Temas de Física

Primer Cuatrimestre de 2004 Práctica 2 (Segunda parte): Cinemática

1 Problemas sencillos

Ejercicio 1 Tenemos una masa m colgada de un resorte (sin peso propio) de longitud en reposo l y coeficiente k. ¿Cuál es la longitud en reposo con el peso colgado?, si lo estiramos una longitud Δl ¿cómo se comporta el sistema?

Ejercicio 2 Hallar la ecuación del movimiento de un péndulo de masa m colgada de una barra rígida de longitud l cuando se lo mueve de la línea vertical un ángulo (pequeño) θ_0 .

Ejercicio 3 Tenemos una masa m apoyada sobre una superficie horizontal (sin rozamiento) y vinculada a una pared por un sistema en paralelo de un resorte de constante k y longitud en reposo l, y un amortiguador de constante α . Hallar la ecuación del movimiento de la masa cuando se la estira una cantidad Δl .

Ejercicio 4 Igual que en el problema anterior pero con ambos dispositivos en serie.

2 Problemas un poco más complicados

Ejercicio 5 Tenemos dos masas, m_1 y m_2 unidas entre sí por un resorte de constante k y longitud en reposo l. Si estiramos ambas masas una cierta cantidad (alejándolas o acercándolas) ¿cómo se comportan?, ¿qué pasa si $m_1 \ll m_2$?

Ejercicio 6 Como en el problema (1) pero con dos resortes en serie de coeficiente y longitud en reposo (k_1, l_1) y (k_2, l_2) respectivamente. ¿Es lo mismo si están en paralelo?

Ejercicio 7 Pared a la izquierda, masa m_1 unida a la pared con un resorte de constantes (k_1, l_1) y a la derecha de m_1 está m_2 unida a ésta por un resote de constantes (k_2, l_2) . Si estiramos el sistema hacia la derecha ¿cómo se comporta?. Analizar los casos en que

1.
$$\frac{k_1}{m_1} = \frac{k_2}{m_2}$$

2.
$$m_1 \ll m_2$$

3.
$$m_1 \gg m_2$$

Ejercicio 8 El péndulo doble. Se tiene dos masas, m_1 y m_2 en movimiento pendular de modo que m_1 pende del techo por una barra de longitud l_1 y m_2 pende de m_1 por una barra de longitud l_2 . Analizar el caso en que m_1 se aparta de la vertical un (pequeño) ángulo θ_0 y m_2 se aparta de la vertical un (pequeño) ángulo ϕ_0 .