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INDUCED SHEAVES AND GROTHENDIECK TOPOLOGIES 
by Juan Jose MartInez 

INTRODUCTION. The theory of sheaves, as it is exposed in the clas
sical book of R. Godement {2}, has been generalized in sucessive 
stops. Ending this process, M. Artin introduced the notion of Gro
thendieck topology and developed the fundamental part of the theory 
in a functorial way (cf. {1}). Although, the concept of Grothen -
dieck topology seems to be insufficient to relate certain aspects of 
the theory of sheaves; for example, the notion .of subspace (not 
necessarily open !) is omited and so, induced sheaves and relative 
cohomology must be ignored. 

The purpose of this paper is to obtain the essential results about 
induced sheaves (the concept of topological category enable us to 
work in this direction; cf. §1). Topological methods play an im
portant role in the problems in question, as Godement shows (cf. 
{2} , Ch. II, §2.9). Therefore, we are forced to introduce a var
ious kind of axioms, val ids -of course- in the classical situation 
of a topological space. We mention that the results of this paper 
are useful also in not conventional cases, namely, the "ihale" Gro
thendieck topology for preschemes (cf. {I} , Ch. III). 

Resuits and notations of Artin's seminar ({I} , Ch. I, II) are con
tinuosly used, frequently without specific reference. This results 
are stated in {I }for sheaves of abelian groups, but all of them 
could be generalized taking an arbitrary category of values and in
serting axioms where necessary.Here, we have followed the abstract 
formulation (the basic facts about limit of functors, existence of 
injectives, adjoint situations, derived functors of a composition, 
etc. are stated in the usual literature; for example, cf. {3} ) .' 
Of course, the reader could suppose that all sheaves in this paper 
are abelian sheaves. 

1. TOPOLOGICAL CATEGORIES AND INDUCED SHEAVES. This section is 
of introductory character. Its aim is to lay down the terminology 
used throughout this paper and to collect the basic facts. We be
gin with the following: 

DEFINITION 1.1. A topoZogiaaZ aategory is a tripZe (M,T,,) suah 

that M is a aategory, T is a family of Grothendi~ak topoZogies 

(TM)MEObM ,is a. famHy of morphisms in M ('M:M - X)ME ObM and the 

following axioms are satisfied: 
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toll For an objeot M in M Cat TM is a fuH suboategory of M. X 

is an object of Cat Tx and ~x is the identity morphism eX of X. 

t(2) The diagram 

is commutative. for an morphism f: U -+ Vin C'at T x. 

tc3).M has fibered products of the fo~m ",U x,,,,M (b3'ti,ej"J.JI noted 
'wm :ow!!!! 

U XXM). where U is an object of Cat Tx and M is an objeot of M. 
such that 

(f i : Ui -+ U)iEI E Cov Tx====> (fi xXeM: Ui xxM -+ U XxM)iEI E Cov TM 

for all objeot M of M. 

REl'olARKS 1.2. i) Axioms tcl and tc2 tell us that M is an object of 

Cat TM ' because X xX'" = M and X is an object of Cat Tx. 

ii) Recall that if X is an object in a category M, then is called 

prefinal (resp. final) iff llomM(:-I,X)'; 0 (resp. HomM(l'>I,X) is a set 

of one element), for all H E OhM. If < X > is the discret subcateg~ 

ry of ,II associated to X, one easily checks that the following state 

ments are equivalent (cf. {1} Ch. I, §O): 

a) M satisfies axiom Ll and < X> is a final subcategory of M. 

b) X is a final object of M. 

c) M satisfies axiom L2 and X is a prefinal object of M such that 

I1omM(X,X) = {ex>' 

Clearly, if (M,T,~) is a tc (topological category) then X is a pre

final object of M. 

Let M be a category wi th final obj ect X and let ~ be the family of 

'morphisms canonically associated to X. If T is a family of topolo

gies satisfying tcl and tc3, respect toM and~, then (M,T,~) is a 

tc of the following type: 

DEFINITION 1.3. A topoZogical oategory (M.T.~) is oaHed tcO iff 

. it satisfies: 

t02') For all morphism f: ~I -+ N' in .II the diagram 

"I~N 
\ / . 

