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ON OPERATIONS OF CONVOLUTION TYPE AND
ORTHONORMAL SYSTEMS ON COMPACT
ABELIAN GROUPS

by A. BENEDEK, R. PANZONE and C. SEGOVIA

InTrRODUCTION. This paper is divided into three sections: the
present one (which contains the motivation of the others) and the
following parts I and II. Part II is devoted to the study of certain
Banach algebras, to which one is naturally led when trying to solve
the problem of introducing a convolution in a general finite measure
space. Part I deals with necessary and sufficient econditions on an
orthonormal system of measurable functions on a compact abelian
group @, to be the image of the character group G*, under measu-
rable transformations on the original group @.

Preliminary results. 1. Given two finite measure spaces (X,
Si, mi), 1=1,2, (u (Xi) < o), we say that they are B-isomorphic
if there exists a o-isomorphism between the Boolean algebras =;/Ny
and 32/N,, where N; denotes the sets of measure zero of 3;. If besi-
des, the o-isomorphism between the measure algebras 3;/N; preser-
ves measure we say that the spaces are m-isomorphic. Following D.
Maharam’s paper ([8]) we call a finite measure algebra homoge-
neous if any two principal ideals admit minimal o-basis of the same
power. The result of Maharam which interests us is the following:
a) A finite measure space (X, 3, u), is m-isomorphic to the measure
theoretic union of a denumerable set of spaces of the form
P, = (II [01);, 3y kn pa) and a purely atomic space. The

1<i<y,
y» are infinite ordinal numbers (and the leading ordinals of their
cardinal classes) and verify v, <s41; 3n represents the o-field of
Baire sets of the compact groups II [0,1);; un is the normalized
1<i<igy

Haar measure and k, a real number such that 0=1F%,= 1. Given
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(X, S, u) the y, and %, arve uniquely determined. b) If (X, 3, p)
is homogeneous (and non atomic) the Maharam’s representation is
reduced to only one product of unit cireles.

9. If we try to introduce a convolution type operation on a
finite measure space (X, 3, ) we can do it as follows. Supposing
that our space has no atoms, it is m-isomorphic to U P,, and there-
fore there is induced a natural isomorphism r between both L!-spa-
ces. Since each P, is a compaet group it has a convolution defined
in the ordinary way. Representing by x characteristic functions, we
define f* g, for f,ge L' (X, 3, p) as:

F)g=r1 (20 xe, “7(9) xe,, )) (1)

If (X, 3, u) also has atoms no problem arises because they are
easier to manage.

This suggests to study locally compact spaces obtained as union
of locally compact abelian groups and to define convolution type
operations in analogous fashion as (1). We do this in part IT and
we see that, as it might be expected, these spaces admit a formal
treatinent like a common locally compact abelian group. However
the Bochner theorem splits into two parts and is the main diffe-
rence with the theory developed in [1] or [T7].

3. Since an infinite product of unit cireles, from the measure
theoretic point of view, can he replaced by product of a set
with the same power of copies of the two-element group, we see that
there are several ways of introducing a convolution operation li-
ke (1). To see how they are related we ean restrict ourselves to
study the same problem for a fixed compact abelian group.

The first observation we need is contained in the next lemma.

Lemma 1. Any compact non-finite group 1is m-isomorphic to
a product of unit circles.

Proof. It is necessary to prove that a compact group G is ho-
mogeneous. Given two homogeneous sets A and B of positive measu-
re, contained in G, there exists a point x such that £ A N B has positi-

ve measure ([2], p. 261). Therefore, 4, B and x A N B have the same
type of homogeneity, QED.

(As it is well-known (cf. [9]) a compact group is isomorphie
to a product of unit circles, [0,1);, 1==1 <y, if and only if, its
dual group is isomorphie to the direct sum of L;, 1 =14 < y, where
each L; represents the set of integers. Therefore, a product of unit
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cireles is characterized as the dual group of a free group. The real
line with the diseret topology is not a free group, and therefore its
dual group provides us of an example of a non-finite compact
group not a product of circles).

Lemma 1 and Maharam’s theorem show that if we have a measu-
re space (which, for the sake of brevity, we shall suppose without

atoms) (X, 3, u), which is m-isomorphic to the spaces U Pn, U Qum,
n m

P,, Qn, compact abelian groups, then the study of the relationship
between the convolution operation defined by (1) and

) g=r=" (G (= () xon * 7 (9) xap ) )

is reduced to the study of the relationship between the convolutions
of two compact spaces of the same homogeneity. (We have suppo-
sed that two different @,, have different homogeneity types).

4. Lemma 2. Two compact (non-finite) abelian groups (1)
are m-isomorphic if and only if their duals groups are of the same
power.

Proof. By lemma 1 it is sufficient to prove that any compact
non-finite eommutative group @, is m-isomorphic to a product P of
as many copies of the unit eircle as is the power of G*.

(It is immediate that the power of the set of unit circles taken
into consideration is the same as that of the character group P*).
Since a m-isomorphism preserves orthonormal ecomplete systems of
funections in L2, the power of P~ is the same as that of G*, QED.

The same argument proves also the following extension :

Two compact (commutative or not) groups are m-isomorphie if
and only if their families of sets of equivalent, irredueible, unitary
matrix representations have the same power, (ef. § 32 and § 33
of [9]).

5. Given a compaect abelian group @, let (e;) be its character
system. For two functions f and ¢g of L?*(G) with Fourier series:
f=23c;e;, g=3d;e;, we have:

F(*) g=Zcidie; (3)

Formula (3) permits to define an operation of convolution type
with any complete orthonormal system of funetions of L2. Among

() TFor compact groups we always suppose that they have been provided
with the normalized Haar measure.
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these systems there are some which can be considered as the image un-
der an m-isomorphism of the character system of certain compact
groups. An orthonormal system (7;) of this type must verify cer-
tain conditions, for example, its functions must be uniformly boun-
ded and constitute a multiplicative group, t.e., for any j and %,
|9 | =1 a.e., 9j . =1ne a.e., and so on,

The interest of these particular systems may be justified as
follows. Let f, ¢ ¢ L*(G) and f =3 ¢;m, g == d;in; and consider
the convolution defined by (3):

F(*) =3cidim
and that defined by (1) :

) g=r(=() *7(9)),

where (y;) is the image of (e;) under the m-isomorphism »—! from
the group F onto the group @, and where the convolution in the
second member of the last equality must be understood in the usual
sense. It is easy to see that both definitions provide the same fune-
tion (e.e.). In other words, with these particular systems, (3) de-
fines a convolution which is “essential” in the sense that, except
by a m-isomorphism, it is the convolution on a certain commutative
compact group.

6. It arises naturally the question, what are the conditions
which must satisfy an orthonormal complete system to be the
m-isomorphic image of the character system of a certain group.
This question receives several answers in Part I. Now we consider
an example of this situation. Liet G be the unit interval [0,1), with
the operation of sum (mod. 1), and F the product of countable
many copies of the two-element group. It is well-known that there
exists a measure preserving transformation of F onto G constructed
with the dyadic intervals. But this is exactly the transformation
which sends the family of characters of F' onto the Walsh system
of the interval, (ef. [10], p. 34, Ex. 6). We leave the easy verifica-
tion to the reader.

Partr I

Almost everywhere multiplicative systems. 1. Let G and F be
compact abelian groups and G*, F~, their dual groups. It is well-
known that:
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Theorem 1. G and F are isomorphic if and only if G~ 1s iso-
morphic to '~ .

Our purpose in this section is to extend theorem 1 to other
situations. What theorem 1 says is that if there exist an isomorphism
between the character systems G~ = (e;) and F* = (v;), then there
exists an isomorphism 7: F— G, of F onto G, such that:
7i (¥) = e (Ty).

Theorem 2. Let '~ = (n:(y)) be @ complete o.n. system of
functions of L2(F), which is under the multiplication a.e. (?) an
isomorphic group to G~ = (e (x)). Then, there exists an m-isomor-
phism between F and & such thot F~ is the image of G~ . The
converse s obviously true (3).

Proof. Consider the unitary operator U defined by the corres-
pondence e; — 5;, given by hypothesis. We see next that for any
fel?(@) and g e L> (@), it holds

Ulfe) =0().Ulg)  ae, (1)
Since, U(ei e]') = U(Eji) = Nij = Ni.-Nj = U(ei) .U(Ej), we have:
N M N M
U((? (fye) e) Elge) ) =U(EFa)a) . U (2 (g,i) @) (2)

If M — o, we obtain:

N N
U((? (f,ef)e-z)g):U(El (fra)e) . U(9), (3)

If in (3) we make N — oo, the first member tends in L2(F)
to U (fg), and the second in L' (F) to U (f). U (g).

Therefore: U(fg) =T(f) U(g), ae. .

The theorem follows now from the next theorem 38, which is
essentially Von Neumann’s multiplication theorem, (ef. [8], [4] and
the crossed references there mentioned).

Theorem 3. Let (X,3,n) and (Y, ®,v) be probability spaces.
If U is a unitary operator from L?(X) onto L2(Y) which verifies

(®) Given 4 and y, of F~, m .7, is equal a.e. to an element of F~ and
there exists %y such that n, =1 a.e.

(*) An m-isomorphism gives a correspondence between classes of functions
and - without mentioning it every time - we pick out a representative function
when it is necessary.
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U(fg) =U() . U(g) ae.,

for any fe*(X), ge L*(X), then U is induced by an m-isomor-
phism.

Proof. If x is a characteristic function, since U(yx) is finite
a.e., we have: (U(x))?=U(x), and therefore U(x) is a characte-
ristic function (a.e.). Besides, x and U(x) define sets of the same
measure, and U determines a measure preserving mapping of 3/Ns
into ®/Ns. From:

U (X1 +X2—2x1x2) =U (X1) + U (xe) — 27U (Xl) .U (Xz),

we see that, U (x1) = U (x2) a.e. if and only if 1 =2 a.e, and
the mapping is one-to-one. The continuity of the operator U implies
that it is a o-isomorphism. It is also onto. In fact, it is necessary to
prove that if U(h) =y, then & is a characteristic funetion. Let
hu(x) = h(z)if | h(z) | =n, and =0 if | A(z) | > n. Then,

U . U(ha) = U(h) = x . U (hy), and
v (X . U<h'n)) =h.h.

Since U(hy,) = x and h,—h we have: lim U~ (x . U(hy)) =
= U~ (x). Besides, hh, tends (pointwise) to A2 Then,

U=t (x) =h=Um U~ (x.U (k) = B2,

and % is a characteristic function.

This proves theorem 3 (and 2).

2. This paragraph deals with several generalizations of theorem
2. To find the right conditions to be imposed to the 5-system, we
make some observations. a) If 7 is a measure preserving transfor-
mation from F into &, (both compact abelian groups), it may happen
that T(F) is not a mesasurable set, however, it is a thick subset of @,
ie, u*%(G@ —T (F)) =0. Besides the functions #;(y) = e (Ty),
(es) = G*, are measurable functions and form a multiplicative
(a.e.) group isomorphic to the e-system (because T’ (F') being thick,
is dense in G). Since:

S (W) 5 (y) dv=Jei(Ty) ¢;(Ty) dv= e (z) ¢ (z) dv T~ =

= fe(®) ¢(x) dp=28;,

then y-system is orthonormal.
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b) For any 7 and v, 7:(y) € «(G). And also the funections »;
are measure preserving transformations from F into the compact
subgroup ¢ (@) of the unit cirele (always with the normalized Haar
measure). This follows from the next lemma.

Lemma 1. . Any character e of a compact abelion group G, is a
measure preserving transformation from G onto the compact group
e(@).

Proof. Cf. [2], § 63.

e¢) If we ask T(F) to be dense on &, then the family
e (Ty) =9:(y) is isomorphic to (&) without asking 7' to be
measure preserving.

d) If T is also continuous, the 5; are eontinuous funetions. Now
we pass to the converses of the preceding observations.

