Topología

SEGUNDO CUATRIMESTRE 2005 PRÁCTICA 4

Compacidad.

- 1) Sea X un espacio topológico. Probar que son equivalentes:
 - a) X es cuasi-compacto.
 - b) Para todo espacio topológico Y, y para todo abierto $W \subset X \times Y$ que verifica $X \times \{y_0\} \subset W$ para $y_0 \in Y$, existe $V \subset Y$ tal que $y_0 \in V$ y $X \times V \subset W$.
 - c) Para todo espacio topológico Y, la proyección $\pi_2: X \times Y \to Y$ es cerrada.
- 2) a) Sean \mathcal{T} y \mathcal{T}' dos topologías en X. Supongamos que $\mathcal{T}' \supset \mathcal{T}$. ¿La compacidad de alguna de estas topologías implica la compacidad de la otra?
 - b) Si X es compacto tanto para \mathcal{T} como para \mathcal{T}' entonces $\mathcal{T} = \mathcal{T}'$ o no son comparables.
- 3) a) Probar que en \mathbb{R} con la topología del complemento finito todo subconjunto es cuasi-compacto, pero los nicos cerrados son los conjuntos finitos. Por lo tanto hay conjunto cuasi-compactos que no son cerrados.
 - b) ¿Es [0,1] cuasi-compacto como subespacio de $\mathbb R$ en la topología

$$\mathcal{T}_c = \{U : \mathbb{R} \setminus A \text{ es numerable o todo } \mathbb{R}\}?$$

¿Lo es como subespacio de \mathbb{R}_l ?

- 4) Mostrar que si $f: X \to Y$ es continua, donde X es cuasi-compacto e Y es Hausdorff, entonces f es cerrada.
- 5) Teorema. Sea $f: X \to Y$, con Y compacto. Entonces f es continua si y sólo si el gráfico de f,

$$G_f = \{(x, f(x)) : x \in X\},\$$

es cerrado en $X \times Y$.

(Sugerencia: Si G_f es cerrado y V es un entorno abierto de $f(x_0)$, encontrar un tubo que contenga a $\{x_0\} \times (Y \setminus V)$ que no corte a G_f .)

Compacidad local. Un espacio topológico se dice localmente compacto si y sólo si para cada $x \in X$ los entornos cuasi-compactos de x forman una base para el filtro de entornos de X.

- 6) Probar que si X es Hausdorff, X es localmente compacto si y sólo si todo punto x tiene un entorno compacto.
- 7) Mostrar que \mathbb{Q} no es localmente compacto.

- 8) Mostrar que si $\prod_{\alpha \in \Lambda} X_{\alpha}$ es localmente compacto, entonces cada X_{α} es localmente compacto y todos los X_{α} , salvo una cantidad finita, son compactos.
- 9) Sea X un espacio localmente compacto. Si $f: X \to Y$ es continua, ¿Es f(X) localmente compacto? ¿Y si f es además abierta?

Compactificación de Alexandroff. Si X es un espacio topológico definimos la compactificación de Alexandroff como el conjunto $X^* = X \cup \{\infty\}$ donde la topología es la unión de la topología en X y los conjuntos $U \subset X^*$ tales que $X^* \setminus U$ es cuasi-compacto y cerrado en X.

- 10) Teorema (Alexandroff). La compactificación de Alexandroff X^* de un espacio topológico X es un espacio cuasi-compacto y X es un subespacio de X^* .
 - El espacio X^* es compacto si y sólo si X es Hausdorff y localmente compacto.
 - Además X es cuasi-compacto si y sólo si ∞ es un punto aislado de X^* (i.e., abierto y cerrado), y por lo tanto X es denso en X^* si y sólo si X no es cuasi-compacto.
- 11) Sea \mathbb{N} con la topología discreta. Probar que su compactificación de Alexandroff es homeomorfa a $\{0\} \cup \{1/n : n \in \mathbb{N}\}$ con la topología que hereda como subespacio de \mathbb{R} .
- 12) Probar que la compactificación de Alexandroff de \mathbb{R}^n es homeomorfa a S^n . (Considerar la proyección estereográfica $p: S^n \setminus \{(0,0,\ldots,0,1)\} \to \mathbb{R}^n, \ p(x_1,\ldots,x_{n+1}) = \frac{1}{1-x_{n+1}}(x_1,\ldots,x_n).$

Variedades topológicas. Un espacio topológico X se dice una variedad topológica de dimensión n si es un espacio Hausdorff en el cada punto tiene un entorno homeomorfo a \mathbb{R}^n .