<PM . X'" ~N 



69 

is aommutative. 

Given a tc C = (M,T,cj», we shall be using a naive nomenclature: 

M is called the category of subspaces of C (consistently, an object 
M in M is called a subspace of C). The object X is referred to as 
the space of C and so, an object M of M is also called a subspace 
of X refering to cj>M as the inclusion morphism of M in X. 

If M is a subspace of M, TM is called the relative topology of .M 

and Cat TM is called the category of relative open objects of ;., 
Abusing language, Tx is called the topology of C and Cat Tx is cal
led the category of open subspaces of C. 

A morphism f: M --+ N in M is called a cj> -morphism iff the diagram 

M~N 
<l>M '\. / cj>N 

X 

is commutative. We define a category Mcj> putting: 

ObMcj> ObM 

Hom Mcj> cj> -morphisms of M 

Mcj> is a subcategory of M and clearly is. a full subcategory (equiv! 
lently, is equal to M) iff C is tcO. 

DEFINITION 1.4. A morphism of topoZogiaaZ aategories F: C ~ C' 
is a funator F: M - M' suah that: 

mtal) 

of TM 

mta2) 

mta3) 

For aZZ objeat M of M Pleat TM isa morphism of topoZogies, 

inTF(M)' 

F(cj» = cj>' (i.e. P(X) = X' and P(cj>M) = cj>F(MY' for aH ~,'e:ObM). 

F preserves fibered produats of the form U xxM,UEOb(Cat Tx) 
and 1>1 e: ObM. 

REMARKS 1.S. i) Now we can talk about the category of small topo
logical categories. 

ii) If P: C - C' is a mtc then we have 

U e: Ob(Cat Tx) ---~ F(U) xx,F(M) e: Ob(Cat TF(M») 

(fi:Ui '-+ U)ie:1e: Cov TX=> (F(f i ) xX,eF(M):F(U i ) xx,P(:.I) 

+ F(U) xx,F(M))ie:I e: Cov TF(M) 

for all subspace M of C. 
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iii) A mtc F: C ---+ C' induces for each subspace M of C amor -

phism of topologies F/eat TM: TM ---+ T~(M) and so, induces the u
sual functors (direct and inverse image) between the corresponding 
categories of presheaves or of sheaves. 

Let 1>-1 be a subspace of a tc C. If A is an arbitrary category, the 

category of presheaves P(TM,A) is briefly denoted by PM' and a pr~ 
sheaf in PM is called apreslleaf over 11. Similarly, if A is a cat 

egory with products, SM denotes the category of sheaves S(TM,A) , 
and a sheaf in SM is called a sheaf over M. 

PM: Tx ---+ TM is the morphism of topologies defined by the assig~ 
ment of objects U ---+ U xxM. 

A category A will be called: 

0) AO iff it is a complete category (respect to functorial direct 

.limits) with products and zero object. 

i) Al iff it is AO and abelian. 

ii) A2 iff it is Al and satisfies the Grothendieck axiom A.B.S. 

iii)A3 iff it is A2 and has a generator. 

Let C be a tc and let A be an Al category (as category of values). 

DEFINITION 1.6. If M is a subspaae of C and F is a sheaf over X • 
then we aa II PMs (F) the sheaf induaed by F ove1' M. and we denote 

it by F/M. 

DEFINITION 1.7. If ~1 is a subspaae of C and a:F -- G is a mor

phism of sheaves ove1' X.then we aaLL PM (a) the m01'phism induaed by 

a over M. and we denote it by a/M. s 

REMARKS 1.8. i) Since Px = eTx it is clear that F/X = F and a/X = a 

ii) Since PM s is a functor it is clear also that eF/M 

(ea) 1M = (e/~l) (a/M). 
eF 1M and 

iii) Remark that expresions of the type (F/M)/N have nO sense here, 
because the "absolute" topology Tx plays a special role in our devel 

opments. 

