3, 0 _ O _ r, 



1947] RANDOM WALK AND THE THEORY OF BROWNIAN MOTION 377 

we are led to the equation 
tan RO 1 

tan O 2p-1 

For R> (2p-1)-1 this equation is seen to have R-2 distinct roots, 
01, E2g , I *ER-2, which lie in the subintervals 

R 2R R 2R 
where j ranges through the integers from 1 to R- 1 with the exception of j =R/2. 
Corresponding to 01, 02, , 0R-2 we have R-2 distinct eigenvalues, 

Xk = 2\pq cos Ek, k = 1, 29 R - 29 

and the components of the right eigenvector belonging to X> can be written in 
the form 

X(f) = ak (-;-) (cos m0k - 2P _si ) 

where 

(q) { q if > Ot 

P * q if ,=O, 

and ak is a normalizing constant which will be fixed later. For sufficiently large 
R the remaining eigenvalues Xo and XR-1 can be shown to be given by the 
formulas 

Xo =' 2/\pq cosh Oo, XR-i =- , 

where Oo is the only positive root of the equation 

tanh RO 1 

tanh 0 2p-1 

The components of the corresponding right eigenvectors are given by the ex- 
pressions 

(i) /q \m/2 /sinli m0o\ 
xo = ao (-)* (cosh mO- 2Pm -Sinh )o 

(in) q /2sinli m0o\ 
XR-1 = aRA1(- 1) y j cosh mOo-2PA i h-) 

It remains now to find the left eigenvectors. This can be accomplished in exactly 
the same manner and we merely quote the results. We obtain 
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Yk = bk(-) (COS MEk- 23A ) 
for m=O, 1,... , R-1; k=1, 2, ,R-2, and 

(m = bo(, ) (cosh mOo -2# sinh GO) 
(in q /pmsin sili Oo 

(YR- = bRl(-21) (-) cosh mOo - 2 sih m 

\q/\sinh Go/ 

To satisfy the normalization conditions (25) we must have 

/ R-1 

(38) akbk (q + F f(o)k) = 1, k 0, R - , 
m=l 

where 
sin mnE 

fm()) = cos mE) - 20A sin e 
and 

sinh mO 
Fm(O) = cosh mO - 2#A 

sinh 0 

We can, of course, put ao0=a1= * = 1, and determine the b's from (37) 
and (38). Referring back to (19), (20), and (24), and recalling that columns of 
PR are the right eigenvectors (&)k, and the rows of QR are the left eigenvectors 
(y)k, we obtain 

R- 
(in) (n) (39) P(n I m; s)= E Xkxk yk 

k=O 

or, more explicitly, 

P(n m n; s) = bo(2V/pq cosh Oo)8 (?)(?) Fm(Oo)Fn(Oo) [I + (- 1) m+n+sJ 

(40) qpn2q\1 - 
, n/2 n\m/2 R-2 

+ () (2() (pq)V ) E bk Cos0 ekfm(ek)fn(ek). 

Making use of (21), we can achieve considerable simplification by letting 
R-?oo. In fact, it can be shown that 

p - - q m 
(41) P(nfIm; s) = 2pq p ) [I + ( I) m+n+8] 
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+_(t (2\/p)t2 + 0 fn(e)fm(e)dO. 
7r q p * (p ~~~- q) 2 + tan2 E 

Although in various places we have tacitly assumed that p and q are different 
from 2, the final formula (41) can easily be seen to be valid also for the case 
p = q = 5. In this case (free particle in the presence of a reflecting barrier) the for- 
mula assumes the remarkably simple form 

2 r (42) P(n I m; s) = (l)1m/2I cos" EG cos me cos nOdO, 
7r o 

and the right member can be expressed in terms of binomial coefficients. This 
formula can also be derived in a much simpler way using, for instance, the classi- 
cal method of images. 

In the limit 

A2 
A - 0, T0, - = DD, nA -*xO, sr= t, 

2r 

one can show that 
P =2 

lim v P(n M; s) = P(xoj x; t)dx, 
zl<mA< z2 

where 

(43) P(xo I x; t) = 4f3e74Pz + e2PT(zTxo)e-4 2Dt + fe7D2t 2 g(x,y)g(xo,y)dy, 

and 
g(x, y) = cos xy - 2,(sin xy)/y. 

