Topología

SEGUNDO CUATRIMESTRE 2002 PRÁCTICA 1

Bases y sub-bases de topologías

- (1) Sea $\{\mathcal{T}_{\alpha}\}_{{\alpha}\in A}$ una colección de topologías en X.
 - (a) Probar que $\bigcap_{\alpha \in A} \mathcal{T}_{\alpha}$ es una topología en X. ¿Es $\bigcup_{\alpha \in A} \mathcal{T}_{\alpha}$ una topología en X?
 - (b) Probar que existe una única topología en X que es la menor de todas las topologías que contienen a todas las topologías \mathcal{T}_{α} ($\alpha \in A$), y una única topología en X que es la mayor de todas las topologías contenidas en cada una de las topologías \mathcal{T}_{α} ($\alpha \in A$).
 - (c) Si $X = \{a, b, c\}$, $\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{a, b\}\}$ y $\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b, c\}\}$, encontrar las topologías mencionadas en (b).
- (2) Probar que si \mathcal{B} es base de una topología en X, entonces la topología generada por \mathcal{B} es igual a la intersección de todas las topologías que contienen a \mathcal{B} . Probar que vale lo mismo si \mathcal{B} es una sub-base.
- (3) Sea (X, <) un conjunto ordenado. Sea $\mathcal{S} = \{S_x : x \in X\}$ y sea $\mathcal{R} = \{R_x : x \in X\}$, donde $R_x = \{y \in X : x < y\}$. Probar que $\mathcal{S} \cup \mathcal{R}$ son una sub-base para la topología del orden en X.
- (4) Considerar las siguientes colecciones de subconjuntos de \mathbb{R} :

 $\mathcal{B}_1 = \{(a, b) : a < b\},\$

 $\mathcal{B}_2 = \{ [a, b) : a < b \},\$

 $\mathcal{B}_3 = \{(a, b] : a < b\},\$

 $\mathcal{B}_4 = \mathcal{B}_1 \cup \{B \setminus K : B \in \mathcal{B}_1\}, \text{ donde } K = \{1/n : n \in \mathbb{N}\},$

 $\mathcal{B}_5 = \{(a, +\infty) : a \in \mathbb{R}\}, \text{ donde } (a, +\infty) = \{x \in \mathbb{R} : x > a\},\$

 $\mathcal{B}_6 = \{(-\infty, a) : a \in \mathbb{R}\}, \text{ donde } (-\infty, a) = \{x \in \mathbb{R} : x < a\},\$

 $\mathcal{B}_7 = \{B : \mathbb{R} \setminus B \text{ es finito}\}.$

(a) Probar que cada \mathcal{B}_i es una base para una topolología en \mathbb{R} .

Notación: Notaremos \mathbb{R}_l al espacio topológico \mathbb{R} con la topología definida por \mathcal{B}_2 .

- (b) Comparar las siete topologías entre si.
- (c) Probar que $\mathcal{B}_5 \cup \mathcal{B}_6$ es una sub-base que genera la misma topología que \mathcal{B}_1 .
- (5) **Topología definida por filtro de entornos.** Supongamos que tenemos para cada $x \in X$ un subconjunto (no vacío) $\mathscr{F}_x \subset \mathscr{P}(X)$ con las siguientes propiedades:

E1: Dado $A \in \mathscr{F}_x$, entonces $x \in A$.

E2: Dado $B \subset A$, $B \in \mathscr{F}_x$, entonces $A \in \mathscr{F}_x$.

E3: Dados $A, B \in \mathscr{F}_x$, entonces $A \cap B \in \mathscr{F}_x$.