Theorem 4. Let '~ = (9:(y)) be a system of measurable func-
tions on the compact abelian group F isomorphic as ¢ multiplicative
(a.e.) group to the character group G™~= (e;) of the compact abe-
lian group G. Suppose that for any i, ni(F) C & (G). Then there
exists @ measurable transformation from F into G such that T(F)
generates (*) G and for any 1, ¢ (Ty) = n:i(y) a.e.y. (The measu-
rability of #; and T' is with respect to the Baire o-rings. If the
measurability of the »:’s is assumed to be with respect to a o-field
containing the Baire o-ring the same result holds).

Theorem &. If besides of the hypotesis of theorem 4 we require
the 7; to be continwous functions then T is also continuous.

Theorem 6. If besides of the hypothesis of theorem 4 we re quire
every function »:(y) to be & measure preserving mapping from F
mio ¢ (@), then T is measure preserving.

Theorem 7. If besides of the hypothesis of theorem 4 we require
the system (x;) to be orthonormal, then T is measure preserving.

Proof of theorem 4. First of all, we want to show that we can re-
place the system F~ = (»;) by another one with the same proper-
ties and which is everywhere multiplicative, e, if 5; <> e and
€; €5 = e, then n;(x) 9;(x) = (x) for every xzeF. We give a proof
by induetion. Suppose that a certain subgroup /A of F~ has been
replaced by a family A in such a way that: a) if 7 (¢ A) replaces
n (e ), then =7 a.e., b) the elements of A form an everywhere
multiplicative group isomorphic to A. Let « be an element of F~,

(*) G is the least closed subgroup containing T (F).
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6 é/\, an [a] the subgroup generated by a. If «™ does not coincide
(almost everywhere) with a function of A whatever be n £ 0, then
we define [A, a] = [A, a], where [ . ] indicates the subgroup ge-
nerated by the set of elements contained between the brackets. If
for some ns£0, a® coincides a.e. whith a funection of A\, then let
m be the least positive integer with such a property. Then,

m ——

a" =7 (e \) ae. Let us define a=a">™ for every x where
a(z) %<7 (z), and &=a where o” (z) =7 (z). Then, [A,a] is
an everywhere multiplicative group, and [A, a] ~ [A, ], and we
define [A, o] = [A, @a]l. Tt only remains to prove that
@ (F) c « (@), where ¢ is the image of o in the assumed isomor-
phism between F~ and G*. It is obvious if €« (&) coincides with the
unit cirele. If not, ¢ (G) is the set of all k-th roots of the unity,
for some k. Since 5 (F') € ¢ (), by the inductive hyphotesis we
have, 4 (F') ¢ ¢ (@). From the very definition of a we get
a@ (I') © «(G). Therefore, we can suppose that our system /'~ is an
everywhere multiplicative group such that »; (F) C e (G).

Let P=1I¢; (G) be the cartesian product of the image groups
¢ (@) when ¢ runs through G4. It is a compact abelian group.
Let S be an application from F into P defined by (Sy): = 7:(y).
Let G’ be the compact subgroup of P generated by S(F). Then
S(F) € & and pri(8(y)) =n(y).

It is well-known that the family of proyections pr; of P onto
& (@) is a set of generators of the free group P*. Then, the functions
pr; restricted to G’ form a set of generators of the character group
G4, (ef. [9], IT).

Let ¢ = pry® pro®2 ... pra®", (e; integers) be a character of
@. Then, ¢(Sy) =m® ... 7, will be, by hypothesis, equal to
some »-function, say mx : ¢(Sy) — 7 (y). This means that ¢ coinei-
des with pr; on S(F). Since G is the least compaet subgroup of P
containing S(#) and since ¢ and pr; ave characters of G’ which
coincide on S(¥), we have: ¢ = pr on &’. Then G’ is isomorphie
to (pr;), and therefore to (4:) and to (e;) = G* By the Pontria-
gin duality theorem G and G’ are isomorphic. Let ¢ be the iso-
morphism, ¢ : @ — @, for which pr; = &, and T be defined by
T(y) =y (S(y)). T is therefore an application from F into G.
We have also: pri/G’ =e 0 ¢, and (e 0 ¢ 0 8) (y) =& (Ty) =
=pri(Sy) =4 (y). For any set M of the Borel field in the unit
circle, 7= (e;=*(M)) = 4~ 1(M) belongs to the Baire o-field of 7,
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and since the family of sets { &=*(M); ¢ ¢ G*, M a Borel set | ge-
nerates the o-ring of Baire sets, we conclude that for any Baire
set of G, T—1(@) belongs to the Baire o-ring of F. This conecludes
the proof of theorem 4.

Proof of theorem 5. Since (Sy); =#:i(y), S is a continuous
mapping from # into G’. From 7 = o 8, we gel the desired con-
tinuity of 7'

Proof of theorem 6. This theorem reduced to theorem 7 in the
following way. We have seen that T—1(e;=1(M)) = %™ (). From
lemma 1 and the hypothesis we obtain:

v(T=t (&=t (M) =v(e™ (M) =m; (MNe () =
=p(e=t (M), (4)

where m; is the normalized Haar measure on ¢ (G).
From:

S (¥) 95 (y) dv=fm W) dv=Ffea&(Ty)dv=F e (z) dv T~ =

=by (4) =fa& (2) dp=fe (%) ¢ (z) dp =8, (5)

we see that the family F~ is orthonormal. Then, the preservation of
measure follows from theorem 7.
Proof of theorem 7. From (5), we get

(? cini (¥), ?di 7 (¥)) = F’. cidj (e (Ty), ¢ (Ty)) =
i=1,j=
=3c¢id; (e (2), ¢ () = (Zcie (%), 2dje (%)) (6)
1 1

Therefore finite linear combinations of functions of G* have
an image of equal norm. We want to show that v(T—1M) = u(M)
for any Baire set M. We shall prove it for J open.

From this it follows that the preservation of measure holds
for any null set. An easy L? approximation argument together with
the last observation and (6), conclude the proof.

If M is an.open Baire set, it is o-compact, and therefore it can
be constructed a sequence (g.) of linear combinations of funetions
of G* such that g,(z) — xur (z) everywhere and houndedly. The
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same happens to 2, (y) = g.(Ty) and xr~'x(y). Since ||gn — gnllz =
= ||~y — hmll2, it follows that (h,) converges in L2(F) to a cer-
tain funetion which must coineide with xr—*x(y). Moreover,
lxe =%t flo = 1im | e [lz = L || g lls = If x Il=

Independece. 3. In this paragraph we want to see how the con-
cepts of free group and independence in the sense of probability are
related. We call almost free an abelian group @ which is isomor-
phic to the direet product II Z; of a family (Z;), iel, of cyeclic
groups. We also say that a subset T' of G is an almost free family
of gemerators of @G if in the isomorplhism between G and II Z;, the
image of T is exactly a family of generators of the cyelic groups Z°.
Finally, we say that a set T' of functions on a compact group G is
p-independent if it is a set of generators of G independent in the
sense of probability.

Proposition 1. Let G be a compact abelian group end G 1ts
character group. Let /\ be a subgroup of G* Then T is a p-inde-
pendent set of A\ if and only if it is an almost free family of genera-
tors of A.

Proof. Let us see the “only if” part. First of all we observe that
the results mentioned in [2], pp. 191-193 remain true, even for
not necessarily real funetions. We need only to prove that:

N—1 pn, n . . n
II = ¥ implies o1,
j=1 eij eiN Z'N
We have:

1= J( . N1 ?Zj ) e_nN du = (by the hypothesis of
! j ‘v independence) =

N—1 N n n
= (H je] clp).jeNdp—: J'eNdlL
j=1 ) 3 iN

2
, and therefore:
iN

n
From the last equality we obtain that e_N must be identically
N

one.
We pass now to the “if” part. Suppose first that A = G".
Then @ is isomorphic to a product of compact groups G; and such
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that (II G;)* =T Z;. From this follows immediately the p-indepen-
dence of T. If A is not all of G*, let us consider the subgroup
H=n{zeG; g(z) =1, ge A }. Observe now that the produect
measure of the (normalized) Haar measures on H and G/H is the
Haar measure on G. Besides /A is the character group of G/H.

These two observations reduce the case A =% G to the case
A =G, QED..

To finish this paragraph we shall observe how these concepts
are invariant under measure preserving transformations.

Proposition 2. Let T be a measurable transformation from F
into G, F and G compact abelian groups. Let (e(x)) = G* and
7:(y) = e(Ty). a) If T(G) is dense in G then T = (&, (x)) is an
almost free family of G* if and only if (n:, (y)) is almost free (5).
b) If T 1s measure preserving, then (e, (x)) is p-independent if

and only if (q:i. (y)) s p-independent (°).

S
Proof. a) follows from the definitions. b) is a consequence of

v (A= O0) = (AT (71 () =

i=1 i=1

= (T‘i{ A =t (M) ] )—

i=1

=u ( N e~ (M) =T (e (M) =Ty (g™ () .
f== i=1 ]

i=]

Part 11

1. Let{ G;} be a family of locally compact groups, pairwise
disjoint and all of them commutative. We denote by G the
union U @&; with the supremum topology, i.e., a set is open if and

i€l
only if it intersects in an open set every G;. Therefore, G is a locally
compact, space and every Baire (Borel) set in G is of the
form 'S M;, M; C G;, where J is a denumerable subset of I and
ied i
M, is a Baire (Borel) set of G;. For any function f on G, f; will

. 1 m . .
(*) 1In the following sense 5 "L q I =g implies gf = 1.
B! tn

(°) In an obvious sense.
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denote its restriction to the clopen subset G;. Evidently, fe L'(G)
when and only when f=3;sfi, J is finite or countably
infinite, f; e L'(G:) and ||f|i=3 iesf e |fi|dpi < 0. Briefly,
LMNG) =3 L'(G;). We define now the convolution between two
funetions f, g of L*(@) by:

fxg=3fixgi . (1)

From, [[7%g =13 fi* gi lp < 3 filla 1 gi llp <
K Ngl-SNfll = I flli-1l g llp we see that L'(G) is a Banach al-
gebra with this operation as multipliecation. Of course, convolution
is commutative, associative and bilinear. To avoid long proofs and
to reduce the repetitions we stick to Loomis’ book for the nomen-
clature and references on Banach and group algebras.

Let M be a regular maximal ideal of L'(G). From the very
definitions follow that: 1) the restrictions 1{; to G; of the functions
of M constitute an ideal; 2) the restriction to G; of an identity of
LY(G) modulo M, is an identity of L*(&;) mod. 1;; 3) every M; is
maximal or equal to L'(@F;), and there is one and only one different
from L'(G;). Then,

Lemma 1. The space of regular mazimal ideals of L'(G) coin-
cides with the set theoretic union of the spaces of maximal regular
ideals of the L'(G;).

Each maximal regular ideal is the kernel of a multiplicative
linear functional, and conversely. Since, the space G is such that
(L'(@)) * =L~ (@), (ef. [7], p. 43), any maximal regular ideal
is associated to a funetion of L= (&). This function will be called
a character of @. Let I be the index for which M;, s« L'(Gy), and
ay(z) the character associated to M. For any funection f such that

fr=0 ae, it holds: f(M)=[f(z) au(z) du=0, since feM.
Therefore, ax(x) is zero execept on Gy, and obviously, coincides
there with a character of G%. Then,

Lemma 2. The characters of G define o set in one-to-one co-
rrespondence with the union of the character groups G;; each cha-
racter of G s zero on every G; excepl on one of them and there
coincides with a character of that group.

The topology of the family of characters G* of @, is by defi-

nition the weak topology induced by the functions f(M) = f(ax) =
= [ f(x) ax (z) dz, f e L1(@). Tt follows easily that,
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Lemma 3. The topology of G* is equal fo the supremum of
the topologies of the spaces G,;. It coincides with the topology of
the uniform convergence on compact sets of G.

The last assertion of lemma 3 is very easy, and also the Pon-
trjagin’s theorem. The space of maximal regular ideals of G*
is homeomorphic to G.

Moreover, two locally compact spaces like G, G* and G2, such
that there exists a homeomorphism which is a group isomorphism
from every group contained in G' onto a group in G2, will be ca-
lled an isomorphism between Gy and G Therefore, G 1is iso-
morphic to G.