The proof of this theorem is not elementary inasmuch as it utilizes the so called 
"continuity theorem for Fourier-Stieltjes transforms" [6]. Formula (43) can be 
shown to be equivalent with Smoluchowski's formula given in [1]. 

4. An elastically bound particle. Again the particle can move either A to the 
right or A to the left, and the duration of each step is T. However, the probability 
of moving in either direction depends on the position of the particle. More pre- 
cisely, if the particle is at kA the probabilities of moving right or left are 

2(1-R) or (1 +-)o 

respectively. R is a certain integer, and possible positions of the particle are 
limited by the condition -R<?k <R. The basic probabilities P(njm; s) now 
satisfy the difference equation 
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(44) P(n|m;s+1)= + P(n M +1; s)+ m+lP(nIm-1;s) 2R ~ ~ ~ ~ ~ 2 

which must be solved with the initial condition 

(45) P(n I m; O) = (m, n). 
In the limit 

A21 
A-O0, r0, R-* oo, - = D, -->7, 

srt = lA->xo, mA -x, 

the difference equation (44) is seen to go over formally into the differential 
equation 

OP d(xP) 02P 
(46) = ^1 - + D 2 

at Ox Ox2 

which is Smoluchowski's equation (5) with F(x) = -x/'f. 
The discrete problem in a different form and in a different connection was 

first proposed and discussed by P. and T. Ehrenfest in 1907 [7]. In the next 
section we shall discuss their original formulation. A fairly detailed treatment 
was given by Schrodinger and Kohlrausch in 1926 [8] and a brief exposition can 
be found in the review article of Wang and Uhlenbeck [1]. It seems that Schr6- 
dinger and Kohlrausch were the first to point out the connection between the 
Ehrenfest model and Brownian motion of an elastically bound particle. How- 
ever, an explicit solution of (44) with the initial condition (45) was apparently 
not known. I have recently found such a solution using the matrix method de- 
scribed in Section 3 [9]. Instead of the infinite matrix of that section we must 
now consider the finite matrix 

1 o 0 0 0 ... 0 
2R 

2 
1 0 - 0 0 *0 

2R 

(47) B 1 3 
0 1-- 0 -..0 

2R 2R 
* . . . . . . . . . . . . . . 

0 0 -..0 
2R 

and the problem is again reduced to finding the eigenvalues X-R, X-R+1, 

Xo, * , XR-, XiR of B and matrices P and Q such that 
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(48) PQ = I 

and 

X-R+l ? 

(49) B = P Q. 
O XR- o XR1~X 

As before, P(n m; s) is the (m, n) element of B8, where 

0 

(50) B =P Q. 
0 

XR 

In order to perform the diagonalization (49) explicitly we start (following the 
procedure of Section 3) by trying to find the eigenvalues and the right eigenvec- 
tors of B. For this purpose we consider the system of linear equations 

1 
-1 = XXO 

2R X2 = xx1 

2 
XO + -~X = X 

2R 
(51). (-A-R)xi +A2RX3 = X 

1 

-xX2R1 = XX2R, 

2R 2R 

and the auxiliary infinite system 

2-x = XXO 
2R 
2 

(52) XO+2R = 
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'1 2R + 1 
- X2R-1 + 2R X2R+1 = XX2R 

2R ~2R+2 

2R X2R+2 = XX2R+1 

If we can find non-trivial solutions of (52) for which 

(53) X2R+1 = 0 

we will have found solutions of (51). It will turn out that this procedure will 
again yield all eigenvalues and right eigenvectors. Multiplying the members of 
the equations of (52) by 1, Z, Z2, , and adding, we obtain formally 

oo k '?? k 00 
1 -) xkzk+ 1 XkZ E Xkk 

k=O 2R k=O 2R k=O 

or, introducing, the abbreviation 
00 

f(z) = E XkZ k, 
k=O 

zf(z) - -f'(z) + -f' (z) = Xf(Z) 
2R 2R 

We thus get the differential equation 

X-z 
(54) f'(z) = 2R , f(z) 

whose solution satisfying f(O) = xo is easily found to be 

(55) f(z) = xo(l - z)R(l-)(1 + z)R(l+X) 

Since f(z) is analytic in the neighborhood of z = 0 the formal procedure can be 
justified. 