Now we need to prove some previous results. In the next lemma, and 
only in the next, A may be an arbitrary category. 

LEMMA 1.9. If f: K ---+ K' is a morphism of small aategorie.s.the 

foLLowing statements are true: 
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iJ If f is a full and representatiue functor. then fP: P'---+ P is 

fun. 

ii) If f is representative and (II £ Hom P' is such that fP(a) is an 

isomorphism. then a is also an isomorphism. 

Proof i) We want to show that the function Homp' (PI ' P2 ) --

a - fP (a) , is surjective. Given 

a £ Homp (rP (PI) , fP (P2 » we define a morphism a £ Homp ' (PI ' P2 ) 

in the following way: since f is representative, given an object V 
in K' there exists an object U in K such that feU) = V; therefore, 
we take a (V) = a (U) • The good definition of a is obtained by the 
following argument: if U' is an object of K such that f(U')=V,since 
f is a full functor there exists a morphism m: U'- U such that 

f (m) = ev . Now, since 13 is a morphism of presheaves, we have the 
commutative diagram 

_....::I3 ...... (=-U},--+, fP (P 2) (U) 

I fP(P2)~) 
---:I3;:-(:;-:u:"i,"",,"}-, f P (P 2)(U ' ) 

i.e. we have the commutative diagram 

P1(V) I3(U} , P2 (V) 

epl(V} I I ep2 (V} 

PI (V) 13 (u') , P2 (V) 

and so, 13 (U) I3(U'). It is trivial that fP(a) = 13 . 

ii) Given (II £ Hom P' and V £ ObK', observe that 

V = feU) => a(V) = fP(a)(U). 

COROLLARY 1.10. If f: T -- T' is a morphism .of topologies, the fol 

lowing statements are true: 
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i) If f is a full and representative funator, then fS: S'-r S is 

full. 

ii) If f is r~presentative and a E Hom S' is suah that fSfa) is an 

isomorphism, then a is also an isomorphism. 

Proof: Apply the lemma, taking in mind toot ifs " fP i ' where i 

Crespo i') is the inclusion functor of S Crespo S') in P Crespo P') 

COROLLARY 1.11. If f: T --+ T' is a full and representative mor-

phism of topologies, then fs: S S' is a representative funator. 

Proof: Since fs is left adjoint to f S , there exists a canonical 

morphism of functors A: fso fS --+ eS ' Now, since fS is full by 

1.10,i, we-have thilt fSCA F ,): fSCfso fSCF')) --+ fSCF ' ) is an iso

morphism, for all sheaf F' inS'. Therefore, applying 1.10, ii, 

AF ,: fSfs (F') --+ F' is also an isomorphism; and so,given a sheaf 

F' in S' the sheaf fS CF') is a preimage by fs of F'. 

The situation above suggest us the following 

DEFI NITION 1.12. A ta C is aaZZed tal iff the morphism PM 

fuZZ and representative funator, for all subspaae M of C. 

is a 

RHIARK 1.13. If C is tcl we can apply both corollaries to the mor

phism PM : Tx ----+ TM. In particular, 1.11 tell us that the restric-

tion functor .hl: Sx----+ 3M is representative, for all subspace ;-1 

of a tcl C. 

In order to obtain the classical theorems about "characteristic" 

sheaves (cf. {2} Ch. II § 2.9) our first result is 

LEMMA 1.14. Let M be a subspaae of a tal C and let F be a sheaf 

over' X. If we define the sheaf pM by FM = fSf CP) then FMm " Fm. 
S 

ffisP M)· 

ppoof: Adjointness gives us a canonical morphism of functors ~ :~~ 

since f is a full functor ecL 1.10,i) f Gl F): f (F)-+ 
S S 

is an isomorphism. Hence, P/~l " pM/iv! . 
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The technique concerning to open subspaces will be obtained using 
the following type of categories 

DEFINITION 1.15. A tc C is called tc 2 iff for all open subspace 

A of C the following conditions are satisfied: 

i) TA is a subtopology of Tx' 

ii) If V is open in A. then V xxA 

-+V xxX = V is an isomorphism) . 