2. LY(@) has a symmetric involution defined by f*=3 f#;
where f;* — f;(z—1). Obviously,/#* — f~—. This involution is an
isometry on L(G). :

Let L°(G) be a dense ideal in L'(G) defined as: f e LO(@) iff
feL'(@), f is a continuous function and 3 || f; || . < . Let ¢(f)

be the positive linear functional (i.e., ¢ (f* f#) >0 for any f < L")
on L? defined hy:

¢ (f) =371 (es),
where e; is the identity of Gi.

An element p of L=(G) will be called positive definite if
¢ (p*f) =0,(f) is a positive functional on L!'(G).

Auxiliary the orem. If peL® is positive definite and extendi-
ble (") then there exists a wnique Baire measure m on. G such

that ¢(p*f) = fGA}:(a) 2,;(@) dm(a) =3 (pi * i) (e;), and

pell (GNm).

Proof. Notice that L' (@) is semi-simple and self-adjoint. Then
the theorem follows from theorem 26. J of [7].

The restriction of p to G;, p;, verifies:

(pi = fi) (&) = fe] f (a) p (a) dm(a)

and the proof in 36. B, [7], shows that the restriction of m fo G
coincides with its Haar measure there.

(" 6r(f) can be extended so as to remain positive when an identity is
added to L,
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3. First Bochner Theorem. The formula,
p(z) = fa(z) dp(a),

establishes an tsomorphism between the functions p(x) e L* (@)
which define positive Ulnear functionals and the positive Baire
measure w such that:

JGi"d,u. (a) =k < o, for any 1.

Proof. If pe L= (G) defines a positive functional (that is,
(f = f*, p) = 0) then p; defines a positive funectional = and

1Dille =12 [lao -

From the Bochner theorem (36.A, [7]) it follows that:

pi(z) = JG,\ a () dp; (a), where u; is a Baire measure, positive

2

2

and such that JGA dpi(a) = Dille =P lle ="k

Then, p (ac)‘._:J. na(z) dp(a), where u (a) coincides with
¢
mi O Gi.

Conversely, given a u (o) with the mentioned properties,

pi (x) :J ar® (z) d u (a), is a funetion of L= (G;) which defines

K3

a positive funectional on L' (G;). Besides, || pi e = JG ndp(a) =

=k oand (Fx ¥, p) = 3 (fix fi,p:) =0.
(As in the corollary to 36.A, [7], every p; is essentially uniformly
continuous on G;).

Second Bochner theorem. Let pe L™ (G) . p defines a positive
and extendible linear functional iff ferndp (a) < 0.

Proof. 1t is a direct application of the Herglotz-Bochner-Weyl-
Raikov theorem (cf. [T]).

Corollary. If p(x) defines an extendible positive linear functio-
nal then 3 || p; l|o < . If besides p(x) e L* (@), then p(x) ¢« L° (G).
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Proof. It follows from the preceding theorem, ohserving that

JG ~ dpi (a)=| pill» and that p; is esentially uniformly continuous.
]
Lemma 4. p e L* (G) defines an extendible positive linear func-

tional if and only if p defines an extendible positive definite linear
functional.
Proof. If p defines an extendible positive funectional, then

(f,p) = (et. p.96, [7]) = (f*, p) = (p,[*) = (f, p¥), and there-
fore, p = p*. Since ¢ (px ) =(f, p¥) = (f,p), p is positive de-
finite.

If p is positive definite, the functional (f, p*) = ¢ (px f) is
positive and extendible, and therefore, p¥ = (p¥ )¥ = p defines a
positive functional. ,

For the group algebra L' (G) of a locally compact abelian
group G, a linear positive functional is continuous if and only if
it is extendible, (ef. [7], p. 126). However, for locally compact spa-
ces of the type defined in the first paragrapl, the continuity of a
linear positive funetional is not equivalent to its extendibility as
first and second Bochner theorem show. For G a group, peL® (&)
defines a positive functional iff it is definite positive (e L° (G)).
An essential role is played by the extendibility, but this is not showed
up because of its equivalence with continuity. This ean be seen from
lemma 4. If in that lemma we drop the condition on extendibility
on the positive linear functional defined by p (z) e L* (&), from
Bochner theorems it follows that, in general, is mot true that
peL®(@). This different behaviour is a consequence of the lack

of an approximate identity on L' ( U G;) when I is not finite.
iel

4. Inversion theorem. If peIr (G) N L* (@) and defines an

extendible positive linear functional, then pe L' (G*) and

p(z) =fa(z) pla) da,
where d a s a certain measure on G* which coincides with a Haar
measure on every G~
Proof. From lemma 4, it follows that p (z) is positive definite.
Since p; is positive definite on G, p may be assumed to be conti-
nuous, and therefore p e L® (G).
Then by the auxiliary theorem,

(£,0) =6 (0% ) = S f (a) D (o) da, and peL? (GM).
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On the other hand we have:

(p, ) = (f, p¥) = (f¥,p) = fftpda=fpfda
From the last formula we obtain:

(p,f) =(fp(a)a(x)daf) for any felL

We shall denote by P ( c L° the family of funections of
L' N L* which define positive definite and extendible linear fune-
tionals on L' (@) and by P?, the analogous family on G*. By [P]
we designe the subspace generated algebraically by P. :

Plancherel Theorem. The Fourier transformation f—f preser-
ves scalar products when confined to [P]. Its L2-closure is a

unitary mapping from L? (@) onto L2 (G) .

Proof. For peP, we have p—=p¥* and therefore p—=p.
Then ¢ (p1 * ps = (P1, Pa™*) = (1, P=2), equals by the auxiliary theo-
rem do (p1, P2) = (P1, p2). Then, (pi, p2) = (py, p2). This equa-
lity can be extended to [P] and to the L>-clousure of [P], i.e.,
to L? (@). The Fourier transformation is onto because it is so for
L2 (G;) and L2 (GY;) . ‘

We want to prove now that [P]* = [PA]. Given peP, let us

take the positive part ¢ of its real component. Then, ¢ defines a po-
sitive definite funetional on L' (G*) . Besides,

gille=31qillh < oo

From second Bochner theorem it follows that it is extendible,

and from the inversion theorem, that g e L* (@). Therefore, p e [P] .
The inclusion in the other sense follows from the inversion and

Pontrjagin theorems.

5. Finally, we observe that the regularity of L (G), the taube-
rian theorem, the theorem on invariant subspaces, and the condition
D for L (@), admit the same statement for G a locally compact
abelian group or G a locally compact space as defined in paragraph
1. The proofs are trivial or follow the same lines as given in [T7].
(Under a translate of f () in{y;}, ¥i«@G;, the function equal to
f (xyx) on Gy, kel, is to be understood). The generalized Wiener
tauberian theorem can be translated in almost the same way as it is
very easy to verify. It has no content if every G; is compact.
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BIBLIOGRAFIA

RENATO CaccroppoLi, Opere, en dos volimenes, Cremonese, Roma 1963.

La Unién Matem#tica Italiana, con la contribucién del Conmsiglioc Nazio-
nale delle Ricerche, encomendé a una comisién presidida por el Prof. Mauro
Picone e integrada por ocho profesores, entre los cuales se cuentan quienes fue-
ron discipulos avanzados y, posteriormente, estrechos amigos del singular mate-
mético napolitano, la realizacién de esta obra en la que se ha reunido, pricti-
camente, la totalidad de las publicaciones que, desde la primera de 1926 (resu-
men de su tesis de doctorado) hasta la dltima de 1955 traducen el pensamien-
to cientifico de Remnato Caccioppoli.

Las mismas se han distribuido en dos volimenes siguiendo el eriterio, se-
gln se aclara en el prefacio, de incluir en el primero los trabajos sobre argu-
mentos de la teoria propiamente dicha de funciones de variable real: integra-
cién, totalizacién, funciones de conjunto, investigaciones vinculadas al anélisis
funcional, a las ecuaciones diferencialés ordinarias y en derivadas parciales, a
las funciones de una o varias variables complejas y las referentes a las funcio-
nes pseudo-analiticas. También en el prefacio se incluye un ftil comentario, a
modo de orientacién, de las publicaciones contenidas en el texto, seflaldndose
en él, fundamentalmente, las ideas centrales, varias de ellas originales del propio
Caccioppoli, que le sirvieron de guia en sus trabajos de investigacién. Se in-
cluye, por tltimo, una lista en orden cronolégico de la totalidad de las publi-
caciones por él realizadas.

La obra satisface una necesidad evidente. Los trabajos en ella reproduci-
dos traducen (*) ‘“una personalidad cientifica de un vigor y de una originalidad

(*) GiusEpPE Scorza DRAGONI, Renato Caccioppoli, Appendice necrol. ai
Rend. dei Lincei, Fase. III, Roma 1963. (Esta necrologia contribuye en mu-
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excepcional”; y, dada la naturaleza de los mismos, en varios de los cuales, sin
preocuparse mucho en los detalles (como el propio autor lo sefiala) llega a
resultados que dejan abierto un gran campo para posteriores investigaciones, es
légico compartir la esperanza de quienes inspiraron y se ocuparon de la apari-
cién de la presente obra, cual es que la misma sea amplio motivo de inspira-
cién para la actual y posteriores generaciones de estudiosos.

Edmundo Rofman

LorcH, EpearD R., Spectral theory, Oxford University Press, New York, 1962.

Es un libro més bien pequefio (158 pgs.), de clara impresién, dividido
en seis capitulos con los siguientes contenidos:

"L Espacios de Banach: t. de Hahn- Banach, topologias w y w’, t. de
Alaoglu, ejemplos y ejercicios;

II. Transformaciones lineales: t. de la transformacién inversa, transforma-
ciones cerradas, principio de acotacién uniforme, proyecciones, t. del espa-
cio nulo y rango de una transformacién lineal, t. ergédico medio;

III. Espacio de Hilbert: t. de representacién de F. Riesz, sistemas ortonor-
males, transformaciones no acotadas y adjuntas, t. de Hellinger - Toeplitz
(transformaciones autoadjuntas), proyecciones, descomposicién de la uni-
dad, transformaciones unitarias, ejemplos y ejercicios;

IV. Teoria espectral de las transformaciones lincales: espectros, procedimien-
tos de integracién, las proyecciones fundamentales, radio espectral, fun-
ciones analiticas de operadores;

V. Estructuwra de las transformaciones autoadjuntas: operadores definido
positivos, espectro puntual, descomposicién en tipos puros, el espectro
continuo;

VI. Adigebras de Banach conmutativas: la representacién regular, redueibi-
lidad e idempotentes, dlgebras que son cuerpos, ideales, 4lgebras eocien-
tes, homomorfismos e ideales maximales, el radical, representacién, ejem-
plos y aplicaciones.

En un estilo 4gil y claro el autor presenta los resultados fundamentales
en la teoria de espacios de Banach y Hilbert, descomposicién espectral de ope-
radores autoadjuntos y algebras de Banach conmutativas con unidad, pudien-
do recomendarse este libro a todo aquel que desee iniciarse en esas disciplinas
Y que no cuente entre sus conocimientos mis que elementos de topologia gene-
ral, de funciones analiticas y teoria de la integral.

Muchos de los ejemplos y ejercicios, por otra parte muy bien selecciona-
dos, son teoremas que amplian la teoria general. La representacién integral,
A = fNdE ) para operadores autoadjuntos es tratada como fue publicada
por el autor en el Acta Szeged (1950), tratamiento que posee la ventaja de
ser vélido para operadores acotados y no acotados.

R. Panzone

cho a definir las notables caracteristicas de la figura de Caccioppoli, dado que
destaca aspectos de la misma no mencionados en el prefacio de la obra que
comentamos).




CORRELACIONES ANGULARES EN Hg™*

por A. E. JECH, M. L. LIGATTO DE SLOBODRIAN y M. A. MARISCOTTI
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales,
Universidad de Buenos Aires

ResuMEN: Con el objeto de establecer la relacién de mezela en la transi-
cién de 2°— 2 (*) en el Hg"®, se realizé una experiencia de correlaciones angu-
lares. La relacién de mezcla obtenida es § — —1.10 =+ 0.35.

A diferencia de dos experiencias realizadas anteriormente, se utilizé una
fuente liquida de A" El acuerdo del presente resultado con los anteriores
demostré que el estado de la fuente no influia en el resultado de la experiencia.