We now notice that if 

(56) X ~= i , j - ,R + 1, * 0,***, R -1, R, (56) x RR 

f(z) is a polynomial of degree 2R, and hence X2R+1=0. The numbers (56) are 
thus seen to be eigenvalues of B and, since there are 2R+ 1 of them, we see that 
we have found all the eigenvalues. It also follows that the components of the 
right eigenvector belonging to the eigenvalue Xj=j/R can be taken as 

C() = (1,C C) (i 
*,) C() Co 1 C 2 s 2R, 
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where thet C's are defined by the identity 

2R(I) kc 
(57) (1 -z) (1 + z) -E Ck z 

k=O 

So far we have followed very closely the procedure described in Section 3. Sur- 
prisingly enough, we encounter unexpected difficulties in trying to carry out 
the analogy still further and determine by similar means the left eigenvectors. 

To find the matrix Q we resort to a different method. Let us first recall that 
P can be taken as the matrix whose jth column (for convenience columns and 
rows are numbered from -R to R) is 

U1 

(i) 
C2 

(i) 
C2R 

Matrix Q must satisfy the equation 

P'Q' = 1, 

which is an immediate consequence of the equation PQ = I, and hence denoting 
by aO, , ao, , O p, the consecutive elements of the jth column of Q', we 
must have 

(58) CR+rak = (j,r) r = - R, * * R. 
k=-R 

From (58) it follows that 

R+j R R+r R+r (k) R R (k) R+r 
z = E o(j, r)z = E Z E CR+rak = Eak ECR+rZ 

r=-R r=-R k=-R k=-R r=-R 

R 2R (k) 
= ak E C8 Z 

k=-R 8=0 

or, by virtue of (57), 

zR+= ak(l - z)R-k(l + z)R+k = (1 - z)2R ( a ZR 
k=-R 1=0 Z -k Z 

Thus 

zR+i j 2R / + z\ 
(59) - = E al1-R >c ~)R (59) (1 - ~z) 27? 1=0o - zi 
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Let 

1 +z 

1-z 

so that 

1-D. 2 
z =- - and 1-z = 

1+. 1+. 

In terms of r (59) assumes the form 

(- 1)i+i = 

2R 

(60) - 22R (1 - Rj + ?)Ri _ al-Rt1, 

and since by (57) 

R( - (1 + ?R- 2 R2 - 

1=0 

we obtain, by comparing coefficients of corresponding powers of ?, 

1_ )R+2 _j 
azR = - Cl22R 

or finally, 

(61) ?"8= 22R CR+S8 

Formula (61) determines explicitly the elements of Q' (and hence of Q), and it is 
now possible to write an explicit expression for P(n m; s). In fact, making use 
of (50), we obtain 

(62) P(nIM;s) 
=_(- 21)(R 

) 
j) 2R 

R 
g9R+iRm 

In the limit 
A2 1 

A ?' , ?'- = Di Y sr = t, nA xo, 
2,r Rr 

we have 
X2 

rim E P(n l m; s) = P(xo x; t)dx, 
xl<mA< X2 X 

where 

(63) P(xo j x; t) = 
V\l2rD(l e-2,yt) 
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The proof is again made to depend on the continuity theorm for Fourier-Stieltjes 
transforms. 

The frequency function (63) was first discovered by Lord Raleigh [10]. Its 
connection with Brownian motion of an elastically bound particle, in the strongly 
overdamped case, was established by Smoluchowski who arrived at it quite 
independently. 

5. The Ehrenfest model. Irreversibility and recurrence. Imagine 2R balls 
numbered consecutively from 1 to 2R, distributed in two boxes (I and II) so 
that at the beginning there are R+n, -R<n<R, balls in box I. We chose at 
random an integer between 1 and 2R (all these integers are assumed to be equi- 
probable) and move the ball, whose number has been drawn from the box in 
which it is, to the other box. This process is' then repeated s times and we ask 
for the probability Q(R+nl R+m; s) that after s drawings there should be 
R+m balls in box I. 

A moment's reflection will persuade one that this formulation (originally 
proposed by P. and T. Ehrenfest) [71 is equivalent to the random walk formu- 
lation of Section 4, if one interprets the excess over R of balls in box I as the dis- 
placement of the particle (A = 1). Thus 

Q(R + n R + m; )=P(n I m; s), 
where P(n| m; s) has the meaning of Section 4. 

