TOPOLOGÍA Práctica 1

1. (i) En \mathbb{R}^n definimos

$$d'(x,y) = |x_1 - y_1| + \dots + |x_n - y_n|.$$

Mostrar que d' es una métrica y que (\mathbb{R}^n, d') tiene los mismos abiertos que \mathbb{R}^n con la topología usual. Dibujar la bola abierta de centro 0 y radio 1 cuando n = 2.

(ii) Dado $p \ge 1$, definimos

$$d_p(x,y) = \left(\sum_{i=1}^n |x_i - y_i|^p\right)^{\frac{1}{p}}$$

¿Es cierto que sigue teniendo los mismos abiertos? Dibujar en \mathbb{R}^2 como varían las bolas de centro 0 y radio 1 para los diferentes p.

2. Sea (X, d) un espacio métrico, definimos $d': X \times X \to \mathbb{R}$ como

$$d'(x,y) = \min\{d(x,y), 1\}.$$

Probar que d' es una métrica. Definen d y d' los mismos conjuntos abiertos? los mismos cerrados? y los mismos acotados?

3. Consideremos en $\mathbb{R}^{\mathbb{N}}$:

$$\rho_1(x,y) = (\sum_{i=1}^{\infty} (x_i - y_i)^2)^{\frac{1}{2}}$$

у

$$\rho_2 = \sup\{|x_i - y_i|\}.$$

¿Es alguna de estas una métrica? Si no lo son, ¿puede sugerir alguna modificación para que lo sean?

- 4. Consideremos $\mathbb{R}^{\mathbb{N}}$ con cada una de las métricas definidas por usted en el ejercicio anterior y sea \mathbb{R}^{∞} el subconjunto de $\mathbb{R}^{\mathbb{N}}$ que consiste de las sucesiones tienen finitas coordenadas no nulas. Calcular su clausura.
- 5. Sea $\ell^2 = \{(a_k)_{k \in \mathbb{N}} : \sum_{k=1}^{\infty} a_k^2 < \infty\}$. Probar que ρ_1 del ejercicio 3 es una métrica para este conjunto.
- 6. Sea (X,d) un espacio métrico y sea $A \subset X$. Probar que \overline{A} es igual a $\{x \in X : \exists (a_k)_{k \in \mathbb{N}} \text{ tal que } a_k \to x\}$.