1. Introduccion

Medidas de la relacién de mezela en la transicién 2’— 2, de
0.680 Mev, en el Hg'%, fueron realizadas anteriormente por D. Schiff
y F. Metzger (1), y C. Schrader (2). Estos autores obtuvieron in-
dependientemente la evidencia de que el earicter dipolar era com-
parable al caridcter cuadripolar de la transicién.

Por otra parte es sabido que, sisteméticamente, en los nficleos
par-par, el cardeter M1 en las transiciones 2’ — 2 es despreciable
frente a la componente E2 (3), siendo el Hg'®® una excepcién en
este sentido.

Debido a que en las experiencias anteriores se utilizaron fuen-
tes sélidas de Au'®8, nuestro propésito fue investigar si esta circuns-
tancia tenia influencia en los resultados a través de campos inter-
nos que afectaran la correlacién angular.

2. Preparacion de la fuente

La fuente se obtuvo bombardeando Au'®” (m,y) Au®, en el
reactor BA1l de la Comisién Nacional de Energia Atbémica, con un
flujo de 10** neutrones/seg. em2.

E]l A%'®7 fue previamente disuelto en agua regia y se llev a se-
quedad varias veces, agregando agua destilada para extraer el resi-

(*) Transicién del segundo nivel 2+ al primer 2+.
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duo sélido. Con esta solucién de 4cido triclorodurico se llend la cip-
sula de lucite utilizada como soporte de la fuente durante la expe-
riencia.

3. Equipo y procedimiento

Se utilizaron cristales de NaI(T1) de 1.5 por 1.5 pulgadas co-
locados a 5 em. de la fuente y montados sobre fototubos 6655A con
blindaje magnético.

El cociente de coincidencias reales a coincidencias casuales es

. 1
I (0.680y, 0.411y) / I (coine. cas.) =—-—
2rA
Filg. 4
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Fig. 1 — Espectro y esquema del decaimiento del Au®®
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siendo 7 el tiempo de resoluciéon del ecireuito de coincidencias y 4 la
actividad de la fuente (aproximadamente igual a la intensidad de
la transieién 2 — 0).

Para optimizar, entonces, las condiciones de la experiencia
debe reducirse tanto como sea posible r. El limite del tiempo de
resolucién = es del orden del tiempo de decaimiento de los erista-
les de NaI(T1) si se dispone de preamplificadores y amplificadores
adecuados.

El cireuito de coincidencias rédpidas utilizado, fig. 2, tiene una
resolucién de 3 X 103 seg, fig. 3, variable mediante el potenciéme-
tro 1 de la fig. 2 hasta 6 X 10—8%seg. El pulso de salida conformado
de 4.5 volts tiene una duracién de 2 microseg.

FlGg. 2.

CIRC. DE COINCIDENCIAS RAPIDO

Transistores  ©c170

CIRC. DE COINCIDENCIAS TRIPLE ,

A
(G| 4—%-7:'0—

100k, +300 ¥
e

92 AV?

Fig. 2 — Esquema de los circuitos de coincidencias rapidas y lentas.
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Para evitar que la radiacién de frenamiento de las particulas
beta emitidas por el Au'®, fondo césmico y backscattering, contri-
buyan a la intensidad de las coincidencias casuales se emplearon
equipos selectores.

El backscattering es particularmente importante para angulos
mayores de 140°. La energia de esta radiacién es aproximadamente
de 200 kev. Como, afortunadamente, ambos rayos de la cascada
2’— 2 — 0 tienen una energia mayor que 400 kev, con los selectores
se impidié totalmente la contribucién del backscattering a las coinei-
dencias casuales. Estos se incluyeron en el equipo junto a un eir-
cuito de coincidencias triple, de baja resolucién, fig. 2, conectado
como se indica en el diagrama en block de la fig. 4.

FIiGc. 3
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T T T
RETARDO x 10%seq .
Fig. 3 — Tiempo de resolucién del circuito de coincidencias ripidas.
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Un espectro diferencial del A4'® medido econ uno de los conta-
dores, se muestra en la fig. 1. El pico que se insindia a 0.820 Mev
es debido a la coincidencia del rayo de 0.411 Mev consigo mismo
dentro del eristal.

La magnitud que finalmente se mide es W(8). Esto es el eo-
ciente entre las coincidencias reales obtenidas para cada 4ngulo 6,
v la intensidad medida en el contador mévil, corrigiendo debidamen-
te por el decaimiento de la fuente y pequefias desviaciones en el
descentrado de la misma.

Por otra parte, la teoria muestra que la funcién W (6) se puede
expresar como un desarrollo en polinomios de Legendre. Puesto que
s6lo consideramos probabilidades relativas es legitimo normalizar
poniendo 4y =1

kemdax

W(a) =1 + p Ak Pk (COS 6)
-1

En este caso en donde se trata de una experiencia de correla-

Fic. 4

. DIAGRAMA EN BLOCK .

"""""""" A Ifafr) Fo======2==-=<
,/l‘/,.l}%\ t

Fig. 4 — Diagrama en block del equipo utilizado.
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ciones angulares sin considerar polarizacién alguna, Ay es nulo si k
es impar. El &k méximo estd fijado por la condicién anterior y por
el spin I del nivel intermedio. Explicitamente

k(méx.) =21
En nuestro caso I =2 y por lo tanto

W(a):l—l—f12P2-|-P4P4

Utilizando los resultados de las mediciones realizadas a 90°,
135°, 180°, 225° y 270° y mediante un ajuste por’ ecuadrados mi-
nimos, se obtuvo

Ay =—0.258 = 0.064
As= 018 =0.07
4. Resultados y discusion

Por sistemética de los nficleos par-par, el spin y la paridad del
estado fundamental del Hg'?® es 0t. Medidas precisas del coeficien-

FIG. 5 .S
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Fig. 5 — Grafico de las funciones 4,(8) y 4.,(8) y determinacién de la rela-
cién de mezcla.




te de conversién interna (4) y (5) y excitacién coulombiana (6) in-
dican que la transicién de 0.411 Mev, es cuadripolar eléctrica pura.
Por tanto el spin y la paridad del nivel de 0.411 Mev es 27+,

El spin del nivel de 1.091 Mev no puede ser 0 ni mayor que 3
porque existe la transicién gama de 1.091 Mev y ésta tiene una in-
tensidad comparable a la transicién de 0.411 Mev.

Los coeficientes A; teéricos para caseadas X =2 — 0, (X =1,
2 6 3), para transiciones puras fueron eomparadas con los obtenidos
en la presente experiencia, una vez corregidos por la resolucién an-
gular de los contadores (7). En ningin caso se encontré acuerdo
dentro de los errores experimentales.

Para el caso en que la primera transicién sea una mezcla de
cardcter dipolar-cuadripolar, es conveniente definir una medida de
la relacién de mezela § tal como el cociente entre el elemento de
matriz reducida de la transieién cuadripolar y la transiciéon dipolar,
fig. 5. Los Ay resultan, entonces, ser funciones de 8.

Para las casecadas 1 —>2—0 vy 3—2— 0 se obtiene 4, = 0 pa-
ra cualquier 8. Como el A, medido es positivo, ¢l spin del nivel de
1.091 Mev es 2. La paridad es + puesto que no es posible esperar
una mezela E1-M2.

La fig. 5 es el grafico de las funciones A42(8) y A4(8) para el
caso en que la cascada es 2 —>2 — 0.

Los valores medidos de A, y A, determinan la relacién de
mezela

8=—1.10=0.35
que debe ser comparada con (¥%*)
8§ =—1.22+0.22 referencia (1)
8=—0.96 =0.10 referencia (2)

demostrando que la experiencia es independiente del estado (s6-
lido o liquido) de la fuente dentro de los errores experimentales.

(**) HEstos valores son los adoptados por Nuclear Data Sheets, National
Academy of Sciences, National Research Council, Washington, D. C.
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ANGULAR CORRELATION IN Hg"®

A. E. JecH, M. L. LigATT0 DE SLOBODRIAN y M. A. MARISCOTTI. Departa-
mento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de
Buenos Aires, Ntfiez, Buenos Aires, Argentina.

Abstract: The angular corrvelation of the 2°— 2-— 0 cascade in Hg™
has been measured in order to determine the mixing ratio in the 2’ — 2 tran-
sition. The obtained result is § =—1.10 =+ 0.35.

Unlike in two previous experiments, a liquid source of Au™® was used.
The agreement between the present work and the other two, has shown that the
state of the source had not influenced the result of the experiment.




MEASURABLE TRANSFORMATIONS ON
COMPACT SPACES AND O. N. SYSTEMS
ON COMPACT GROUPS

by R. PANZONE and C. SEGOVIA

1. SUMMARY

This paper is devoted to the problem of finding a pointwise transformation
which induces a given measure preserving Boolean isomorphism bhetween the
measure algebras of two measure spaces. We only consider spaces with a con-
nection between measure and topology. Precisely, Hausdorff compact spaces
with a regular measure on its ¢-field of Borel sets and such that every open
set is of positive measure. The applications are concerned with ‘necessary and
sufficient conditions on an orthonormal system of measurable functions on a
compact abelian group @ to be the image of the character group G* under
measurable transformations on the original group G. Therefore, in this point,
the paper is a continuation of [1].

I. INTRODUCTION

2. Nomenclature. X and Y will always design compact Haus-
dorff spaces; p and v, regular probalitly measures, positive on non
void open sets. Bo(X), Bo(X), will design the o-fields of Baire and
Borel sets of X, respectively, and Gy, the compact space of all the
multiplicative linear functionals on L* (X, By, p). In other words,
the family of continuous functions on Gy, C(Gy), is the Gelfand
representation of L® (X, Bo,p). Ay = A(X) = Bo(X) / N(X) will
denote the o-algebra of Borel sets mod. the null Borel sets, and
By(X)*, the completion of By,. The extension of x to Be* will be
denoted again by p, occasionally by w*. 3 (X), or 3z, will always
represent a o-field containing B,(X) and contained in By(X)*.

N, @, B, I and K will be the spaces of positive integers, ratio-
nal and real numbers, the interval [0,1], and the unit circle of the
complex plane, respectively, all of them with their usual topologies.
For Z completely regular, 8Z will denote its Stone-Cech compacti-
fication. 4 < B means A4 included in B, and | 4 |, the power of A.
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o and Q are, respectively, the first infinite ordinal number and the

first non conuntable ordinal number.

3. The problem. Given a measure space (X, B, p) and a mea-
sure preserving Boole e¢-isomorphism from B,/N,(X) onto itself,
find a one-to-one pointwise transformation, measurable in both sen-
ses, which induces the preseribed Boole isomorphism, (ef. [5], p.
1022). For all the well known measure spaces the answer is affir-
mative, (ef. [7] and [5]). In general, the answer is no. We settle
again the problem and try to determine what must be meant by a
solution.

Let (X, By, p) and (Y, By, v) be measure spaces, and r a mea-
sure preserving Boole o-isomorphism from B,(X) /N (X) onto
Bo(Y) /N (Y). If we want to find a pointwise transformation
which induces =, possible solutions are:

I. There exist two transformations, Ty : X—Y, Ty : Y — X,
both measurables, such that Ty—! induces r and T;~! indu-
ces 71

IT. There exists an invertible, measurable transformation from a
set of measure one, Sy < X, onto a set Sy of measure one
contained in Y.

III. There exist two sets, Oy, Oy, Oy < X, Oy < ¥, of exterior mea-
sures one (i.e. thick sets) and a one-to-one mapping, 7, inver-
tible and measure preserving as a transformation from (Ox,
By(X) 7 Ox,pn| Ox) onto (Oy,Bo(Y) 7 Oy, n| Oy).

The solution I admits two subecases: the T’s are onto, the T'’s
are into. The first one is immediately excluded since it may happen
that Be(X) /N(X) ~Bo(Y) /N(Y) and |X|>|Y|, efr. next
example a). The second one will be discussed in a moment. The so-
lution II is again in generale false, even when L'(X) is separable,
cf. ex. ¢). However, it holds for a signifiecant class of spaces. Among
them are the separable metric spaces. We do not know whether IIT
is true. Nevertheless, for a wide class of spaces, which includes com-
pact abelian groups and metric spaces, a slight variant of IIT holds.