In the present formulation we have a simple and convenient model of heat 
exchange between? two isolated bodies of unequal temperatures. The tempera- 
tures are symbolized by the numbers of balls in the boxes and the heat exchange 
is not an orderly process, as in classical thermodynamics, but a random one like 
in the kinetic theory of matter. The realistic value of the model is greatly en- 
hanced by the fact that the average excess over R of the number of balls in box 
I, namely, the quantity 

R 

E mP(n|m;s) 
m_-R 

can easily be shown to be equal to 

(64) n 1 

which in the limit R-> ao, 1/Rr-+y, sr =t, gives 

ne-ty 

or the Newton law of cooling. 
There are several proofs of (64) [11]. The most straightforward one, which 

is not however the simplest, is based on formula (62). 
The Ehrenfest model is also particularly suited for the discussion of a famous 

paradox which at the turn of this century nearly wrecked Boltzmann's inspired 
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efforts to explain thermodynamics on the basis of kinetic theory. In classical 
thermodynamics the process of heat exchange of two isolated bodies of unequal 
temperatures is irreversible. On the other hand, if the bodies are treated as a 
dynamical system the famed "Wiederkehrsatz" of Poincare asserts that "almost 
every" state (except for a set of states which, when interpreted as pVoints in 
phase space, form a set of Lebesgue measure 0) of the system will be, to an arbi- 
trarily prescribed degree of accuracy, again approximately achieved. Thus, 
argued Zermelo, the irreversibility postulated in thermodynamics and the "re- 
currence" properties of dynamical systems are irreconcilable. Boltzmann then 
replied that the "Poincare cycles" (time intervals after which states "nearly 
recur" for the first time,-the word "nearly" requiring further specification) are 
so long compared to time intervals involved in ordinary experiences that pre- 
dictions based on classical thermodynamics can be fully trusted. This explana- 
tion, thoujgh correct in principle, was set forth in a manner which was not quite 
convincing and the controversy raged on. It was mainly through the efforts of 
Ehrenfest and Smoluchowski that the situation became completely clarified, 
and the irreversibility interpreted in a proper statistical manner. 

It will now be easy to discuss this explanation by appealing to the Ehrenfest 
model. Let P'(nrm; s) denote the probability that after s drawings (the dura- 
tion of each drawing is r) R +m balls will be observed for the first time in box I 
if there were R+n balls in that box at the beginning. In particular, P'(n| n; s) is 
the probability that the recurrence time of the state "n" (defined by the presence 
of R+n balls in box I) is sr. One can then show that 

00 

(65) P'(nIn;s) = 1, 
8=1 

or, in other words': each state is bound to recur with probability 1. This is the statis- 
tical analogue of the "Wiederkehrsatz." One can show furthermore that the 
mean recurrence time, namely, the quantity 

00 

On= E STP(n I n; s) 
s=1 

is equal to 

(R + n)!(R -n)! 
(66) 221? 

(2R)! 

This is the statistical analogue of a "Poincare cycle," and it tells us, roughly 
speaking, how long, on the average, one will have to wait for the state "n" to 
recur. 

If R+n and R-n differ considerably, On is enormous. For example, if 
R = 10000, n = 10000, r= 1 second, we get 

0 = 220000 seconds (of the order of 106000 years!). 
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If on the other hand, R+n and R-n are nearly equal, a,n is quite short. If in the 
above example we set n = 0 we get (using Stirling's formula) 

0 -' 100/_r seconds,-, 175 seconds. 

It was Smoluchowski who advanced the rule [12 ] that if one starts in a state 
with a long recurrence time the process will appear as irreversible. In our ex- 
ample if one starts with 20000 balls in one box and none in the other, one should 
observe, for a long time? an essentially irreversible flow of balls. On the other 
hand, if the mean recurrence time is short, there is no sense to speak about ir- 
reversibility. 

We now give the proofs of (65) and (66). We shall base our considerations 
on a formula which Professor Uhlenbeck used for similar purposes in some of his 
unpublished notes. The formula in question is: 

8-1 

(67) P(n I m; s) = P'(nI In; s) + ,P'(nI m; k)P(m|I m; s - k). 
k=1 

To convince oneself of the validity of this formula we divide all possible ways 
of reaching "m" from "n" in s steps into classes according to when "Im" has been 
reached for the first time. We then observe that starting from an" one can reach 
"in" in s steps in the following s mutually exclusive ways: 

(1) "Im" is reached for the first time after s steps. 
(2) "i"n is reached for the first time in 1 step and then, starting from "Im" it is 

again reached in s-1 steps. 
(3) "mn" is reached for the first time in 2 steps and then, starting from "m", 

it is reached again in s -2 steps, and so forth. We note furthermore that 
the probability that "m" will be reached for the first time in k steps 
and then, starting from "m," it will be reached again in s-k steps, is 

(68) P'(n m ; k)P(m m m; s - k). 