E4: Dado $A \in \mathscr{F}_x$, existe $B \subset A$ tal que $B \in \mathscr{F}_x$, y $B \in \mathscr{F}_y$ para cada $y \in B$. Probar:

- (a) $\mathcal{T} = \{B \in \mathcal{P}(X) : B \in \mathcal{F}_x \ \forall x \in B\} \cup \emptyset$ es una topología en X (observar que no se necesita la propiedad E4). Esta topología se llama la topología definida por los filtros de entornos de sus puntos.
- (b) Si (X, \mathcal{T}) es un espacio topológico, los conjuntos

$$\mathscr{F}_x = \{ A \in \mathscr{P}(X) : x \in U \subset A \text{ para algún } U \in \mathcal{T} \}$$

verifican los axiomas E1-E4. Los conjuntos \mathscr{F}_x se llaman filtros de entornos del punto x.

- (c) El filtro de entornos de una topología definida por filtro de entornos coincide con éste.
- (d) Si (X, \mathcal{T}) es un espacio topológico, la topología definida por los filtros de entornos de X coincide con \mathcal{T} .
- (6) Topologías definidas por operador de clausura.

Un operador $\overline{(\cdot)}: \mathscr{P}(X) \to \mathscr{P}(X)$ que verifica las siguientes propiedades: C1: $\overline{\emptyset} = \emptyset$,

C2: $A \subseteq \overline{A}, \forall A \in \mathscr{P}(X),$

C3:
$$\overline{\overline{A}} = \overline{A}, \forall A \in \mathscr{P}(X),$$

C4:
$$\overline{A \cup B} = \overline{A} \cup \overline{B}$$
, $\forall A, B \in \mathscr{P}(X)$,

se llama un operador de clausura.

(a) Probar que si se tiene un operador de clausura, se tiene en X una topología definida por

$$U \in \mathcal{T} \Leftrightarrow \overline{X \setminus U} = X \setminus U.$$

Observación: Lo que estamos haciendo es definir la topología por sus cerrados, esto es,

$$F$$
 es cerrado $\iff \overline{F} = F$.

(b) Probar que si (X,\mathcal{T}) es un espacio topológico, la fórmula

$$\overline{A} = \bigcap_{F \supseteq A} F$$
 donde F es cerrado

define un operador de clausura.

- (c) Probar que si se parte de un operador clausura en un espacio X y se construye una topología como en (a), el operador clausura definido a partir de esta topología (como en (b)) es el original.
- (d) Probar que si se parte de un espacio topológico X y se define un operador clausura como en (b), la topología definida a partir de este operador (como en (a)) es la original de X.
- (7) Probar que si (X, \mathcal{T}) es un espacio topológico, la fórmula

$$\overline{A} = \{ x \in X : \ U \cap A \neq \emptyset \ \forall \ U \in \mathcal{T}, \ x \in U \}$$

define un operador de clausura. Probar que para todo $A \subseteq X$ se tiene

$$\{x \in X: \ U \cap A \neq \emptyset \ \ \forall \ U \in \mathcal{T}, \ x \in U\} = \bigcap_{F \supseteq A} F \qquad \text{(donde F es cerrado)}$$

- (8) Probar que $\bigcup_{\alpha} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha} A_{\alpha}}$ y mostrar que la inclusión puede ser estricta.
- (9) Decidir cuáles de las siguientes igualdades son ciertas, y en caso de ser falsas determinar si se verifica alguna de las inclusiones.
 - (a) $\overline{A \cap B} = \overline{A} \cap \overline{B}$.
 - (b) $\overline{\bigcap_{\alpha} A_{\alpha}} = \bigcap_{\alpha} \overline{A_{\alpha}}$.
 - (c) $\overline{A \setminus B} = \overline{A} \setminus \overline{B}$.
- (10) Considerar el conjunto $X = [0, 1] \times [0, 1]$ con la topología del orden del diccionario. Determinar la clausura de los siguientes subconjuntos de X.

$$A = \{(1/n, 0) : n \in \mathbb{N}\},\$$

$$B = \{(1 - 1/n, 1/2) : n \in \mathbb{N}\},\$$

$$C = \{(x,0): 0 < x < 1\},\$$

$$D = \{(x, 1/2) : 0 < x < 1\},\$$

$$E = \{(1/2, y) : 0 < y < 1\}.$$

(11) Considerar las siete topologías definidas en el ejercicio 4. Determinar la clausura del conjunto $K = \{1/n : n \in \mathbb{N}\}$ en cada una de las topologías.

