TOPOLOGÍA Práctica 6

- 1. Mostrar que \mathbb{Q} no es localmente compacto.
- 2. Sea X un espacio localmente compacto Hausdorff. Probar que para todo $x \in X$, la familia de entornos compactos y cerrados forman una base de entornos.
- 3. Sea $(X_{\alpha})_{\alpha \in \Lambda}$ una familia de espacios topológicos no vacíos. Mostrar que $\prod X_{\alpha}$ es localmente compacto si, y solo si, cada X_{α} es localmente compacto y X_{α} es compacto para todos los α salvo un número ffnito.
- 4. Sea X un espacio localmente compacto y $f: X \to Y$ una función continua. ¿Es f(X) localmente compacto?, ¿y si suponemos que f es además abierta?
- 5. Sea (X, \mathcal{T}) un espacio topológico. Sea $X^* = X \cup \{*\}$ y deffnimos $\mathcal{T}^* = \mathcal{T} \cup \{X^* \setminus C : C \text{ compacto cerrado de } X\}$. Probar que (X^*, \mathcal{T}^*) es un espacio topológico compacto y la topología inducida en X por \mathcal{T}^* coincide con \mathcal{T} . Además X^* es Hausdorff si, y solo si, X es localmente compacto Hausdorff.

 X^* se denomina compactificación de Alexandroff o compactificación por un punto de X.

- 6. ¿Cuál es la compactificación de Alexandroff de \mathbb{R} ?, ¿y la de \mathbb{R}^2 ?
- 7. Sea X un espacio cuya topología tiene una base numerable.
 - (i) Probar que X es Lindelöf.
 - (ii) Mostrar que si $A \subset X$ es no numerable entonces algún punto de A es de acumulación de A.
 - (iii) Toda colección de abiertos disjuntos de X es numerable.
 - (iv) Mostrar que existe $D \subset X$ denso numerable. (Un espacio X con esta propiedad se llama separable.)
- 8. (i) Probar que \mathbb{R}_l es Lindelöf pero no tiene una base numerable.
 - (ii) Probar que $\mathbb{R}_l \times \mathbb{R}_l$ no es Lindelöf.

Ejercicio para entregar el 11-10-01:

Un espacio (X, \mathcal{T}) se dice σ -compacto si $X = \bigcup_{n \in \mathbb{N}} A_n$, donde cada A_n es un compacto de X.

- 1. Probar que todo espacio σ -compacto es de Lindelöf.
- 2. Probar que todo espacio localmente compacto y Lindelöf es σ -compacto.
- 3. Probar que el producto de dos espacios σ -compactos es σ -compacto.