This completes the proof of (67). 
It' should be' emphasized that the justification of using the product of prob- 

abilities in (68) rests upon the fact that in our process the past is independent of 
the future. In dther words, once we know that the system starts, say, from "m," 
its subsequent behavior is independent of the way in which in" was reached in 
the first place. 

We introduce now the generating functions 
00 

(69) h(n |m; z) = , P(n M; s)z8 
8-1 

(70) g(n m; z) = ,P'(n m; s)z, 
e=i 

and note that (67) is equivalent to 

h(n I m; z) = g(n rm; z) + h(m m; z)g(n I m; z), 
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or 

(71) g(n m; z) = (n m; z) 
1 + h(m I M; z) 

In particular, 

h(n|In;xz)1 (72) g 
= h(nlnz;=z) =- 1 (72)1+ l(nIn;z) 1+Ih(nln;z) 

and we also note that 

dh(n l n; z) 
(7 ) dg(n n; z) dz 

dz (I+I(nI n;Z)2 

From the definition of g(n I n; z), we obtain 
00 

(74) lim g(nl n; z) = EP(nI n; s) 
Z 1 8=1 

dg(n I n; z) _0 
(75) 'r Irn - g STP(n n ; S). 

z-*1 dz 8=1 

It i's from these formulas that we shall derive (65) and (66). We have, using (62) 

2(1R) 2.R CR+ X R+n 2 R s=1 

and since 
(- 

1) R+nR 

(_1n) 

() 
1 = CR+ j CR+n, 

we obtain 

(76) 1 + h(n n; Z)= 22R E- CR+iCR+n. 

R 

All terms in the sum on the right hand side of (76) are regular at z 1 except the 
term corresponding to j = R, which has a simple pole at that point. Thus we can 
write 

1 + h(n I n; z) = P(z) + C2R CR+% - 1 
22 1 -z 

where p(z) is regular at z= 1. We see that 

lim (1 + h(n I n; z)) = X 
g-*1 
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and hence, using (72) and (74) 
co 

EP'(nIn;,s) = 1. 
8=1 

It is easy to see that 

(- 1)R+n (-n) (R) 1 (2R)! 
- C2R CR+n = - 

22R 
~~22R (R +n)!i(R -n)! 

and, denoting this expression by w, we have (for jzj > 1) 

dg(nIn;z) (1-z)2p'(z) +C 

dz [(1 -Z)p(Z) + Cw]2 

and hence 

dg(njn;z) 1 
lurn = - 

z-*l daz 

This together with (75) yields (66). 
The above considerations can be extended to more general processes. How- 

ever, Markoffian processes (i.e., processes for which (68) is valid) are still the 
only ones for which one can also calculate the "fluctuation" of the recurrence 
time, namely, the quantity 

(77) E s2P2P'(n I; s) - On. 
8-1 

Without going into the details, let us mention that (77) can be calculated in 
terms of 

d2g(n n; z) 
llrn - 
.-'1 dz2 

The fluctuation (77) gives us a measure of stability of the mean recurrence time 
inasmuch as it permits' us to estimate how likely (or unlikely) it is to get a spec- 
ified deviation of the actual recurrence time from the mean. It may seem that 
since the generating function g(ni n; z) is known explictly it should be easy to 
get an explicit expression for P'(n I n; s). This, however, is not the case. We have 
not succeeded in finding such an expression, except for P'(O| 0; s), and even then 
we had to use a different method. We shall give a brief description of this 
method. Let 

P(n I m, 1) =pnmk 

Then, 

P'(n j n; s) - z'PnmiPmima * Pms_inf 
" Z .-. . . 
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where the accent on the summation sign indicates that mf1 n, j =1,2, * *, s-1. 
Now let 

0O if i = X 

if i n. 