- 13) Probar que S^n y $\mathbb{P}^n(\mathbb{R})$ son variedades de dimensión n y que $\mathbb{P}^n(\mathbb{C})$ es una variedad de dimensión 2n.
- 14) Probar que el toro y la botella de Klein son variedades de dimensión 2 (se llaman superficies).
- 15) Sea $X = \mathbb{R} \times \mathbb{R}/_{\sim}$ donde $(x,0) \sim (y,1)$ si y sólo si $x = y \neq 0$ (X es una la recta con el origen doble).

Probar que todo punto de X tiene un entorno homeomorfo a \mathbb{R} pero X no es Hausdorff y por lo tanto no es una variedad.

16) Sea X un G-espacio. Decimos que G actúa libremente en X si se verifica que $g \cdot x \neq x$ si $g \neq 1$.

Decimos que la acción es propiamente discontinua si se verifica que para todo $x \in X$ existe un abierto U tal que $x \in X$ y tal que $g \cdot U \cap U = \emptyset$ para todo $g \neq 1$.

Probar:

- a) Sea X un G-espacio Hausdorff, donde G un grupo finito que actúa libremente en G. Probar que la acción es propiamente discontinua.
- b) Sea X es un G-espacio Hausdorff, donde G es un grupo finito. Probar que el espacio cociente X/G es Hausdorff.
- c) Deducir que si un grupo finito actúa libremente en una variedad (compacta) de dimensión n, entonces el espacio cociente X/G es también una variedad (compacta) de dimensión n.
- d) Volver a probar que el espacio proyectivo real $\mathbb{P}^n(\mathbb{R})$ es una variedad de dimensión n.
- 17) Sea g un número natural. Consideramos un disco cerrado $D_0 \subset \mathbb{R}^2$ y g discos cerrados disjuntos D_1, \ldots, D_g contenidos en el interior de D_0 . Denotemos D_i° el interior de D_i y definamos

$$D(g) = D_0 - \bigcup_{i=1}^g D_i^{\circ}$$

Sea $X = D(g) \times \{0\} \cup D(g) \times \{1\}$ la unión disjunta de dos copias de D(g). Sea S(g) el conjunto cociente de X por la relación de equivalencia generada por $(x,0) \sim (x,1)$ si x pertenece al borde de alguno de los D_i , $i = 0, 1, \ldots, g$.

Demostrar:

- a) S(g) es una variedad topológica compacta de dimensión dos
- b) Si modificamos los radios y posición de los discos D_i obtenemos espacios homeomorfos.
- c) S(g) + S(h) es homeomorfa a S(g + h)(+ es cirugía o costura: Si X e Y son variedades de dimensión n se eligen $D_X \subset X$ y $D_Y \subset Y$ homeomorfos a la bola cerrada en \mathbb{R}^n de centro 0 y radio 1. Se considera entonces $(X \setminus D_X^\circ) \coprod_f (Y \setminus D_Y^\circ)$ donde $f : \partial D_X \to \partial D_Y$ es un homeomorfismo entre los bordes de las bolas.)
- 18) Sea g un número natural. Sea $P_g \subset \mathbb{R}^2$ un polígono regular con 4g lados denotados $a_1,b_1,c_1,d_1,\ldots,a_g,b_g,c_g,d_g$ consecutivamente al recorrer el borde de P_g , digamos en sentido anti-horario. Vamos a definir una relación de equivalencia \sim en P_g cuyo efecto será identificar cada a_i con c_i y b_i con d_i de una manera específica. Precisamente, \sim es la relación de equivalencia generada por $x \sim y$ si $x \in a_i, y \in c_i, d(x, a_i \cap d_i) = d(y, c_i \cap d_i)$ o bien $x \in b_i, y \in d_i, d(x, a_i \cap b_i) = d(y, a_i \cap d_i)$ donde d denota distancia en \mathbb{R}^2 (¡hacer un dibujo!).

Denotamos $S'(g) = P_g/_{\sim}$ y $\pi: P_g \to S'(g)$ la proyección al cociente. Le damos a S'(g) la topología cociente de la topología en P_g de subespacio de \mathbb{R}^2 .

Demostrar:

- a) S'(g) + S'(h) es homeomorfa a S'(g+h)
- b) S(g) (ejercicio anterior) y S'(g) son homeomorfas. (Sug.: induccion usando a), también ver de hacerlo directamente)

Se tiene el siguiente

Teorema. Si X es una variedad topologica de dimensión dos, compacta y orientable, entonces existe un único numero natural g (denominado "género de X") tal que X es homeomorfa a S(g).

Complejos CW.