LEMMA 1 .16. If A is an open subspace of a tc 2 C and V is open in 

A. then. < (V,hv ) > is initial in If 
V . where f: Tx ---+ TA is the 

morphism PA and hv: V ---+ fey) is the inverse morphism of evxx$ A 

Proof: Let (U,n) be any object in If 
V If Pu: £ (U) ---+ U denotes 

the first projection, we define a morphism m: V --+ U by m = pun. 
We claim that m: (V ,hv) ---+ (U ,n) is a morphism in If ; to prove V 
this we are reduced to check that the diagram 

fey) ~ feU) 

hv~ / n 
V' 

is commutative. In fact, if gv: feY) --+ V is the morphism eVxX$A 

we have the commutative diagram 

ngv 
---'--...... f (U) 

1 Pu 
U 

m 

Therefore, recalling that gv is the first projection of feY) , an 

uniqueness result on fibered products yields f(m) = ngv Hence, 
f(m)hv = n. 

The last thing to check is that End((V,hv)) is a set of one ele -

ment. In fact, if r: (V,hv ) ---+ (V,hv ) is a morphism in I~ , then 
the diagram 
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is commutative, i.e. fer) e f (V) • Therefore, since the diagram 

fey) f(r), fey) 

gv 1 1 gv 

V V r 

is also commutative, results r = ev ' 

COROLLARY 1.17. If A is a complete category, Cat Tx has fibered 

products and V is open in A, then the following statements are 

true: 

i) If P is a presheaf over X, then f (P)(V) ~ P(V). 
p 

U) If in addition A has products and F is a sheaf over X, then 

f i(F) is a sheaf over A(i: Sx --+ Px is the inclusion functor). p 

iiiJIf A is abelian too and F is a sheaf over X, then F/A(V)~F(V). 

Proof: i) Since Cat Tx has fibered products and f preserves fib 
ered products (because is a morphism of type PM)' the category I~ 
satisfies axiom 11* (cf. {1} II, Th. 4.14). Therefore, applying 
t.he lemma, we see t.hat (V,hv ) is an initial object in I~ , and so 

fp(P)(V) = ~ Pv ~ Pv«V,hv )) = P(V). 

ii) Applying i, check the definition of sheaf. 

iii) It is clear by ii that F/A ~ f i(F). Hence, i yields the de 
p 

sired result. 

2. COMPLEMENTED TOPOLOGICAL CATEGORIES AND CLOSED SUBSPACES. 

At this point, we need the notion of closed object in a topologi
cal category. Since we have the concept of open object, thinking 
in the closed sets of a topological space it is enough to find a 
notion replacing the set-theoretic operation of complement. Thus, 
we give the following 

DEFINITION 2.1. A complemented topoLogiaaL aategory is a ta C, t~ 

gether with a functor c: M* --+ M such that. if e = cX and Ux=CatTx ' 
the foLLowing axioms are satisfied: 

ctcl) c is an invoLution functor (i.e. c*o c = eM*). 

ata2) e £ ObUx and there exists (U i --+ e )iclc COy Tx suah that I=~ 
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ctc3) cM xxM = e and e xxM = e. for aU M e: ObM . 

REMARKS 2.2. i) Fx = cUx is called the category of closed sub
spaces of C, and c is called the complement operator of C. 

ii) Axiom ctc3 says that the diagrams 

e 
c("'cM) , M e 

c("'CM) , M 

C("',M) 1 "'M C (",x)-ee 1 1 "'M 

cM 
"'cM 

' X e 
"'e 

' X 

are fibered products. We recall that (in the following proofs) we 
only need the first condition of ctc3 for closed subspaces, and the 
second for open subspaces. 

iii) ctcl tell us: 

a) the complement of a closed object is open. 
(The dual proposition is trivially true). From the definition of e 
and ctc2 we obtain: 

b) e is open and closed. 

Therefore: 

c) X is open and closed. 

