Topología

SEGUNDO CUATRIMESTRE 2002 PRÁCTICA 8

Homología - Primer parte

- (1) Probar el lema de los 5.
- (2) Decimos que un complejo (C_*, d) se escinde si existen morfismos $s_n : C_n \to C_{n+1}$ tales que d = dsd.
 - (a) Probar que si (C_*, d) se escinde entonces existe una equivalencia homotópica de complejos $\phi : (C_*, d) \to H_*(C)$, donde $H_*(C)$ es el complejo formado por los grupos de homología de C con diferencial cero.
 - (b) Dar un contraejemplo para probar que la vuelta del item anterior es falsa.
- (3) Sea (C_*, d) un complejo. Definimos el cono de C como el complejo que en grado n es el grupo abeliano $C_{n-1} \oplus C_n$ y con diferencial

$$d': C_{n-1} \oplus C_n \to C_{n-2} \oplus C_{n-1}$$

definida por

$$d'(a,b) = (-d(a), d(b) - a)$$

Probar que el cono de C es contráctil. (sug: considerar $s:C_{n-1}\oplus C_n\to C_n\oplus C_{n+1}$ definida por s(a,b)=(-b,0)).

- (4) Sea $f: C_* \to D_*$ morfismo de complejos. Probar que f es null homotópica si y sólo si se extiende al cono de C_* .
- (5) Sea $f: C_* \to D_*$ un morfismo de complejos. Definimos el cono de f como el complejo C(f) que en grado n es el grupo abeliano $C_{n-1} \oplus D_n$ y cuya diferencial está definida por

$$d(a,b) = (-d(a), d(b) - f(a))$$

- (a) Probar que C(f) es efectivamente un complejo.
- (b) Probar que existe una s.e.c. de complejos

$$0 \to C_* \to C(f) \to D[-1] \to 0$$

donde D[-1] es el trasladado del complejo D_* , es decir $(D[-1])_n = D_{n-1}$ y el morfismo $s: C(f) \to D[-1]$ está definido por s(a,b) = -a.

- (c) Probar usando el item anterior que un morfismo $f: C_* \to D_*$ es un quasi-isomorfismo si y sólo si C(f) es acíclico.
- (6) Sea X espacio topológico y $\{X_k\}$ familia de componentes arco conexas de X. Probar que $H_n(X) = \bigoplus H_n(X_k)$.
- (7) Probar que si $i: A \to X$ es un retracto entonces $i_*: H_n(A) \to H_n(X)$ es sección.
- (8) Sea A un subespacio de X. Probar que $H_0(X, A) = 0$ si y sólo si A interseca todas las componentes arco conexas de X.
- (9) Sea X un espacio topológico y $x_0 \in X$ un punto. Calcular la homología relativa $H_*(X, x_0)$ en función de la homología usual $H_*(X)$.
- (10) Probar que $H_0(X) = \tilde{H}_0(X) \oplus \mathbb{Z}$, donde $\tilde{H}(X)$ denota la homología reducida de X.
- (11) Probar que una función continua $f:X\to Y$ induce un morfismo entre las homologías reducidas $f_*:\tilde{H}_n(X)\to \tilde{H}_n(Y)$.

1

- (12) Calcular $H_1(X)$ para los siguientes espacios:
 - (a) $X = S^n$.
 - (b) $X = \mathbb{P}^n(\mathbb{R})$.
 - (c) $X = S^1 \times S^1$.
 - (d) $X = S^1 \vee S^1$.
 - (e) X la botella de Klein.