Let us observe that there is no loss of generality in considering
X=Y. Put Z=X _ Y with the sum topology, and with the
measure u/2 on X and v/2 on Y. Define now a o-isomorphiam from
A(Z) onto itself as follows: if 4eA(X) and Bed(Y), then
o(A + B) =+~ Y(B) + v(A). Therefore ¢ = ¢~ and, for example,
a pointwise transformation of type IT induces =, if and only if a
pointwise transformation of the same type induces o.
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4. In the proposed problem what is given beforehand is
Ay (= 4y), two measures, u, v on it, and a measure preserving ¢-iso-
morphism r. A restriction on the type of measure spaces to be consi-
dered is imposed. This restriction is reasonable and practical, but
otherwise arbitrary. The condition on the positiveness of x on open
sets confines the null sets to proper limits, and in particular, avoids
the possibility of adjoining to the space null sets topologically im-
portant. Tu other words, it exeludes certain patologies. Finally we
arrive to the o-fields B,’s. It is not clear if it must be chosen the
Baire o-field, the Borel o-field, or any other with the same o-alge-
bra, Ay Our position is to suppose that the measures spaces are
(X, 21\’7!/")7 (Y7 21’(;("): with Ba(X) <2(X) <BO%(X), Ba(y) <
< 3(Y) < Bo*(Y) and p, v restrictions to the 3’s of regular Borel
measures. Of course, 3y mod. null sets is 4. The discussion on the
type of solutions ean be repeated. If the 3’s coincide with the B’.®
we do not know if there is a counterexample to the first solution.
However, if = = B, for one space and 3 = B¢# for the other, a solu-
tion of type I may be impossible as is shown in example b). A cer-
tain variant to the solution of type I is true.

5. Examples. a) Let X — N* be the one-point compactification
of N, and Y =8N, with u(n) =v(n) =271 neN. It is well-
known that | 8 N | =2°, and obviously, their measure algebras are
equivalent.

b) We want to give an example of a measure-preserving iso-
morphism from 4(X) onto A(Y) which is not induced by a measu-
rable transformation. Let the measure spaces be (I, Bo, m) and
(1, Bo*, m) where m is the Lebesgue measure. Assume r is the iden-
tity application from 4 (X) = A(Y) onto itself. If + is induced by
a measurable transformation T from (X,B,) into (Y, Be*), then,
as it is easy to see, Tx — z a.e.. Therefore, T(X) is a set of measure
one, and, econsequently, it contains a null set of the continuum power.
Then, T(X) contains 2¢ null sets, and B, must contain 2¢ Borel sets,
contradiction.

¢) X = I, p = the Lebesgue measure on the Baire sets. Y = 3 @
and » the Baire measure induced on B,(Y) by the continuous trans-
formation T which is the extension to 8 @ of the natural mapping
from @ onto the rational numbers of 7. (Assume F is a closed set
of positive measure contained in X, then v is defined by v(T—1 F) =
= u(F).) v is the restriction to T—*(B,(I)) of a regular Borel
measure on BQ and in such a way that every set of Bo(B8Q) is equi-
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valent to some element of 71 (B,(I)). Almost all the arguments
to prove this appear later in the lext. Assume now that F is a closed
set, F < BQ, v(F) > 0. Since every point of @ < B8 is of (exten-
ded) measure zero, there exists a closed set F'; < F, of positive mea-
sure and such that F; ™ @ = (. Therefore | F; | =2° (ef. [3], ch.
9). Hence, | F' | = 2¢. The regularity of v implies that every measura-
ble set of positive measure is of power 2¢. Any image if I into 8 Y is
of power = ¢; hence, is not measurable, or of measure zero. Observe
that in this example (and also in example a)) By (B Q) =B, (8 Q).
In fact, no point of Q@ — @ is a G §, (ef. 3, ch. 9).

d) Let @ be the functions from R into K with the pointwise
topology i.e.,, @ —= K% . @ is a compact abelian group, which has not
a countable basis, and L?(@®), and therefore L' (G), is not separable.
However, G is seperable, since the simple functions with rational
values taken on rational intervals are a countable, dense set.

6. Solutions. A space (X,3 (X),n) will be called rickh if for
any Borel measurable set M of positive measure: | M | = |4 (X) |. Tt
is not true that any compact space is rich, take for example the
Alexandroff ecompactification N* of N, and an arbitrary probability
measure on N. Examples of rich spaces are those separable, metric
spaces, i.e., closed subsets of Iw, that admit probability measures
vanishing on every point. In fact, every G3 is denumerable or has
power of the continuum (ef. [14], 320, 465), therefore, any set of
positive measure has power c. Sinece such spaces have a countable
basis, | By (X) | =¢, and therefore they are rich spaces.

Rich spaces are also the compact abelian groups with the only
exception of the discret ones. This will be proved later.

Other concept we need is that of null extensién. Let (Z, ®1, a1)
and (Z, ®s, az) be arbitrary probability spaces and suppose that
®; < Py If 0y = ap on ®; and if every set Bed, is az-equivalent
to a set A e« @y, then we say that (Z, @, a;) is a null contraction of,
or admits as a null extension (Z, ®s, a2). We say that the spaces
(Z, @y ai), 1 = 1,2, or the o -fields ®; are comparable if there exists
a common null extension (Z, &3, az). Null extensions define a par-
tial order. We shall see later that there does not exist necessarily the
supremum null extension of two given spaces, neither that compa-
rability is an equivalence relation. An example of null extensién is
the usual completion of a measure space. Other: let Z be a compact,
Hausdorff space such that B,(Z) 5« Bo(Z), p a measure on B, and
v its regular extension to Bo. (Z,Bg,v) is a null extension of
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(Z, By, v) as is easily seen taking into account that if U is open, K
compact and U o K, there exists K, compact and G5 such
that U D K, DK. Assume that there exists a null Baire set such
that one of its subsets is not Borel measurable. Then, the comple-
tion of B,, B,*, is different of B,. However, they are comparable,
for they are null contractions of Bo(Z)*. A trivial example of this
is Z = K® with p concentrated at the point 0. The set [1/2, 3/4] X

XIO[Ka; 1< a] is a Baire set of measure zero and contains a
non measurable subset. (For this particular example B* 5= Bo*;
consider the point 0).

For the spaces which interest us, two 3's between B,(X) and
Bo(X)* are, obviously, comparable.
- A space (X, 3, x) we-shall say to be a.e. separated if it admits
a finite-valued family F of functions, dense in L' and such that
for any pair of points a, b, of a set of measure one, there exists
an feF with f(a)5%4f(b). If F is countable, we shall say that
X is a.e. o-separated. Every compact metric space X admits a
countable family of continuous funections that separates X. Howe-
ver not every separable space is a.e. o-separated. In faect, example
d) shows a separable space whose L' is not separable.

Now we are ready to state some of the main theorems of the
paper. Their proofs will be given in part III.

Theorem A. Let (Y, By, v) and (X, Bo, u) be a.e. o-separated.
Assume T is ¢ measure preserving o-isomorphism from A(Y) onto
A(X). There are two measurable sets Xo < X, Yo < Y, both of
measure one and-an thvertible measurable transformation from X,
onto Yo such that for any CeBo(Y), T (C ™ Y,) e=(C), and for
any DeBo(X), T(D ™ Xy) er— (D).

This result is due to P. Halmos and J. von Neumann.

Observations. 1) The preservation of measure is irrelevant.
‘What is really important is that A(X) and A(Y) be isomorphie.
If = does not preserve measure, u 0+ defines a measure on By(Y)
such that d (u0r) =fdv, where f is a Radon-Nikodym derivative
with 1/e=f=¢>0, ae.. 2) In relation with this result, ef. the
paper by Halmos and von Neumann, [7], where the authors give
neccessary and sufficient conditions on an arbitrary probability
space to be in one-to-one measurable correspondence with a subset
of the unit interval I. Of course, a.e. w-separability becomes, in this
situation, a necessary assumption.
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Theorem B. Suppose r 1s a measure preserving Boole o-isomor-
phism from (Y, Sy, v) onto the rich space (X, 3x, u). There exists
a o-field T comparable with 3x, and ¢ measurable pointwise trans-
formation T from (X, T, u) into (Y, Sy, v), such that T induces r.
(X, 3x, ) will be called *rich if |N|<|Ax|, ¥ <X, implies
p#(N) = 0. Every *-rich space is rich.

Theorem C. Suppose r 1s ¢ measure preserving Boole o-isomor-
phism from (Y, 3y,v) onto (X,3x, u), X and Y being *-rich spaces.

@) There exists a o-field T comparable with 3x, and a measura-
ble pointwise transformation T from (X, T, u) into (Y, 3y, v), such
that T induces r. There are two thick sets X < X, Y < Y, such
that T is one-to-one from X onto Y, and it is an invertible measure
preserving transformation from (X, T TN, u) onto (Y, Iy —Y, v),
(also, (T'|Y )~ induces r—1).

b) Moreover, there exists a o-field ® comparable with 3y, such
that T restricted to X s an invertible measure preserving transfor-
mation from (X ,3x ™ X, p) onto (Y, Y, v),and X (Y ) isa
thick set with respect to sup (3x, T) sup (3y, ®)).

II. RICH SPACES AND NULL EXTENSIONS

This part is devoted to examples and to exhibit large classes of
spaces which satisfy some of the properties of the title. It is inde-
pendent of next part III, where the theorems mentioned above are
proved.

7. Null extensions. More artificial but also more illuminating
is the following example. Let X = I and p = Lebesgue measure. The
proof given in [4], § 16, shows the existence of a sequence of pair-

n
wise disjoint sets, { E; }, s =12, ..., such that _21 E;i e Bo(I)*,

7=

whatever he n and ji, ..., jn, with 3 E, = I. Moreover, for any =,
1

ps( 3 E; ) =0. The family of sets M; ={AAB; A¢By*B c Ei}
=1 1
is a o-field, and p; (A AB) = u(4) defines a measure on My. It

is a null extension of (I, Bo*, u). EseM,. In fact, if EseMs,
Ey—=(M—Ey)+ E, where MeBy, E/ <M ™ E, E,” <E,
B ™ M = . Then, Bs + Ey'= M + E;”, and therefore, ,” =

Since B + Ey' =M < E» + E;, we have u# (M) = u (M) = 0. This
implies the measurability of E,, contradiction. Repeating the argu-
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ments, they exhibit a strictly inereasing sequence: (I, Bo¥, p) <
< (I,Mym) < ...< I, My, un) < ..., each space a null contrae-
tion of the following and E; ¢ M;. Since 3 E; — I this sequence does
not admit a bound, i.e., there is no common null extension. Moreover,
if we adjoin to Bo*, instead of E,, 3;* E;, we obtain (I, M, ). It
follows immediately that this is a null extension of (I, My, pn), n =3,
but it is not comparable with (I, My,p;). In particular, the null ex-
tensions define a partial order which is not a lattice.

8. Rich spaces. We show here that every non diseret compact
group is rich.

Theorem 1. a) Le G be a non finite compact abelian group and
G" its character group. G* contains a subgroup H", direct product
of cyclic groups, with |H" | =|G"|.

b) |G|:2|Gf"|.

Proof. a) We call M the family of all sets A < G* such that the
group generated by 4, [A], is direet product of eyelie subgroups of
G, Z(a), with aed. If B is a chain of M, ordered by inclusion,
and D = U [4 ¢B], then D is a bound of B. In fact, if

Z(a0) N [Z(a1) U Z(a) U ... UZ (an) ] =8

there exists 4 eB such that 45 a;, j=0,1,...,n, and therefore
8= {1} . Call H a maximal element of M and H*= [H]. Since
H is maximal, for any ae G"— H", there exists n =2 such that
a™ e H. Put

E* = {a; a" e H* and am e HA for 1 =<m <n}.