Using ctc2 and the second condition of ctc3, we see: 

d) If M is a subspace of C, then e e: ObUM and there exists a cov
ering (Vi-e)iEI in TM such that "I = _. 

Recalling that, in a category with zero object, the product of an 
empty family of objects is the zero object, we obtain: 

e) If A is a category with products and zero object and P is a 
pre sheaf over a subspace M of C, then 

P monopresheaf ===> pee) 0 

In particular, 

P sheaf ~> pee) = 0 

(In the sense of {ll, a monopresheaf is a presheaf satisfying (+)). 

Now, we have the necessary technique in order to prove one of the 
crucial results of this paper. 

THEOREM 2.3. 1 If A is an Al category And M is a subspace of a tc C. 
then for any sheaf F over X we have: 
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i) The sheaf FM defined by FM ~ fSfs(F), where f: Tx --+ TM is the 

morphism PM' satisfies FM/M ~ F/M. 

If A is an A2 category.C is. in addition. tc 2 and has a compZement 

ope1'ator c. Cat Tx has fibered products. and X is finaZ in Cat Tx' 
then fo1' any sheaf F ove1' X we have: 

ii) If M is a cZosed subspace .Df ;C~ then pM/eM .. 0; if the sheaf 

F cM is defined by the exactness of the sequence O--+F cM- F ~ FM 

(i.e. FCM = Ker t:. F ). then FcM/cM F/cM and FcM/M ~ O. 

P1'oof: i) it is 1.14, exactly. 

iiJ We begin with the first statement. Since eM is an open sub
space of C, applying 1.17, iii it is enough to show that FM(V) = 0, 
for any V open in cM. Recalling that fP preserves sheaves, because 
f is a morphism of topologies, we see that FM ~ fPiMfs(F). There-. 
fore, we have FM(V) ~ f (F)(f(V)); but fey) = a, because V is an ob . 

s -
ject of TCM and PM is a representative functor (see axiom ctc3) , 
and fs(F)(a) = 0, because fs(F) is a sheaf (cf. 2.2, iii, e).Hence, 

FM/cM ~ 0 . 

Now, we prove the second statement. Since Cat Tx has fibered pro! 
ucts, X is a final object in Cat Tx ' A is an A2 category, and PA: 
Tx -+ TA ' where A is any subspace of C, preserves the "spaces" 
of the topologies and fibered products, then PAs: Sx -+.SA is an 

exact functor (cf. {1} II, tho 4.14). Hence, fs and gs are exact 
functors (f = PM and g = P cM) . 

In Sx we have the exact sequence 

0 -+ F 
t:.F FM --+ F -'-+ cM 

Thus, the sequence 

is exact, or equivalently, is exact the sequence 

Ilence, F eM / cM " F / c;'[ 

In a similar way, we obtain the exact sequence 
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Since 6F/M is an isomorphism, the exactness of this sequence yields 

FcM /l>1 '" 0 • 

The main purpose of the latter part of this section is to provefuat, 
under certain restrictive conditions, 6 F : F ~ FM is an epimorphism. 
Until this moment, (C,c) will denote a fixed ctc. 

If A is a category with products and zero object, we give the follow 
ing 

DEFINITION 2.4. If M is a subspaae of C and F is a sheaf over X,we 

say that F is null outside M iff for all open subspaae U of C we 

have: 

U xx~1 = 6 => F(U) = 0 

If M is any subspace of C, SCM) will denote the full subcategory of 
Sx defined by the sheaves null outside M. If f: Tx ~ TM is a 
morphism of topologies and A is an Al category, fo: S (~1)~SM will 
denote the functor f JS (M) • 

TIIEOREI>I 2.5. (A of type Al). If ]\I is a subspaae of C and f: Tx-> 

-+ T M is the morphism PM ' then the funa tor f 0: S (1)1) ---+ SM has a 

right adjoint e: SM ---+ SCM) . 

Proof: Since fS is right adjoint to f , it is enough to shJW that 
S 

the image of fS is a subcategory of SCM). (Then, fO is fS with 

SCM) as codomain). 