Redes

- (12) Sea (X, \mathcal{T}) un espacio topológico. Probar que las redes convergentes verifican las las siguientes propiedades:
 - R1: Si $(x_{\alpha})_{{\alpha}\in\Lambda}$ es eventualmente constante, entonces $(x_{\alpha})_{{\alpha}\in\Lambda}$ converge a la constante.
 - R2: Si $(x_{\alpha})_{{\alpha}\in\Lambda}$ converge a x, entonces toda sub-red de $(x_{\alpha})_{{\alpha}\in\Lambda}$ converge a x.
 - R3: Si $(x_{\alpha})_{\alpha \in \Lambda}$ verifica que toda sub-red tiene una sub-sub-red que converge a x, entonces $(x_{\alpha})_{\alpha \in \Lambda}$ converge a x.
 - R4: Sean Λ un conjunto dirigido, y para cada $\alpha \in \Lambda$ sea Γ_{α} un conjunto dirigido. Supongamos que para cada $\alpha \in \Lambda$ se tiene una red $(x_k^{\alpha})_{k \in \Gamma_{\alpha}}$, que converge a $x^{\alpha} \in X$, y además $(x^{\alpha})_{\alpha \in \Lambda}$ converge a $x \in X$.

Consideremos $\Phi = \Lambda \times \prod_{\alpha \in \Lambda} \Gamma_{\alpha}$ ordenado por el orden producto, esto es,

$$(\alpha, (k_{\beta})_{\beta \in \Lambda}) \ge (\alpha', (k'_{\beta})_{\beta \in \Lambda}) \iff k \ge k' \ y \ k_{\beta} \ge k'_{\beta} \ \forall \beta \in \Lambda.$$

Entonces la red $(\alpha, (k_{\beta})_{\beta \in \Lambda}) \mapsto x_{k_{\alpha}}^{\alpha}$ converge a x.

(13) Sea (X, \mathcal{T}) un espacio topológico. Probar que la fórmula

$$\overline{A} = \{ x \in X : \exists (x_{\alpha})_{\alpha \in \Lambda} \subseteq A, \ y \ x_{\alpha} \to x \}$$

define un operador de clausura. Probar que la clausura usual coincide con la recién definida.

(14) Si $(x_{\alpha})_{{\alpha}\in\Lambda}$ es una red, decimos que $x\in X$ es un punto de acumulación de la red si para todo $A\in\mathscr{F}_x$, el conjunto $\{\alpha\in\Lambda:x_{\alpha}\in A\}$ es cofinal en Λ . Probar que x es un punto de acumulación de la red si y sólo si existe una subred de $(x_{\alpha})_{{\alpha}\in\Lambda}$ que converge a x (para la ida, considerar Γ el conjunto de pares (α,U) con $\alpha\in\Lambda$, U entorno abierto de x que contiene a x_{α} , con el orden $(\alpha,U)\preceq(\beta,V)$ si $\alpha\leq\beta$ y $V\subseteq U$).

Funciones Continuas.

- (15) Sean X,Y espacios topológicos. Probar que cada una de las siguientes condiciones sobre $f:X\to Y$ es equivalente a pedir que f sea continua
 - (a) Para todo $x \in X$, y para todo $A \in \mathscr{F}_y$ (y = f(x)) existe $B \in \mathscr{F}_x$ tal que $f(B) \subseteq A$.
 - (b) Para toda red $(x_{\alpha})_{{\alpha} \in {\Lambda}} \subset X$ tal que $x_{\alpha} \to x$, se tiene que $f(x_{\alpha}) \to f(x)$.
 - (c) Para todo $A \subseteq X$, $f(\overline{A}) \subseteq \overline{f(A)}$.
 - (d) Si \mathcal{B} es una base para la topología de Y, $f^{-1}(B)$ es abierto en X para todo $B \in \mathcal{B}$.
 - (e) Si \mathcal{S} es una sub-base para la topología de Y, $f^{-1}(S)$ es abierto en X para todo $S \in \mathcal{S}$.
- (16) Sean X un espacio topológico y $E \subset X$. Sea $\chi_E : X \to \mathbb{R}$ la función característica de E, esto es,

