TOPOLOGÍA Práctica 9

- 1. (i) ¿Es el producto de arcoconexos arcoconexo?
 - (ii) ¿Es la clausura de un arcoconexo arcoconexa?
 - (iii) ¿Es la imagen por una función continua de un arcoconexo arcoconexa?
 - (iv) ¿Es la unión de espacios arcoconexos con por lo menos un punto en común arcoconexa?
- 2. Decidir cuál de los espacios conexos del ejercicio 5 de la práctica 8 son arcoconexos. Si no lo son, hallar sus componentes arcoconexas.
- 3. Sea X un espacio topológico. Probar que cada componente arcoconexa de X está incluída en una componente conexa de X.
- 4. Sea X localmente (arco)conexo. Probar que sus componentes (arco)conexas son abiertas.
- 5. Sea X localmente arcoconexo. Probar que sus componentes conexas y arcoconexas son las mismas.
- 6. Determinar las componentes conexas y arcoconexas de los siguientes subespacios de \mathbb{R}^2 .
 - (i) $A = (\{\frac{1}{n} : n \in \mathbb{N}\} \times [0, 1]) \cup \{0\} \times [0, 1]$
 - (ii) $B = A \setminus \{(0, \frac{1}{2})\}$
 - (iii) $C=B\cup([0,1]\times\{0\})$
- 7. Sean X localmente conexo y $f: X \to Y$ continua. ¿Es f(X) necesarimente localmente conexo? ¿y si f es además abierta?
- 8. Sea X localmente arcoconexo. Mostrar que todo abierto conexo de X es arcoconexo.

<u>Definición</u>: Una variedad n-dimensional M es un espacio de Hausdorff en el que cada punto tiene un entorno homeromorfo a \mathbb{R}^n .

- 9. Probar que S^n y \mathbb{P}^n son variedades.
- 10. Sea X = (-1, 2] con la topología dada por la base:

$$\begin{array}{ccc} (\alpha,\beta) & -1 \leq \alpha < \beta \leq 2 \\ (\alpha,0) \cup (\beta,2] & -1 \leq \alpha < 0 \ , \ -1 \leq \beta < 2 \end{array}$$

Probar que todo punto de X tiene un entorno homeomorfo a \mathbb{R} pero no es Hausdorff por lo que no es una variedad.

- 11. Probar que el producto de dos variedades en una variedad.
- 12. Mostrar que \mathbb{T} , el toro, tiene dos curvas, C_1 y C_2 , cerradas simples pero no disjuntas, tal que $\mathbb{T} \setminus (C_1 \cup C_2)$ es conexo.

Ejercicio para entregar el 5/11/01:

Sea G un grupo ffnito que actúa sobre el espacio X y tal que $g.x \neq x$ si $g \neq 1$. Probar que si X es una variedad compacta entonces X/G también lo es.