Then, G* —H =372 E, If |H"| <|G"|, then |G*—H"|

| =|6"|, and for some n, | E,|=|G"|. Suppose p is the least

index for which |E,|=|6"|. The application «— o maps E,
into H". Pick out a 8¢ H* such that the set

I'={ack,; o =B}

is of cardinality | G*|. If ageT, the set ap=. T is also of cardina-
lity |T'|=|6*|. Sinee |H* _E>s_ ... _ Ep_1[<| ™' T, there
exists 8eI' sucha that ay~8e¢H* _Es_ ... _ E,_1. Henecs,
a0~ 18e¢E, and H + { ap™18 ]} e M, contradiction.

b) Let be D= {z; a(z) =1 for any aeH*}. D is a closed
subgroup of G and (G/D)»= H? Then, G/D is isomorphic to
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I [Z (a)*; ae H] where the Z’s are (non trivial) compact groups.
Then, |G|=|G/D|=2|"|=2/%"|. The application f:G— K%
defined by f(z) = (a(z)) aeea IS one-to-one and therefore, | G | =
=| K% | =2[%|, Q.E.D.

Calling 4 (@) the Boolean ¢-algebra of Baire sets mod. the null
sets with respect to the Haar measure, we have:

Theorem 2. a) | A(G) |= | G*|*®

b) If M is ¢ Baire measurable set and w(M) >0, then
|M|=|G].

¢) The same statement holds for Borel sets.

(The appearing exponent represents the first infinite ecardinal
number).

Proof. a) Sinece A(G) is isomorphic to A (KH%), (ef. [1], intr.,
Lemma 2), it is enough to prove a) for the group K%. Let { a, }
be a sequence of positive numbers, @, < 1, such that II;* e, = L.
Consider the family of infinite, countable subsets of G* Suppose
S = {ox } isone of these sets. Consider the Baire set in K¢ defi-

ned by: B = F] By, Bu={z; xeK® 25, ¢(0,a,)}.
1

Then, the Haar measure of B equals II;* a, = Llb. Suppose
8’ = { o’y } is another countable subset, S’ 5« S. Then, the set B’ defi-
ned in analogous fashion is different from B. In fact, assume
omeS—8’, then, BT B’ < B’ ™ B,, and measure of B’ B, =
= (%) aw < Vb. Since the family of infinite, countable subsets
of G" is of cardinality | G"|*°, we have | A(K®*") |=]| G"|“*.
On the other hand we have, |A(K®)|=]|L*(K%)|=
=c¢.|GM[X = |G| % The last inequality follows from the fact
that any element of L? is developable in a Fourier series of fune-
tions of G

b) If G has countable basis, then it is metrizable and as we
have already seen (§6) any Baire set of positive measure has
power c¢. If G has not a countable basis, and M is a Baire set of
positive measure, G contains a compact subgroup Y such that G/Y
has a countable basis and M.Y — M (ecf. [4], p. 287). Using the
properties of the quotient measure and the metrizability of G/Y, we
have, | M |=c.|Y|, and |G |=|G/Y|.|Y|=c. |Y|=|M |

¢) It follows from the regular completion of Haar measure,
([4], p. 287). '

Corollary. Any mon-finite compact abelian growup is rich.

Proof. |M|=|G|=[2%|=|6"|* =]|A(G) |
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9. For any space (X, B, p), there exists (¥, B,,v) such that
(X XY, Bo(X) X Bo(Y), p X v) is rich. In fact, take ¥ = 2; with
IT|=A(X) |*° and » the usual product measure. The result follows
immediately from By(X) X Bo(Y) = B, (X X Y).

IIT. MAIN THEOREMS

This part is devoted principally to prove the theorems stated
in § 6. We shall say that ¢ compact set K e Bo(X) s faithful if the
restriction of u to K is positive on (relative) non void open sets.

It is easy to see that the intersection of all the compact
sets Ka contained in a given compact set K and such that
w (Ko ) =p (K), is a faithfull compact set with the same measure
than K, (it follows from the regularity of u applied to ™ Ka ).

10. Proof of theorem A. Let {fn ({gn}) be a sequence of
finitevalued funections of L'(X) (L*(Y)) which separates the points
of the set Ry (Sy) of measure one. The Boole isomorphism r from
A(Y) onto A(X) induces a norm-preserving operator from L!(Y)
onto L'(X) which we call O . Suppose { (r¢g») (z) } is a family of
concrete, finite-valued functions of L*(X) with (rg.) (z) €0< (gn).
Since this family is dense in L*(X), for every fi there exists a
subsequence 7 g, such that rg,, — fi a.e.. Then, it follows imme-

diately that Ry contains a set of measure one, Sy, which is sepa-
rated by {7g.}. We can always suppose that not all of the g,’s
(7 9x’s) vanish at a point of Sy (Sy), (it suffices to eliminate cex-
tain null set).

Using Lusin’s theorem it is possible to find a compact set
Y: < Y such that for every m, g,(z) is continuous on Y;, and
verifying v (¥;) > 14. Call X; a measurable set of r¥;. Again by,
Lusin’s theorem we find a compact set Xo < Xy, p (X2) > V5, and
such that every r g,(x) is continuous on X, Call Y, a set contained
in ¥; and belonging to r—! X,. There exists ¥3 < Yo, compact and
of measure greater than 14 (u is regular). Let be Xze+ Y3 and
X3 < X, ete.. The sets X’ ="X, and Y’ = T Y, are equimea-
surable and are elements of classes in correspondence by r. Besides,
they are compact. Call X’ (¥’) the faithful compact set contained
in X” (¥”) of the same measure as X” (Y”).

Since the restrictions to ¥’ of the g,’s vanish simultaneously
at no point, the uniform closure of the algebra generated by them
coincides with C'(Y’), (Stone-Weierstrass theorem).
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Idem for the rg,’s and C(X’). From the construction and the
faithfulness of X’ and Y’, it follows that C(X’) is isomorphic to
C(Y’), and also that the associated homeomorphism 7° : X’ — 7Y,
between X’ and Y’ is measure preserving. (Precisely, between
(X, Bo(X7), n| X7), (X7, Bo(Y?),v| Y’) ). Considering now Sy — X’
and Sy— Y’, we repeat the process and find X” and Y’ with the
same properties as X’ and Y’, contained respectively in Sy —X’

and Sy —Y’, and with measures greater than u (Sx — X’)/2, and
so on. Then, Xo= _ X, Yo=_Y", T=_TM, QE.D..

To be used in the proof of theorems B and C, we give next a
brief acecount of well-known results and prove certain auxiliary
{acts.

11. Boolean measure spaces. Given (X, By, u), there exists an
extremally (’) disconnected compact Hausdorff space G(X), such
that the fa mily of its clopen sets determines a Boolean algebra
isomorphic to A(X), cf. [6]). Besides, ¢(G) is isomorphic to the
algebra L= (X, By, p). Moreover, the operation V 0o = ¢l (_ Ca)

a a

joined to the usual complementation make a complete algebra of
the clopen algebra just considered. (Following the nomeneclature of
[2], G(X) is a hyperstonian space of countable genus.). The family
of Baire sets in G(X) is generated by the clopen sets and the Borel
sets are generated by the open sets. We denote by u the measure
induced by u on B.(G(X)), or its regular extensién to By(G). It
holds:

a) every Borel set is clopen regular, ie., the sup and inf of
the measures of the clopen sets contained and containing, respecti-
vely, a given Borel set 4 < @, coincides with ;(A), (n is comple-
tion regular in the sense of [4]);

b) a Borel set is of measure zero if and only if it is nowhere
dense;

¢) the boundary of any Borel set is of measure zero;

d) every regular open set (i.e., a set which coincides, with
the interior of its closure) is clopen;

e) every meager set is nowhere dense. These properties imply:
1) every bounded Borel measurable function on G(X) is u-equiva-

lent to a continuous function; 2) every measurable function is w-equi-

(’) By definition, the closure of an open set is open, or equivalently,
C(G) is a conditionally complete lattice.

J—
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valent to an upper semi-continuous funetion. It also holds: every
isomorphism of the Boolean algebra of the clopen sets onto itsell
is given by a homeomorphism a of G(X).

Of course, o defines a complete isomorphism on the algebra of
the clopen sets.

12. Theorem 1. If (X, By, u) 1S a space as in § 2, then X is the
quotient of G(X) by a certain decomposition D: G(X) /D =X.

Proof. Since p is faithful, || f — f’ ||1 5% 0 whenever f, f’ e C(X)
and f £ f’. Every measurable bounded function F' on X has as ima-
ge under the Boole isoporphism established between X and G(X),
a uniquely determined continuous funection on G(X), TF. This de-
fines an isomorphism from C(X) into C(G(X)). Therefore, there
exists a continuous mapping 8 from G onto X, such that:
TF(g) =F (8¢), (Banach-Stone theorem). Each preimage §—1(z),
zeX, is an element of D, (and is a maximal set where every TF
is constant). The compactness of G implies that the topology of X
is the quotient topology.

Every point of G(X) corresponde to an ultrafilter in the mea-
sure algebra A(X), or equivalently, to a maximal ideal. A point
can be also interpreted as a maximal ideal in L= (X, By, n), o1,
what is the same, as a multiplicative linear functional. Theorem 1
shows that 8—1(x), zeX, is exactly the family of ultrafilters of
A(X) which contain the filter of neighbourhoods of z. The map-
ping from G to X is, in general, many-to-one. However, since an
atom in B, must correspond to an atomic clopen set which necessa-
rily is a one-point set, it follows:

Corollary Any atom of (X, Bo, p) is concentrated ot a point.
Then, if (X, Bo, p) has atoms, it is rich only in the trivial case.

13. Theorem 2. With the hypotesis of theorem 1, it holds:

a) 8= (Bu(X)) < Ba (G(X)).

b) 871 (Bo(X)) < Bo(@) < Bo(@G)* = B.(G)*, where the
completions are talen with respect to the induced measure p.

¢) QeBo(X)* implies n(Q) =p (877(Q)).

Proof. Let us consider the family U of sets of the form
{9eG ;0> (TF) (g) >a,FeC(X)}. Since every open Baire set
is o-compact, it follows that every open Baire set of X is of the
form {z; 1> f(x) > 0}. Therefore, the o-field generated by U
coincides with 8—1B,(X), and a) follows. The first inclusién of b)
follows immediafely. The equality is nothing but the completion
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regularity of u. Let us prove ¢). We suppose u is the (regular)
measure on By(G) that coineides with w on the clopen sets, i.e., on

a copy of A(X), and we want to see that on By(X)¥

p(Q) = u (5-1 Q). In other words, that w is a quotient measure.
Define v (Q) = (81 (Q)) for Q ¢ B,(X). We assert that 8~ (Q)

belongs to the same class of equivalence (mod. u) to which belongs
the clopen set, Cg, image of the elass of 4(X) containing . Suppo-
se @ is compact. Then it is a G5, and therefore its characteristic
function is (everywhere) limit of a sequence of continuous fune-
tions. For any F(z) bounded and measurable, TF (x) is the uniform
limit of a sequence of simple functions whose values are taken on
clopgn sets. Now, it follows easily that not only (g is equivalent

to 8= (@) (mod. w), but also that 8! (Q) > C.

Then v (Q) = pu (Cq) = u (Q). The regularity of Baire measu-
res implies v (@) = u (@) for every @ <B,(X). Defining now
v (Q) =u (8=1(Q)) for QeBy(X), we obtain a regular Borel
measure on X. Since v — pu on the Baire sets, they coincide on B,
and also v* = u* Q.E.D.

Theorem 2 is nothing hut a case of the theorems sought, for the

pair (X, Bg, u), (G, By, »). The measure preserving pointwise trans-
formation is here the continuous and closed mapping 8. Observe
that for S clopen, u (S) =<pu (8 (S)) since 8188 >§, and in
general it is false that the equality holds. In faet, this would imply
‘that any clopen set is equivalent to a saturated compact, set, and
therefore, that any Baire set of X is equivalent to a compact set.
This and the next considerations suggest the necessity of a special
designation for the clopen sets which have the same measure as its
projections, we ecall them fatthful clopens, shortly, f-clopems. The
image K of a clopen Oy is a compact set such that, for any open
set V, VT K= implies w (VT K) >0, ie,, K is a faithful
compact set. Reciproecally, if K < X is a faithful compact set, the
clopen u-equivalent to 8—1(XK), Oy, is an f-clopen contained in
$7I(K) and § (Cx) = K. Except when K is a clopen set, §—1(K)
containg Cy strictly. Obviously, the o-field generated by the f-clo-
pens, and the o-field generated by the faithful compaet sets of X
are null contractions of Bo(G) and By(X), respectively.