$$\chi_E(x) = \begin{cases} 1 & \text{si} \quad x \in E \\ 0 & \text{si} \quad x \notin E \end{cases}$$

Probar que χ_E es continua en x si y sólo si x no pertenece a la frontera de E (la frontera de E es $\overline{E} \cap \overline{(X \setminus E)}$).

- (17) (a) Sean X, Y conjuntos ordenados, con la topología del orden. Si $f: X \to Y$ es biyectiva y preserva el orden, entonces f es un homeomorfismo.
 - (b) Sea $n \in \mathbb{N}$. Sea $g : \mathbb{R}_{>0} \to \mathbb{R}_{>0}$, $g(x) = \sqrt[n]{x}$. Probar que g es un homeomorfismo.
 - (c) Sea $X=(-\infty,-1)\cup[0,+\infty)$ con la topología euclídea. Definimos $f:X\to\mathbb{R}$ por:

$$f(x) = \begin{cases} x+1 & \text{si} \quad x < -1 \\ x & \text{si} \quad x \ge 0 \end{cases}$$

Probar que f es biyectiva y preserva el orden. ¿Es f un homeomorfismo?

- (18) Sea Y un conjunto ordenado con la topología del orden. Sean $f, g: X \to Y$ funciones continuas.
 - (a) Probar que el conjunto $\{x \in X : f(x) \le g(x)\}$ es cerrado en X.
 - (b) Sea $h: X \to Y$ la función

$$h(x) = \min\{f(x), g(x)\}.$$

Probar que h es continua.

(19) Sea $\{A_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ una colección de subconjuntos del espacio topológico X tal que $X=\bigcup_{{\alpha}\in\mathcal{A}}A_{\alpha}$. Sea $f:X\to Y$

y supongamos que $f|_{A_{\alpha}}$ es continua para cada $\alpha \in \mathcal{A}$.

- (a) Probar que si cada A_{α} es abierto, entonces f es continua.
- (b) Probar que si A es finito y cada conjunto A_{α} es cerrado, entonces f es continua.
- (c) Encontrar un ejemplo donde la colección $\mathcal{A} = \mathbb{N}$, cada A_{α} es cerrado, pero f no es continua.
- (d) Una familia $\{A_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ se dice localmente finita si para cada $x\in X$ existe un abierto $U\subseteq X, x\in U$, tal que $U\cap A_{\alpha}\neq\emptyset$ sólo para finitos valores de α . Mostrar que si la familia $\{A_{\alpha}\}_{{\alpha}\in\mathcal{A}}$ es localmente finita y cada A_{α} es cerrado, entonces f es continua.

(20) Topología de Zariski en k^n (tener en mente $k = \mathbb{R}$ o $k = \mathbb{C}$).

Consideremos el anillo de polinomios en n variables sobre un cuerpo k, $k[x] = k[x_1, \ldots, x_n]$. Para cada subconjunto $S \subseteq k[x]$ definimos el conjunto algebraico dado por S como

$$V(S) = \{(z_1, \dots, z_n) \in k^n : p(z_1, \dots, z_n) = 0 \ \forall \ p \in S\}.$$

