Topología

SEGUNDO CUATRIMESTRE 2003 PRÁCTICA 4

Separación.

- (1) Mostrar que si X es regular, todo par de puntos de X tienen entornos cuyas clausuras son disjuntas.
- (2) Mostrar que si X es regular, todo par de cerrados disjuntos tienen entornos cuyas clausuras son disjuntas.
- (3) Mostrar que si X es un conjunto ordenado, entonces, con la topología del orden, X es regular.
- (4) Mostrar que un subespacio cerrado de un espacio normal es normal.
- (5) Mostrar que si $\prod X_{\alpha}$ es Hausdorff, o regular o normal, entonces cada X_{α} lo es.
- (6) Sea X un conjunto con dos topologías $\mathcal{T}, \mathcal{T}'$. Supongamos que $\mathcal{T} \supset \mathcal{T}'$. Si X es Hausdorff o regular o normal con alguna de las topologías, ¿qué se puede decir sobre la otra?
- (7) Sea $p: X \to Y$ un cociente. Probar que si p es cerrada y X es normal, entonces Y es normal.
- (8) Mostrar que todo espacio localmente compacto y Hausdorff es completamente regular.
- (9) Mostrar que \mathbb{R}^2 es completamente regular, a pesar de no ser normal.
- (10) Sea X completamente regular; sean A y B subconjuntos de X cerrados y disjuntos. Mostrar que si A es compacto, existe una función continua $f: X \to [0,1]$ tal que $f(A) = \{0\}$ y $f(B) = \{1\}$.
- (11) Mostrar que \mathbb{R}^{ω} con la topología caja es completamente regular.

Compactificación de Stone-Cech.

- (12) (a) Mostrar que toda función continua $f: S_{\Omega} \to \mathbb{R}$ es eventualmente constante. (Sugerencia: Primero probar que para cada $\epsilon > 0$ existe un elemento $\alpha \in S_{\Omega}$ tal que $|f(\beta) f(\alpha)| < \epsilon$ para todo $\beta > \alpha$. Considerar para cada $\epsilon = 1/n$ los correspondientes α_n .)
 - (b) Mostrar que la compactificación a un punto de S_{Ω} es la compactificación de Stone-Cech.
- (13) Sea X completamente regular. Probar que X es conexo si y sólo si $\beta(X)$ es conexo. (Sugerencia: Si $X = A \cup B$ es una separación de X, sea $f: X \to [0,1]$, f(x) = 0 si $x \in A$, f(x) = 1 si $x \in B$.)

Espacios de funciones.

(14) Sean X espacios topológico e (Y, d) un espacio métrico. Dada $f \in Y^X$, un compacto $C \subset X$ y un número $\epsilon > 0$, sea

$$B_C(f,\epsilon) = \{ g \in Y^X : \sup\{d(f(x), g(x)) : x \in C\} < \epsilon \}$$

Mostrar que los conjuntos $B_C(f,\epsilon)$ forman una base para una topología en Y^X . Se llama la topología de convergencia sobre compactos.

- (15) Sea (Y,d) un espacio métrico. Probar que una sucesión de funciones continuas $f_n: X \to Y$ converge a una función f en la topología de convergencia sobre compactos si y sólo si para cada compacto $C \subset X$, la sucesión $f_n|: C \to Y$ converge uniformemente a f|C.
- (16) Similarmente a como se definió la topología uniforme en \mathbb{R}^{ω} , definimos en Y^X la topología uniforme, para (Y,d) métrico. Primero tomamos la métrica acotada $\overline{d}(y_1,y_2)=\min\{d(y_1,y_2),1\}$. Luego tomamos en Y^X la métrica $d'(f,g)=\sup\{\overline{d}(f(x),g(x)):x\in X\}$. La topología uniforme en Y^X es entonces la inducida por la métrica d'.

Probar que la topología uniforme es más fina que la topología de convergencia sobre compactos, y que esta es más fina que la topología de convergencia puntual. Probar además que si X es compacto las dos primeras coinciden, y que si X es discreto la dos últimas coinciden.

(17) Considerar la sucesión de funciones $f_n:(-1,1)\to\mathbb{R},$ definidas por

$$f_n(x) = \sum_{k=1}^n kx^k.$$

- (a) Probar que (f_n) converge en la topología de convergencia sobre compactos. Deducir que el límite es continuo
- (b) Mostrar que (f_n) no converge en la topología uniforme.
- (18) Probar que si (Y, d) es métrico, la topología compacto abierta y la de convergencia sobre compactos coinciden.
- (19) Sea C un subespacio de X. Mostrar que la restricción $f: \mathcal{C}(X,Y) \to \mathcal{C}(C,Y)$ es continua si en ambos espacios tomamos la topología de convergencia puntual o la compacto abierta.
- (20) Mostrar que en la topología compacto abierta, $\mathcal{C}(X,Y)$ es Hausdorff si Y lo es, y regular si Y lo es. (Sugerencia: Si $\overline{U} \subset V$, entonces $\overline{S(C,U)} \subset S(C,V)$.)
- (21) Notemos con $\mathcal{C}'(X,Y)$ al conjunto $\mathcal{C}(X,Y)$ en alguna topología \mathcal{T} . Mostrar que si la evaluación $e: X \times \mathcal{C}'(X,Y) \to Y$

es continua, entonces \mathcal{T} contiene la topología compacto abierta.

(22) Mostrar que $ev:[0,1]^{\mathbb{Q}}\times\mathbb{Q}\to[0,1]$ no es continua. (Sugerencia: \mathbb{Q} no es localmente compacto y es completamente regular.)