14. This paragraph is dedicated to the proof of theorem B.
the arguments and results will be improved and repeated in next
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sections. However, the ideas can be more easily seen in the present
simpler case.

‘With the notations of theorem 1, we say that a set A < G is
a selector if it contains one, and only one point in each class of D.

Theorem 3. If (X, Bo, n) 18 a rich space, then Gx contains a
dense selector set N\yx.

Proof. Let wa be the first ordinal number such that |w«|=
= | A(X) | and suppose that the clopen sets of G are numbered
from 1 to wg . Let Cy be a clopen, 5 < wa . Assume that for g <n
we have selected a set A@ of points of G with: 1) any class of
D,% —1(z) for zeX, contains at most one point of AB i 2)
each C, , v < B, contains a point of Ag; 3) Aﬁ < A, for < ey

If 4 is a limit ordinal number, then define A’? = _ [Aﬁ§
B < n]. Suppose 7 is not a limit number, then |y —1| < | wa |. Sin-
ce X is rieh, (', intersects, at least, a set of power | o, | of classes
belonging to D ( CY} is equivalent to a set M of positive measure of
871 (Bo(X)) and 8§(M) contains a positive faithful compact set K. Its
associated clopen Cj is contained in Cn, and sinee 8 (Cx) =K,
Crx interesects a family of power = |w, | of classes of D.).

Then, there exists zeX, such that §~1(z) ™ AYI 1= and
8~ (x) T On % (. Taking a point in §—*(x) ™ Cy and adding it
to Ay —1 we obtain Ay . Obviously, _ [Ag; n <o, ] is dense in
¢, and is not a selector set in that eventually there are classes
of D with void intersection with _ /Ay . Now, the theorem follows
immediately chosing a point in those remaining classes, Q.E.D.

A particular case of the problem we are considering is when ¥

is replaced by (Gx, B, ). The solution of this case is erucial, also
for the general case, and shows the reasonableness of the solutions

offered by theorems B and C. Ay inherits from Gy a o-field,
By(@) ™ Ayx. Sinee Ay is in one-to-one correspondence with X,
By(X) is comparable to the o-field T' = (8| Ax) (Bo(G) ™ Ax).
Now observe that a set in Gy is dense if and only if it is o thick
set. Therefore, (Axy,Bo ™ Axp) and (X,T ) are isomorphic
measure spaces under the mapping 7 = (8 | Ax)~*. This illustrates
theorem B. If we replace Bo(G) by & =8 1(Bo(X)) (which is a

null contraction of Bo(G)), then (@, ®, n) and (X, Bop) are rela-
ted as mentioned in the second part of theorem C with T =

= (Slﬁx)_l, andc}jﬂ:Ax-



With respectto the topological relation between Ay and Gx we
have, since Gy is extremally disconnected, that Gy is the Stone-Cech
compactification. of Ay, assumed this set has the topology induced
by that of Cx, (ef. [3], 6 M).

Another justification of the necessity of something like a se-
lector set is the following. As we already noted (§13), § :G—X
is strictly measure increasing for some sets of G. From the regula-

rity of u and g, and the fact that f-clopens go onto faithful compact
sets of the same measure, we see that the striet increase
observed is equivalent to the existence of sets of measure zero of
G whose images are sets of positive measure. However, when § is
restricted to (Ax; ® = Bo*(G) ™ Ayx; p) there is an improvement.
Precisely, a set of measure zero of ® has a 8-image which is ¢ null
set, or ¢ non-measurable set, and therefore, it is natural to replace
Bo(X) by a comparable o-field, (ef. § 7). In fact, if P is a null
set of Bo*(G) call N=P ™ Ay, and assume that 8(N) ¢ Bo*(X)
and has positive measure. Therefore, there exists a positive faithful
compact K, contained in 8(N). Then, the f-clopen Cx such that
8 (Cx) = K wverifies Cx ™ Ax < N. This contradicts the thickness
of Az ’

Proof of theorem B. Firstly observe that Gy = Gy. Call 8x (8y)
the funetion defined as in theorem 1 into the spaces X(Y), and
take Ay as in theorem 2. Denote with T' the o-field on X defined
by (8x| Ax) (Bo*(G) ™ Ax). From theorem 1, since Ax is a
thick set, T is a null extension of 3y (< Bo*(X)). The transforma-
tion T of theorem B is defined by

T=23%y 0 (8){ l Ax)-l QED

15. Proof of theorem C. From the hypothesis and § 11 we
know that there exists a measure preserving homeomorphism, H,
from Gx onto Gy. Assume, as in theorem 2, |owg | = |A(X) | (=
A(Y)|). We want to show the existence of a set A’y dense
(and therefore, thick) in Gy with the property that, it and
H(AN’x) = A’y have, at most, one point in ecach class of
Dy and Dy, respectively. Suppose we have found a family
Ne, e< <oy, Ne <Ay, with: 1) H=' (Ae), /e contain
at most one point in each class of Dy, Dy; 2) if we have num-
bered the clopen sets of Gy from 1 to o,, then every clopen




Cy < Gy with y < 5 contains a point of _ [Ae ; e<nl; 3)
e < e implies Ae, < Ae,. Then, if ¢l (_ Ae ) = Gy nothing is
to prove. If not, there are two possibilities, first, » is a limit num-
ber, and then, Ay = _ [Ae ; ¢ <7l. Secondly, n is not a limit
number, In this case take the clopen C < Y, with minimal index
and disjoint to ¢l (_ Ae ). Since X is a *—rich space, the satu-
ration of H—1(An_1), S, is of exterior measure zero, and the-
refore, H(S) is also of exterior measure zero. IHence, the set
V=H(S) U8 *(8x(An_1)) is of exterior measure zero. Conse-
quently, C contains a point 4’ ¢ C—V and the sets H1(An_1) U
H-Y(y’), An—1 U {y’} contain at most a point in each class of
Dy, Dy, respectively. Define An = An—1 U {¥’}.

This transfinite process permits to econstruct Ay, and
Nx=H"1(/A\'y) as asserted.

We call X =38x(A'x) and Y =28y (A’y). ® is defined as
(8v | Ay) [H(8x~' (2x))]. Using theorem 1, it is easily seen that
H (85~ (3x)) is comparable to, and contained in Bo(Gy)*. Hence,
@ is comparable with Sy.

Complete now A’y to a selector set Ay. I' is defined as in theo-
rem B :T=T-1 (Sy), where, T = 8yoHo (8x | Ax)1).

From the very definitions of 9, ®, T' and T, we obtain theorem
C. We leave the remaining details to the reader.

Proposition. There exists a measure preserving homeomorphism
between (X, Bo, n) and (Y, Bo,v) if, and only if, there exists a
homeomorphism /\ between Gy and Gy, which preserves equivalen-
ce classes, d.e., N (8x~(x)) =~ 2(y).

16. Every compact group 22, |a| = %, (1), is a *—rich space
if |a| ¥ = |a| and is not, if |a| *® > |a|. Suppose the equality
holds and assume the generalized continuum hypothesis. Then
|2¢ | =2ld > |a| X0 = |q]|. Since | A(2¢) |=]a|X° if Nis a
subset of 22 of power less than | A(22) | then |N|<|al|. The
closed subgroup N’ generated hy N in 2¢ is of power < |2« |, and

therefore, |2« /N’| =|2¢| and w (N’) =0. Let us suppose now
that [2¢ |=|a| ¥ > |a|, and | N | =|a|. If | N |<| a |, as before,
p*(N) =0. Assume | N |=|a|, and that « is the first ordinal num-

ber of its cardinal class. The subsets,
Ng = { ze2a ;1> B implies z; = 0 except for a finite number
of values } for B < a, permit to define N as the union of the Ng ,

(*) The first infinite cardinal number.



B<a Then |N|=|al|, and if P is an open set, P > N, then
w(P) =1. We have, each subset N of the compact group
2¢, |a|= %, such that |N|< |a]| is of exterior measure zero,
and when |N|=|a|, p*(N) =0 if |a|¥=|a]|. If [a|* >
> |a|, there exists N < 22, [N | =| a|, such that u*(N) =1.

17. Compact groups. In [1], we were involved with the problem
of introducing a convolution-type operation on a general measure
space. This led us to the following situation. Assume F and G are
compact abelian groups with normalized Haar measures v and pu, res-
pectively. Let '~ ={ 5; } be an a.c. multiplicative group of measura-
ble funetions on F isomorphic (as a group) to G% = the dual group
of G. By an a.e.multiplicative group we mean a (complex-valued)
family of functions such that: if 5;, y; e F~ then #;.5; equals a.e.
to a function of F ™ ; for any ;e F~, there exists neF ™ such
that »; 7 equals 1 a.e.

Problem: Give necessary and/or sufficient conditions for F~ to
be the image of G* under a measurable transformation from F
into G.

Some answers are given by theorems 4 to 7 of part II, [1]).
Theorem 2 of the same part asserts that F~ is a complete ortho-
normal system of functions of L2 if and only if there is a Boole
isomorphism between A (@) and A(F) which sends G4 onto F ™.
Then, with the additional hypothesis that F~ is a complete ortho-
normal system, we are able to apply, for example, theorem D of
this paper.

However, the deep relations between algebraic, topological and
measure-theoretic properties of a group permit to generalize theo-
rem 7 of [1] in a way that we cannot obtain by a direct applica-
tion of the lettered theorems of this paper. And, precisely in that
no passage to comparable o - fields is needed. The key of the al-
ternative method is Pontrjagin’s duality theorem.

Theorem E. Let F~ = [ 4:(y)} be an orthonormal sys-
tem of functions of L2(F), which is an a.e. multiplicative group
isomorphic to G" = { ei(x)}. a) Then, there exists a measure pre-
serving transformation T: (F, Bg,v) — (G, Bo, n), such that for
every i, ni(y) = e (Ty) a.e. y e.b) If | G*| = x0, and F~ is com-
plete then T can be chosen tobe a measure preserving transformation
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from (F, B, v) into (G, By, u), and in such @ way that there exist
Fo < F,v (Fo) =1, T(F,) € B,, and,

T/Fo: (Fo, Bo ™ Fo,v) = (T(Fo), Bo ™ T(Fo), p)

15 an invertible measure preserving transformation.

Proof. We have already observed that under the hypothesis,
F and @ are Boole ¢ - isomorphic. With this in mind, b) follows from
theorem A.. In fact, | G* | = x, mplies that G has a countable basis
and therefore, it is metrizable and separable. Then, theorem A
applies. It only remains to observe that in this ecase By = B..

Let us prove a). First of all we replace F~ by a system (which
we call again F~ = {7 (y) } ), of Baire measurable functions
equivalent to the given system and everywhere multiplicative. This
is possible and a proof is given in theorem 4, part II,
[1]. Then

€ > 7mi, 6 > nj e > qpand e . ¢ = ¢ implies

70 (y) . i (y) = m(y) for every yeF.

The funetion a(e;) = 9;(y) for a fixed y, is a homomorphism
from G* = { ¢ } into the unit cirele, and therefore, there exists
a point of G, Ty, such that

e(Ty) = a(e:) = ni(y), for every 1.

Hence, T-1(e&;=*(M)) = ;' (M) is a Baire set, whenever M is a
Baire set of the unit cirele. Since, the family

{ & 2 (M); eic G, M a Borel set }

includes a subbasis for the topology of @, it generates the family

of Baire sets, and therefore, T is Baire measurable.
From the orthonormality and isomorphism of F~ and G*,

we get, f &(Ty)dv = f ni(y)dv = f e(x)dp, and § h(Ty)dv =
— f h(z)dp, for every function h(z) ¢ C(G). Then, v(T—14) = p(4)
for any eompact G8, and consequently, for any Baire set. Q.E.D.