- 19) Sea X un espacio topológico T_2 y sea $D_n = \{x \in \mathbb{R}^n : ||x|| \le 1\}$. Sea $f: D_n \to X$ que verifica $f|_{D_n^\circ}: D_n^\circ \to X$ es un homeomorfismo. Sea $Y = X \coprod_f D_n$ el espacio definido como $X \coprod_f D_n/_{\sim}$ donde \sim es la menor relación de equivalencia que verifica que $x \sim z$ si $x \in X$, $z \in S^{n-1} \subset D_n$ y f(z) = x. Sean $\lambda: X \to Y$ definida por $\lambda(x) = \overline{x}$ y $\mu: D_n \to Y$ definida por $\mu(z) = \overline{z}$. Probar:
 - a) La aplicación λ es una inmersión y $\lambda(X)$ es un cerrado en Y (nombre: λ es una inmersión cerrada).
 - b) El conjunto $\mu(D_n)$ es cerrado en Y.
 - c) $F \subset Y$ es cerrado si y sólo si $F \cap \lambda(X)$ es cerrado en X y $F \cap \mu(D_n)$ es cerrado en D_n
 - d) La aplicación $\mu|_{D_n^{\circ}}: D_n^{\circ} \to Y$ es una inmersión y su imagen es abierta en Y (nombre: $\mu|_{D_n^{\circ}}$ es una inmersión abierta).
 - e) Y es Hausdorff.
- 20) Describir una estructura de complejo CW para los siguientes espacios:
 - a) S^n .
 - b) $\mathbb{P}^n(\mathbb{R})$.
 - c) La superficie de género g, S_g (usar la definición S'_g)
- 21) Sea $\{v_1, ..., v_n\}$ base de \mathbb{R}^n . Probar que la base define una estructura de CW-complejo en \mathbb{R}^n tomando como k-esqueleto al conjunto

$$\left\{ \sum_{i=1}^{n} s_i v_i : s_i \in \mathbb{R}, s_i \in \mathbb{Z} \text{ para al menos } n-k \text{ indices } i \right\}$$

Dibujar en \mathbb{R}^2 .

22) Sea K una estructura celular en X y L una estructura celular en Y. Probar que $K \times L = \{e \times f : e \in K, f \in L\}$ es una estructura celular en $X \times Y$. Si ambos son CW, ¿lo es el producto?

Espectro de un anillo conmutativo. Sea A un anillo conmutativo con unidad. Definimos el conjunto espectro primo de A como el conjunto

$$\operatorname{Spec} A = \{ \mathfrak{p} \subseteq A : \mathfrak{p} \text{ es un ideal primo} \}.$$

Para un conjunto $E \subseteq A$ definimos el subconjunto $V(E) \subset \operatorname{Spec}(A)$ como

$$V(E) = \{ \mathfrak{p} \in \operatorname{Spec} A : E \subseteq \mathfrak{p} \}.$$

- 23) Probar:
 - a) $V(E) = V(J_E)$ con J_E el ideal generado por E.
 - b) $V(0) = \text{Spec } A, V(1_A) = \emptyset.$
 - c) $V(\bigcup_{\alpha \in \Lambda} E_{\alpha}) = \bigcap_{\alpha \in \Lambda} V(E_{\alpha}).$
 - d) $V(E.E') = V(E) \cup V(E')$.

Por lo tanto existe una topología en Spec A tal que los conjuntos V(E) son conjuntos cerrados. Se llama la topología de Zariski.

24) Para cada $f \in A$, notamos D_f al conjunto

$$D_f = \operatorname{Spec}(A) \setminus V(\{f\}) = \{\mathfrak{p} \in \operatorname{Spec}(A) : f \notin \mathfrak{p}\}.$$

Probar que los conjuntos D_f forman una base para la topología de Zariski, y que

- a) $D_f \cap D_g = D_{fg}$
- b) $D_f = \emptyset$ si y sólo si f es nilpotente
- c) $D_f = \operatorname{Spec}(A)$ si y sólo si f es unidad
- d) $\operatorname{Spec}(A)$ es cuasi-compacto

(Sugerencia: refinando el cubrimiento podemos suponer que Spec A está cubierto por una familia $\{D_{f_i}\}_{i\in I}$. Esto quiere decir que los f_i generan el ideal generado por $1 \in A$ y por lo tanto $1 = a_i f_{i_1} + \cdots + a_n f_{i_n}$. Entonces $\{D_{f_{i_k}}\}_{k=1}^n$ cubren Spec A.)