Given a sheaf G over N, notice that fS(G) '" fP iM (G) , ",here iM is the 
inclusion functor of SM in PM , and so, we only need to show that 

U xx~1 = 6 =--=---=> fPiM(G)(U) = 0 

for any open subspace U of C. In fact, we have 

G (6) o 

(the last equality is true because G is a sheaf). 

Now, we wish to obtain a theorem of equivalence between the catego
ries SCM) and SM. A similar result of Artin concerning to closed 
subschemes (cf. fl} III, Th. 2.2), guide us in the generalization 
process. 

LHI)lA 2.6. Let f: K ---+ K' be a funator and let V be an objeat of K' 

suah that for any A E ObK and any n E Hom K, (V,f(A)) there exist 
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U e: ObK and m e: HomK(U,A) satisfying V + feU) and f(m)oh = n 

Then. the fU'L7, subaategol'Y If (V) of I~ defined by the alass {(U, h) ; 

U e: ObK. h e: Iso K, (V,f(U))} is initial in I~. 

Pl'oof: Let (A,n) be any object in I~ ; applying the hypothesis on 
Vto the morphism n: V -+ f(A), we can find a morphism in K m 

U ----+ A and an isomorphism in K' V ....h... feU) such that f(m)h = n 
Therefore, the diagram 

f (U) f'(m) J f (A) 

h ~V/ n 

is commutative and so, m: (U,h) --+ (A,n) is a morphism in I~ • 

COROLLARY 2.7. If f: K --+ K' is a full and l'epl'esentative funat~ 

then If(V) in I~ • fol' all objeat V of K'. 

COROLLARY 2.8. (A is a aomplete aategol'Y). Let f: K --+ K' 'be a 

mOl'phism of small aategol'ies suah that K has fibel'ed pl'oduats and f 

is a fulZ and l'epresentative funator ~hiah preserves fibered pl'od

uats. Then·. any presheaf P in PIK,AI satisfies f (P)(V) " . p 

" ~ pv/If (V)* , V e: ObK' . 

Pl'oof: It is enough to notice that I~ satisfies the axiom Ll* , 
because K has fibered products and fpreserves fibered products. 

DEFINITION 2.9. (C,c) is aaZZed· 

i) ata l iff C is tal and fol' any aZosed subspaae M the folZo~ing 
aonditions are satisfied: 

a) Any 
b) If U 
and F is 

ii) ata 2 

for aZZ 

iii)ata 3 

aovering in TM is induaed by PM fl'om 
and U' are open subspaaes. of C suah 

a sheaf nuZZ outside M. then F (U) " 

iff C is ta 2 and aZosed subspaae any 

U xxM = e => U xxcM 

open subspaae U of C. 

. iff (C, c) is ata 1 and ata 2 

a aovering in Tx . 

that U xxM " U'~xM 
F (U') • 

M satisfies: 

u 

LEMMA 2.10. (A of type AO). If (C,C) is ata l • Cat Tx has fibered 
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products, F is a sheaf nuLL outside a closed subspace M of C, and 
f: Tx ~ TM is the morphism PM' then the following statements are 
true, for any open subspace U of C: 

i) fpi (F) (U xxM-) '" F(U). 

ii) fpi(F) is a sheaf over M. 

iii) F/M(U xxM) " F(U). 

Proof: i) Since Cat Tx has fibered products, applying 2.9 we see 
that fpi(F)(U xxM) " ~ i(F)u XXMllf(U xxM)*. Now, since (C,c) 

satisfies 2.9, i, b it is obvious that the values of the functor 
i(f)u x M are all isomorphic, because anyone is isomorphic to F(U). X 

F (U) • 

ii) Since (C,c) satisfies 2.9, i, a, applying i it follows easily 
that f i(F) is a sheaf (one only needs to check the definition of p 
sheaf). 

iii) Because of ii we have f (F) " f i(F). Therefore, i yields s p 
the desired result. 

