TOPOLOGÍA

Práctica 6

- 1. Sean \mathcal{I} e \mathcal{I}' dos topologías dadas en un conjunto X, tales que $\mathcal{I} \subset \mathcal{I}'$. Si X es compacto en alguna de ellas, ¿qué puede decirse de su compacidad con respecto a la otra?
 - Mostrar que si X es compacto y T_2 con ambas topologías, entonces o bien $\mathcal{I} = \mathcal{I}'$ o bien no son comparables.
- 2. Sea \mathbb{R}_f \mathbb{R} con la topología del complemento finito. Mostrar que todo subconjunto de \mathbb{R}_f es compacto.
- 3. Estudiar la compacidad del $[0,1] \subset \mathbb{R}$ con la topología del límite inferior.
- 4. Un espacio topológico X es compacto si, y sólo si, toda red en X tiene un punto de acumulación.
- 5. Sean X un espacio Hausdorff y A y B subconjuntos de X compactos y disjuntos. Probar que existen abiertos disjuntos U y V que contienen, respectivamente, a A y a B.
- 6. Sea Y compacto Hausdorff. Probar que $f: X \to Y$ es continua si, y sólo si, $G_f = \{(x, f(x))\} \subset X \times Y$ (el gráfico de f) es cerrado en $X \times Y$ (con la topología producto).
- 7. Sean $A \subset X$, $B \subset Y$ y N un abierto de $X \times Y$ tal que $A \times B \subset N$. Probar que si B es compacto, existe un abierto U de X tal que $A \times B \subset U \times B \subset N$. Mostrar que si A es también compacto entonces existe además un abierto V de Y tal que $A \times B \subset U \times V \subset N$.
- 8. Probar que Y es compacto si, y sólo si, $\pi_1: X \times Y \to X$ es cerrada para cualquier X.
- 9. Probar que $\mathbb{P}^n \simeq S^n / \sim$, donde $c \sim d \Leftrightarrow c = d$ ó c = -d. Probar también que $\mathbb{P}^1 \simeq S^1$.
- 10. Mostrar que la aplicación $f: \mathbb{P}^2 \to \mathbb{R}^4$ dada por $f([x_0:x_1:x_2]) = (x_0^2 x_1^2, x_0x_1, x_0x_2, x_1x_2)$ es continua e inyectiva.
- 11. Considerar \mathbb{M} , la banda de Möbius, $\mathbb{M} := [0,1] \times [0,1]/(0,t) \sim (1,1-t)$. Probar que:
 - (i) \mathbb{M} con la topología cociente está inmersa en \mathbb{R}^3 .
 - (ii) si $p:[0,1]\times[0,1]\to\mathbb{M}$ es la proyección, $p([0,1]\times\{0\}\cup[0,1]\times\{1\})$ es homeomorfo a S^1 .
- 12. Definimos \mathbb{T} , el toro, como el cociente de $[0,1] \times [0,1]$ por la relación $(t,0) \sim (t,1)$ y $(0,t) \sim (1,t)$. Probar que \mathbb{T} es homeomorfo a $S^1 \times S^1$.
- 13. Calcular \mathbb{R}^2/\sim donde
 - (i) $(x,y) \sim (w,z) \iff x + y^2 = w + z^2$.
 - (ii) $(x,y) \sim (w,z) \iff x^2 + y^2 = w^2 + z^2$.
- 14. Sean \mathbb{Q} los racionales con la topología inducida por \mathbb{R} y $p: \mathbb{Q} \to \mathbb{Q}/\mathbb{Z}$ el cociente. Probar que p es cerrada y que $p \times id_{\mathbb{Q}}: \mathbb{Q} \times \mathbb{Q} \to \mathbb{Q}/\mathbb{Z} \times \mathbb{Q}$ no es un cociente.
- 15. Mostrar que \mathbb{Q} no es localmente compacto.
- 16. Sea $(X_{\alpha})_{{\alpha}\in\Lambda}$ una familia de espacios topológicos no vacíos. Mostrar que $\prod X_{\alpha}$ es localmente compacto si, y sólo si, cada X_{α} es localmente compacto y X_{α} es compacto para todos los α salvo finitos.

- 17. (i) Sea $p:X\to Y$ una función cociente y Z un espacio localmente compacto Hausdorff. Probar que $\pi=p\times id_Z:X\times Z\to Y\times Z$ es una función cociente.
 - (ii) Sea $p:A\to B$ y $q:C\to D$ funciones cocientes. Si B y C son localmente compactos Hausdorff, entonces $p\times q:A\times C\to B\times D$ es también un cociente.
- 18. ¿Cuál es la compactificación de Alexandroff de \mathbb{R} ?, ¿y la de \mathbb{R}^2 ?
- 19. Sea Y una compactificación arbitraria de un espacio X. Probar que existe una función continua y suryectiva $g: \beta(X) \to Y$ tal que $g_{|X} = \mathrm{id}_X$ ($\beta(X)$ es la compactificación de Stone-Čech de X).
- 20. Un espacio (X, \mathcal{T}) se dice σ -compacto si $X = \bigcup_{n \in \mathbb{N}} A_n$, donde cada A_n es compacto en X.
 - (i) Probar que todo espacio σ -compacto es de Lindelöf.
 - (ii) Probar que todo espacio localmente compacto y Lindelöf es $\,\sigma\text{-compacto}.$
 - (iii) Probar que el producto de dos espacios σ -compactos es σ -compacto.