- 25) Para facilitar la notación designaremos con x, y, etc. los puntos de Spec A y con $\mathfrak{p}_x, \mathfrak{p}_x$, etc. los ideales primos correspondientes en A (¡aunque es claro que son la misma cosa!)
 - a) Probar que $x \in \operatorname{Spec} A$ es cerrado si y sólo si \mathfrak{p}_x es un ideal maximal de A.
 - b) $\overline{\{x\}} = V(\mathfrak{p}_x).$
 - c) $y \in \overline{\{x\}}$ si y sólo si $\mathfrak{p}_x \subset \mathfrak{p}_y$.
 - d) Spec A es un espacio T_0 .
 - e) Si A es un dominio íntegro el punto correspondiente al ideal (0) es denso.
- 26) Sea $\varphi:A\to B$ un morfismo de anillos. Probar:
 - a) El morfismo φ induce una función $\tilde{\varphi}$: Spec $B \to \operatorname{Spec} A$, $\tilde{\varphi}(\mathfrak{q}) = \varphi^{-1}(\mathfrak{q})$ para $\mathfrak{q} \in \operatorname{Spec} B$.
 - b) $\tilde{\varphi}^{-1}(V(E)) = V(\varphi(E))$ para todo $E \subseteq A$.

c) $\tilde{\varphi}^{-1}(D_f) = D_{\varphi(f)}$ para todo $f \in A$.

Por lo tanto $\tilde{\varphi}$ es una función continua.

27) Definimos el espectro maximal de A como el conjunto

$$\operatorname{Max} A = \{ \mathfrak{m} \in \operatorname{Spec} A : \mathfrak{m} \text{ es un ideal maximal} \}.$$

Sea X un espacio topológici compacto, y sea C(X) el anillo de funciones continuas a valores reales con las operaciones definidas punto a punto. Para cada $x \in X$, sea $\mathfrak{m}_x = \{f \in C(X) : f(x) = 0\}$. El ideal \mathfrak{m}_x es maximal, pues es el núcleo del epimorfismo evaluación en $x, \epsilon_x : C(X) \to \mathbb{R}$ definido por $\epsilon_x(f) = f(x)$. Por lo tanto se tiene una función $\mu : X \to \operatorname{Max}(C(X))$, definida por $\mu(x) = \mathfrak{m}_x$.

Probaremos que μ es un homeomorfismo entre X y C(X).

a) Sea $\mathfrak{m} \in \operatorname{Max} C(X)$, y sea $V = V(\mathfrak{m})$ definido por

$$V(\mathfrak{m}) = \{x \in X : f(x) = 0 \forall f \in \mathfrak{m}\}.$$

Supongamos que V es vacío. Entonces para cada $x \in X$ existe $f_x \in \mathfrak{m}$ tal que $f_x(x) \neq 0$. Dado que f_x es continua, existe un entorno abierto U_x de x en el que f_x no se anula. Como X es compacto, existen finitos $x_1m \ldots, x_n$ tales que U_{x_1}, \ldots, U_{x_n} cubren X. Sea $f = f_{x_1}^2 + \cdots + f_{x_n}^2$. f no se anula en ningún punto de X, por lo tanto es una unidad en C(X), que contradice el hecho que $f \in \mathfrak{m}$. Por lo tanto V es no vacío.

Sea $x \in V$. Entonces $\mathfrak{m} = \mathfrak{m}_x$, y por lo tanto iguales. Esto prueba que μ es sobre-yectiva.

- b) Como X es T_4 , dados $x, y \in X$ distintos, existe una función continua que los separa, por lo que μ es inyectiva.
- c) Sea $f \in C(X)$, y sean

$$U_f = \{x \in X : f(x) \neq 0\}$$
 $\widetilde{U_f} = \{\mathfrak{m} \in \operatorname{Max} X : f \notin \mathfrak{m}\}.$

Probar que $\mu(U_f) = \widetilde{U_f}$. Los abiertos U_f (respectivamente $\widetilde{U_f}$) forman una base para la topología de X (respectivamente de Max X) y por lo tanto μ es un homeomorfismo.

Así X puede ser reconstruido a partir del anillo de funciones C(X).

Paracompacidad. Sea X un espacio topológico X y sea \mathcal{U} un cubrimiento abierto de X. Un refinamiento de \mathcal{U} es un cubrimiento \mathcal{V} tal que para todo $V \in \mathcal{V}$ existe $U \in \mathcal{U}$ tal que $V \subset U$. Un refinamiento abierto es un refinamiento por conjuntos abiertos. Un espacio topológico X se dice paracompacto si es Hausdorff y si todo cubrimiento abierto de X tiene un refinamiento abierto y localmente finito que cubre X.

- 28) Un espacio compacto X es, trivialmente, paracompacto.
- 29) Teorema. Todo espacio paracompacto es T_4 .