Noticing that 
2 

we can write 

P (n I n; s) = E PnmiEm2Pmmm2Em2Pm2m8 * * (m.-2Pm-2m8 4em-Ipm-Ing 
gn, * *n..*.1_ 

where the summation is now extended over all mf. If B is the matrix 

( ( Pm)),f 

and B1 the matrix 

((Enpnmem)) , 

we see that 

(78) P'(n I n; s) = (n, uz) element of BBI B. 

We may note that B1 is obtained from B by crossing out the nth row and the 
nth column of the latter, and replacing them by a row and column consisting 
entirely of zeros. If B1 can be explicitly diagonalized, that is, written in' the 
form 

Mi 0 

B1 = P 2 Ql, 

where 

P1Q1 = I 

one can calculate P'(n 1 n; s), explicitly using (78). 
We have applied this method to the Ehrenfest model, but only in the case 

when the middle (zeroth) row and column of B are replaced by a row and col- 
umn consisting entirely of zeros have we been able to diagonalize explicitly the 
resulting matrix B1. The diagonalization proceeds very much as in Section 4, 
but it has proved necessary to distinguish between the cases when R is even or 
odd. In case R is even, we were able to derive the formula 

1 PR+ (O |O2 (- 1) ()s 
(79) PfOI0; s) =(-) CRCR RA, s >2, P'(O I ~22R-1 2R RRl 
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where the summation is extended over all odd integers j between -R and R. 
The details of the derivation are somewhat tedious and will not be reproduced 
here. Formula (79) furnishes a partial solution to a question left open by Wang 
and Uhlenbeck [1]. 
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VIBRATION MODES OF TAPERED BEAMS 
EDMUND PINNEY, University of California 

The vibration modes of harmonically oscillating thin beams are obtained 
by solving the differential equation 

(1) (d2/dx2)(EId2y/dx2) - pw2y = 0 

subject to certain boundary conditions. In this differential equation, x is the 
distance along the beam, y is the amplitude of the transverse vibration, E is 
Young's modulus for the beam material, I is the cross-sectional moment of 
inertia of the beam, p is its linear density, and w is the circular frequency of vi- 
bration. 


	Article Contents
	p. 369
	p. 370
	p. 371
	p. 372
	p. 373
	p. 374
	p. 375
	p. 376
	p. 377
	p. 378
	p. 379
	p. 380
	p. 381
	p. 382
	p. 383
	p. 384
	p. 385
	p. 386
	p. 387
	p. 388
	p. 389
	p. 390
	p. 391

	Issue Table of Contents
	The Journal of Risk and Insurance, Vol. 58, No. 4 (Dec., 1991), pp. 577-812
	Front Matter [pp. ]
	Random Walk and the Theory of Brownian Motion [pp. 369-391]
	Vibration Modes of Tapered Beams [pp. 391-394]
	Tetrahedrons having a Common Face [pp. 395-398]
	Instruction and Research in Applied Mathematics [pp. 398-399]
	The William Lowell Putnam Mathematical Competition [pp. 400-403]
	Mathematical Notes
	On the Number of Paths in a Finite Partially Ordered Set [pp. 404-405]
	Note on Conjugate Harmonic Functions [pp. 405-406]

	Classroom Notes
	End-Point Maxima and Minima [pp. 407-409]
	Letters to the Editor [pp. 409-411]

	Elementary Problems and Solutions
	Problems for Solution: E781-E785 [pp. ]
	Solutions
	E751 [pp. 412-414]
	E752 [pp. 414]
	E753 [pp. 414-416]
	E754 [pp. 416-417]


	Advanced Problems and Solutions
	Problems for Solution: 4259-4263,4248 [pp. 418-419]
	Solutions
	3895 [pp. 420-421]
	4150 [pp. 421]
	4192 [pp. 421-422]
	4195 [pp. 422-423]
	4254 [pp. 423]


	Recent Publications
	Review: untitled [pp. 423-424]
	Review: untitled [pp. 424-426]
	Review: untitled [pp. 426]
	New Books Received [pp. 426-427]

	Clubs and Allied Activities [pp. 427-429]
	News and Notices [pp. 430-435]
	The Mathematical Association of America
	Meeting of the Northern California Section [pp. 435-437]
	Meeting of the Oklahoma Section [pp. 437-439]
	March Meeting of the Michigan Section [pp. 439-442]
	Calendar of Future Meetings [pp. 442]

	Back Matter [pp. ]