If T is an isomorphism from F onto G, then F~ coincides with
FA and the linear operator U: L'(G) — L' (F), U(g) (y) = g(Ty),
is an isomorphism between the group algebras and has norm equal
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to one. Besides, Ul = 1. Conversely, if U is an isomorphism of
norm not greater than one between the group algebras L'((),.
L(F), and U1 = 1, then U is defined as above, for T' an isomorphism
between F and @. In faet, from [13] it follows that U is of the
form: U(g)(y) =»(y).g(Ty), where 5 ¢ F*. Replacing g by 1 we
obtain »=1.

We finish this paragraph with theorem 4 wich is related with
theorem A. .It deals with a type of result suggested by what has
been told in the preceding proof. We do not know if it holds in
general, (ef. next note 1).

Theorem 4. Let X and Y be compact spaces with a countable
basis, and T a measure preserving transformation from (X, Bo®, u)
into (Y, Bo*,v) which induces a (measure preserving) Boole o -150-
morphism  from A(Y) onto A(X). Then; there exists a
transformation with the same properties than T, S, such that
wi{ z; S(z) = T'(x) } =0, and for any E e Bo*(X), S(E) ¢ Bo*(Y)
and v(S(E)) = w(E). S8 can be chosen to be one-to-one on a set
of measure one.

Proof. We shall sketeh the proof. Since X has a countable ba-
sis, B, the field R generated by B is countable. Then. for every
measurable set E <X, w(E) = inf { 31" u(d,); E< U 4y,
AneR ). If A eR, there exists by hipothesis B e Bo*(Y), such that
w(d) =v(B), and p(A A T~*(B)) = 0.Call H=U { AAT-*(B);
AeR} . Then, H is a measurable set and p(H) =0. Define,
&(z) = T(z) it zeH, 8 (z) = u for any x e H, and v ( {u} ) =0.
(If no point of Y is of measure zero, then Y is purely atomic, and
the theorem is trivial, ef. ecorollary to theorem 1). Now, it follows
that S’ is a measure preserving transformation, that p{ z;
S’z 5 Tz} =0, and that for every null set N, §’(¥N) is a null set.
Next, that S’(J) is a measurable set of the same measure as M,
for any M e Bo*(X). Define now U(S’z), choosing a point in
(8°)—1(8’z). After defining U on ¥ — S’(X), we obtain a mea-
sure preserving transformation from Y into X. Applying the re-
sult already obtained, we get U’: ¥ — X, U’ different of U at most
in a set of measure zero, and with the same properties as S’. Then,
U is one-to-one on a set of ¥ of measure one. The theorem follows
at once.

18. Note 1. Assume L' (X, B, p) 18 separable. To fix ideas,

N
assume also that X has a countable basis. Therefore, II X(;),
i=1
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1 = N = o, has a countable basis. Then, any Boole automorphism of
II¥;_, X (;) onto itself is induced by a pointwise transformation.
The same is true for any produet IT [X(;); t¢J] and with respect
to the o - field of Baire sets. If the Boole automorphism preserved
subfields depending of only one coordinate, then the pointwise
transformation in II X (;) would be easily constructed by means of
the pointwise transformations in each X (;). Therefore, it suffices
to see that J can be divided into disjoint ecountable sets, 7 , such
that the family of measurable sets depending only on the eoordi-
nates of Jy is preserved under the Boole automorphism. This last
fact can be obtained taking into aceount that 7 has a countable
basis, and that any Baire set depends only on a countable number
of indices. We leave the verification to the reader.

Note 2 (*). We required the compact space X to admit a
faithful measure. Trivially, not every compact space is of this
kind; however, two very important classes of spaces have this
property: compaect groups and compact, separable metric spaces
(put a positive mass on any point of a countable dense set). A
space which admits a proper measure must verify the Souslin con-
dition :

(8) There exists, at most, a countable family of disjoint open

sets.

This condition coincides for ordered spaces without jumps, with
the property that has been used, with the same name, in [11], and
permits to enunciate Souslin problem :

(SP) Is a totally ordered set without jumps that satisfy (S)

isomorphic to a subset of the real numbers?

The problem remains open and a thorough study has been
made in [11].

Coming now to the converse of a proposition that we stated
above, we can ask if any compact, Hausdorff space with property
(8) admits a proper measure. We do not know whether it is true
or not. However, if it is true to prove it is, at least, as difficult as
to solve Souslin problem. In fact, firstly, if a totally ordered set
not isomorphic to a subset of the real line, without jumps, and
with property (8) exists, then it also exists another such com-

(*) The results of this note were kindly communicated to us by Prof. R. A.
Ricabarra.
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plete ordered set without intervals isomorphic to the real num-
bers, say a set O .Secondly, the existence in this C, (which is
compact in its order topology), of a faithful measure, implies, as
shown for instance in [12, th. ¢, p. 60], the existence of a non
countable disjoint family of non trivial intervals. Contradiction.
We remark that “Theorem C” just quoted gives the partially or-
dered version of our statement, and goes much beyond what we
actually need here,

Note 3. Some of the main theorems can be generalized to mea-

surable homomorphisms, and insomorphisms into.

[1]

(2]
(3]

[4]
(5]

(6]
[7]

(8]
(9]

[10]
[11]

[12]

[13]
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SOBRE UN PROBLEMA DE B. GRUNBAUM

por FAUSTO ALFREDO TORANZOS (L)

ABSTRACT: If we call “rhomboid” a quadrilateral that has a couple of
equal adjacent sides and perpendicular diagonals, we show (prop. 3): “A
closed convex curve L such that whenever three edges of a rhomboid B support L,
the fourth edge of E also supports L, is a circle”. This characterization was
suggested by a problem stated by B. Grinbaum on [4].

Besicoviteh [1] y Danzer [2] han dado dos demostraciones dis-
tintas de que la circunferencia es la inica eurva convexa cerrada C
tal que no existe rectdngulo con exactamente tres vértices sobre C.
Branko Griinbaum [4] planteé el siguiente problema, en cierto sen-
tido dual del anterior:

PROBLEMA 1: ;Es la circunferencia la Unica curve convexa ce-
rrada C tal que: (*) cada vez que tres lados de un rombo R se apo-
yan en C, el cuarto lado de R también se apoya en C?

Si definimos romho como un paralelogramo equildtero, la si-
guiente proposicién responde negativamente al problema I.

PROPOSICION 1: La propiedad (*) ceracterize o las curves de
ancho constante entre todas las curvas convexas cerradas del plano.

Demostracién: Sea M una curva de ancho constante y E un
rombo de vértices a, b, ¢, d, tal que los lados (e, b), (b, ¢), v (¢, @)
se apoyan en M. Trazando la recta r de apoyo de I paralela a
(b, ¢) determinamos un paralelogramo circunseripto en M. Pero la
distancia de (b, ¢) a r es la misma que la de (@, b) a (¢, d), luego
el paralelogramo coincide con E y r > (@, d). El reciproco es
trivial.

Una forma de generalizar el problema I consiste en reempla-
zar la expresién “curva convexa cerrada’ por ‘“curva simple cerra-
da”. Qbviamente, la proposicién 1 también responde en forma ne-
gativa a este enunciado, pero surge naturalmente una nueva pre-
gunta:
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PROBLEMA II:;Existe alguna curva plana, simple, cerrada y no
convexa que verifique (¥)?

El resultado siguiente, mas fuerte que la proposicién 1, eon-
testa negativamente al problema II.

PROPOSICION 2: La propiedad (*) caracteriza a las curvas de
ancho constante entre todas las curvas simples cerradas del plano.

Demostracion: Sea L una curva simple cerrada que verifique
(*). Si consideramos a K — conv L (cipsula convexa de L) como
interseccién de los semiplanos cerrados determinados por rectas de
apoyo de L, resulta que K tiene ancho constante. Pero L debe con-
tener todos los puntos extremales de K, y como es bien sabido, todo
punto de front K (frontera de K) es extremal (para este y otros
resultados elementales referentes a conjuntos de ancho constante
remitimos al lector a [5] N° 7, o bien a [3] chap. 7), luego L o front
K. Pero como L es simple L = front K.

Otra generalizacion del problema I consiste en sustituir el
rombo por una figura méis general.

DEFINICION 1: Llgmaremos romboide a todo cuadrildtero que
tiene un par de lodos adyacentes iguales y las diagonales perpen-
diculares.

Es claro que el par de lados adyacentes, opuesto al dado tam-
bién estd constituido por lados iguales. Todo rombo es un rom-
boide.

Llamaremos (**) a la propiedad (*) donde se sustituye la pa-
labra “rombo” por “romboide”.

PROBLEMA II1: ;Es la circunferencia la tUnica curve convexa
cerrada del plano que verifica (*%)?

Después de un lema preparatorio demostraremos la respuesta
afirmativa al problema III.

LEMA 1: Sea L una curve convexa cerrade que verifica (**),
ro una recta de apoyo de L y a el (inico) punto de contacto de
ro con L. Sea r la perpendicular a ro por a, b un punto de r ex-
terior @ L, y r1 y 7y las rectas de apoyo de L que pasan por b.
Eantonces el tridngulo formado por ro, r1 y 1y es isosceles con ba-
se en Tq.
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Demostracion: Sean ¢ =r, 11y d =ro (| 7. Bastari enton-
ces con que demostremos que | (a, ¢) | =] (a,d) |. Si a es el 4n-

3 o
gulo formado por r y ry, para cada y tal que = >y >— —a existe
9

&

un punto py de 7y comprendido entre el punto de contacto y ¢, tal
que la recta ry que pasa por p, ¥ forma con r; un éngulo y es
de apoyo de L.

Si py ¢ (b, d) es tal que [(py,b)|= |(py, b)!, entonees por (**)
la recta ry de apoyo de L que pasa por py forma con 7 un an-
gulo y. Sea gy=ry M ry el cuarto vértice del romboide circuns-
cripto a L asi definido. Es claro que, independientemente del 4n-
eulo y elegido, los puntos de contacto de rey 1y con L estan en
distinto semiplano respecto de r. Consideramos ahora una sucesién

w .
{v;} tal que y; — i Entonces ry, y ry/ convergen hacia

r9, Mientras que Py Py tienden a ¢ y d respectivamente. Por
la rotundidad (es decir, no contiene segmentos) de I los puntos
de eontacto de ry; ¥ ry/ se acercan tanto como se quiera, y pues-
to que (gy, estd entre ambos, resulta que en el limite los tres pun-
tos se confunden en uno solo: ¢. Entonces resulta:

[(a, ¢)|=lUm|(py; gy;)|=lm|(py/, gv;)|=|(a,d)| q.e.d.
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PROPOSICION 3: Una curva convexa plana que verifica la pro-
piedad (%) es una circunferencia.

Demostracion: Es claro que, en virtud de la proposicién 1, tal
curva [ tiene ancho constante. Por simplicidad de notacién nos
referiremos en adelante a K — conv L, es decir al conjunto con-
vexo K tal que front K — L. Dada una direccién arbitraria del pla-
no sean r y r’ las dos ractas de apoyo de K paralelas a esa direc-
cion, ¢ v @ sus puntos de contacto con £ y [ la recta que pasa por
av @& v (por ser I, de ancho constante) es perpendicular a r y »’.
51 Nlamamos 8 (respectivamente S’) la semirrecta de I, exterior a
I v con origen en @ (resp. ¢’), para cada peS (resp. peS’) sea
K (p) la regién del plano (4ngulo) que contiene a K comprendida
entre las dos semirrectas de apoyo de K con origen en p. Defini-
mos K (o) como la banda comprendida entre las dos rectas de
apoyo de X paralelas a I, y llamamos I' = S U §’ U {w}. Hs claro,
a partir del lema 1, que para todo x el K(x) es simétrico respecto

de [, ¥ como ademdis vale que K — x?l’ K(z) resulta que [ es eje

de simetria de K. Pero como la direccién de I es arbitraria, podemos
cneontrar andlogamente un segundo eje de simetria de K, perpen-
dicular a [. El punto de interseccién de estas dos rectas serd centro
de simetria de K, y como K eg de ancho constante, es un circulo g.e.d.

BEs claro que, razonando como en la proposicién 2, podemos
debiiitar la hipétesis de la proposicién 3, sustituyendo “convexa”
por “simple”.
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