- a) Probar que X es T_3 de la siguiente manera: Sea $a \notin B$ con B cerrado. Para cada $b \in B$ separar a de b por un abierto U_b tal que $a \notin \overline{U_b}$. Conseguir un refinamiento \mathcal{V} localmente finito de $\{U_b: b \in B\} \cup \{X \setminus B\}$. Considerar $\mathcal{W} = \{V \in \mathcal{V}: V \cap B \neq \emptyset\}$. Probar que $U = \bigcup_{W \in \mathcal{W}} W$ verifica $B \subset U$ y $\overline{U} = \bigcup_{W \in \mathcal{W}} \overline{W}$ (acá se usa que el refinamiento es localmente finito), por lo que $a \notin \overline{U}$.
- b) Repetir el argumento reemplazando a a por A cerrado disjunto con B.

Partición de la unidad. Sea X un espacio topológico y sea $\phi: X \to [0,1]$ una función continua. Definimos el soporte de ϕ como el conjunto sop $\phi = \{x \in X : \phi(x) \neq 0\}$. Sea $\{U_{\alpha}\}_{{\alpha} \in \Lambda}$ un cubrimiento abierto de X. Una familia de funciones continuas $\{\phi_{\alpha}: X \to [0,1]\}_{{\alpha} \in \Lambda}$ se dice una partición de la unidad subordinada al (o dominada por el) cubrimiento $\{U_{\alpha}\}$ si se verifica:

- I) sop $\phi_{\alpha} \subset U_{\alpha}$ para todo $\alpha \in \Lambda$
- II) La familia $\{ \sup \phi_{\alpha} \}_{{\alpha} \in \Lambda}$ es localmente finita
- III) $\sum_{\alpha \in \Lambda} \phi_{\alpha}(x) = 1$ para todo $x \in X$ (observar que la suma es finita por II)).
- 30) Una familia de conjuntos $\{A_{\alpha}\}_{\alpha}$ se dice indexada finitamente por puntos si cada $x \in X$ pertenece a finitos conjuntos A_{α} .

Lema de encogimiento. Sea X un espacio T_4 y sea $\{U_\alpha\}_{\alpha\in\Lambda}$ un cubrimiento abierto de X. Entonces existe un cubrimiento abierto de X, $\{V_\alpha\}_{\alpha\in\Lambda}$ tal que $\overline{V_\alpha}\subset U_\alpha$ para todo $\alpha\in\Lambda$.

- a) Probar el lema en el caso $\Lambda = \mathbb{N}$. (Supongamos que tenemos para cada j < n abiertos V_j tales que $\overline{V_j} \subset U_j$ y $X = V_1 \cup \cdots \cup V_{n-1} \cup \bigcup_{k \geq n} U_n$. Considerar $A_n = X \setminus (V_1 \cup \cdots \cup V_{n-1} \cup \bigcup_{k > n} U_n) \subset U_n$; la normalidad implica que existe V_n abierto tal que $A_n \subset V_n \subset \overline{V_n} \subset U_n$. Probar que los V_n cubren X.)
- b) El caso general se prueba haciendo inducción transfinita en el conjunto (bien ordenado) Λ .
- 31) Teorema. Si X es un espacio T_4 y $\{U_\alpha\}_{\alpha\in\Lambda}$ es un cubrimiento por abiertos localmente finito, entonces existe una partición de la unidad dominada por $\{U_\alpha\}_\alpha$.

Sugerencia: Usar el lema de encogimiento para definir funciones $\psi_{\alpha}: X \to [0,1]$ tales que $\psi_{\alpha}(\overline{V_{\alpha}}) = 1$, $\psi_{\alpha}(X \setminus U_{\alpha}) = 0$. La función $\psi: X \to [0,1]$ definida por $\psi(x) = \sum_{\alpha \in \Lambda} \psi_{\alpha}(x)$ está bien definida y es nunca nula. Definir $\phi_{\alpha} = \frac{\psi_{\alpha}}{\psi}$.

32) Teorema. Probar que si X es paracompacto y $\{U_{\alpha}\}_{{\alpha}\in\Lambda}$ es un cubrimiento por abiertos, entonces existe una partición de la unidad dominada por $\{U_{\alpha}\}$.

(Sugerencia: Si $\{V_{\beta}\}$ es un refinamiento abierto localmente finito de $\{U_{\alpha}\}$, sea para cada α , $W_{\alpha} = \bigcup_{V_{\beta} \subset U_{\alpha}} V_{\beta}$. Entonces $\{W_{\alpha}\}$ es localmente finito.)