Verificar las siguientes propiedades

- (a) Si $S \subseteq T \subseteq k[x]$, entonces $V(S) \supseteq V(T)$.
- (b) $V(S) = V(I_S)$, donde I_S es el ideal generado por S.
- (c) $V(\{0\}) = k^n$, y $V(\{1\}) = \emptyset$.
- (d) Si $I, J \subseteq k[x]$ son ideales, entonces $V(I \cap J) = V(I) \cup V(J)$.
- (e) Si $\{I_a\}_{a\in A}$ es una familia de ideales, entonces $V\left(\bigcup_{a\in A}I_a\right)=\bigcap_{a\in A}V(I_a)$. **Observación:** los items (c), (d), (e) muestran que los conjuntos algebraicos verifican los axiomas de los cerrados de una topología. Esta es la topología de Zariski de k^n .
- (f) Los conjuntos $D_f = k^n \setminus V(\{f\})$ forman una base para dicha topología.
- (g) Los abiertos D_f son densos si f es no nulo.
- (21) Caracterizar la topología de Zariski de k. Compararla con la usual en el caso en que $k = \mathbb{R}$ ó $k = \mathbb{C}$.
- (22) Comparar la topología de Zariski en k^2 con la topología usual de k^2 ($k = \mathbb{R}$, ó $k = \mathbb{C}$).

Topologías dadas por una métrica

- (23) Sea X una conjunto, y sea d una métrica en X. Probar que la topología inducida por d es la mínima con la propiedad que la función $d: X \times X \to \mathbb{R}$ es continua.
- (24) Mostrar que $\mathbb{R} \times \mathbb{R}$ con la topología del orden del diccionario es metrizable (i.e. existe una métrica tal que la topología que induce la métrica coincide con la dada).
- (25) Sea \mathbb{R}^{ω} el conjunto de las sucesiones de números reales. Se define en \mathbb{R}^{ω} la topologa uniforme de la siguiente manera:

Primero se define en \mathbb{R} la métrica acotada $\overline{d}(a,b) = \min\{|a-b|,1\}$ (nota: induce la misma topología que la usual). Luego se define en \mathbb{R}^{ω} la métrica uniforme como $d((a_n)_{n\in\mathbb{N}},(b_n)_{n\in\mathbb{N}}) = \sup_n\{\overline{d}(a_n,b_n)\}.$

- (a) Verificar que la métrica uniforme es efectivamente una métrica.
- (b) Decidir si las siguientes funciones \mathbb{R} en \mathbb{R}^{ω} son continuas tomando en \mathbb{R} la topología usual, y en \mathbb{R}^{ω} la topología uniforme.

$$\begin{array}{rcl} f(t) & = & (t,2t,3t,\ldots), \\ g(t) & = & (t,t,t,\ldots), \\ h(t) & = & (t,\frac{1}{2}t,\frac{1}{3}t,\ldots). \end{array}$$

(c) Decidir si las siguientes sucesiones convergen en \mathbb{R}^{ω} con la topología uniforme.

```
\begin{array}{lll} w_1 = (1,1,1,1,\ldots), & x_1 = (1,1,1,1,\ldots), & y_1 = (1,0,0,0,\ldots), & z_1 = (1,1,0,0,\ldots), \\ w_2 = (0,2,2,2,\ldots), & x_2 = \left(0,\frac{1}{2},\frac{1}{2},\frac{1}{2},\ldots\right), & y_2 = \left(\frac{1}{2},\frac{1}{2},0,0,\ldots\right), & z_1 = \left(\frac{1}{2},\frac{1}{2},0,0,\ldots\right), \\ w_3 = (0,0,3,3,\ldots), & x_3 = \left(0,0,\frac{1}{3},\frac{1}{3},\ldots\right), & y_3 = \left(\frac{1}{3},\frac{1}{3},\frac{1}{3},0,\ldots\right), & z_3 = \left(\frac{1}{3},\frac{1}{3},0,0,\ldots\right), \\ & \cdots & \cdots & \cdots & \cdots \end{array}
```

(d) Calcular la clausura del conjunto de las sucesiones eventualmente cero con respecto a la topología uniforme de \mathbb{R}^{ω} .