Now, it is almost obvious how to prove: 

THEOREM 2.11. (A of type Al). If (C,c) is ctc1, Cat Tx has fibe!:.. 
ed products, M is a cLosed subspace of C, and f: Tx --+ TM is the 
morphism PM' then the funator f o : S (M) --+ SM is an equival.enae of 
categories,which inverse is fO: SM --+ SCM). 

Proof: By adjointness (see 2.5), there are natural transformatDns 
~: eS(~ fOfo and ~: fof°---+ eSM . It is a straightforward rna! 
ter,which we leave to the reader, to check that ~ and ~ are func -
torial isomorphisms. 

COROLLARY 2.12. If F and FI are sheaves nulL outside M, then 

F 1M " F I 1M => F " F I 

THEOREM 2.13. (A of type A 1). If (C, c) is ctc 2, Cat T X has fibe!:.. 
ed products and M is a cLosed subspace of C, then 

F/cM " 0 => F is nuLl. outside M 

for any sheaf F over X. 
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Proof: Let U be an open subspace of C such that U xxM = 6j taking 
in mind that (C,c) is ctc 2 and applying 1.17,iii we see that F(U)~ 
~ F(U xxcM) ~ F/cM(U xxcM) = O. 

COROLLARY 2.14. If (C.c) is ctcS and F and F' are sheaves over X. 

then 
F/M ~F'/M F/cM ~ 0 ~ F'/cM -> F F' 

Now, we can obtain the desired result: 

THEOREM 2.15. (A of type A2). If (C, c) is ctcS , Cat T X has fiber.. 

ed products, X is finaL in Cat Tx and M is a cLosed subspace of C, 
then the foLLobJing statements are true, for any sheaf F over X : 

0) A F FM • • h· 
" il F : --+ 'LS an ep'Lmorp 'Lsm. 

ii) FM is uniqueLy determined by F. 

Proof: i) Recall that fs and gs are exact functors (see the proof 
of 2.3). Let C be the sheaf over X defined by the exactness of the 
sequence 

Then, we have the exact sequence 

or equivalently 

FIM --> FM/cM --> C/cM --> 0 

and so, C/cM = O. 

" o 

In a similar way we obtain the exact sequence 

C/M- 0 

Therefore, since llF/M is an isomorphism, we conclude that C/M O. 

Now, 2.14 yields that C = o. 

ii) If F' is a sheaf over X satisfying F'/M ~ F/M and F'/dl ~ 0 , 

then F' 1M ~ FM 1M and F' I dl 

F' FM. 

o ~ FM/c~1. llence, 2.14 yLelds that 

We end this section with a well known result on "characteristic" 

sheaves. 
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THEOREM. Z.16. (A of type AZ). If (e,c) ia tcl and tc 2, CatTx has 

fibered products, X is finaZ in Cat Tx and M is a cZosed subspace 

of e, then for any sheaf Gover M there exists a sheaf F over X 
such that F/M " G and F/cM ,,0. If (e,c) is ata 3, then F is uniq~ 
1,y d,et13!l'mined by .G .• 

Proof: Since e is tc l , ./M: Sx --+ SM is a representative functor 
(see 1.13) and so, given a sheaf Gover M we can find a sheaf II 

over X such that H/M "G. Then, taking F = ~ , 2.3 enable us to 

conclude that F/M " G and F/cM '" 0 . 

3. RELATIVE COHOMOLOGIES. 

This section is devoted to realize an analysis of the cohomologi
cal effects of induced sheaves. Of course, the well known results 
exposed in the book of Godement (cf. {2} Ch. II, §4.9, §4.10, Th. 
5.11.1) are obtained here, employing functorial methods. The com
pact exposition of cohomological theory presented in the Artin's 
seminar ({1} Ch. II) is continuosly used. Sheaves and presheaves 
are considered in this order. 

I) COHOMOLOGY OF SHEAVES. 

Let A be an A3 category and let e be a tc such that Cat Tx has fibe~ 
ed products and X is final in Cat Tx. (Notice that the hypothesis 
on Cat Tx yield the exactness of the restriction functors). 

We begin introducing the "true" cohomology. 

DEFINITION 3.1. If M is a subspace of e, for each integer n ~ 0 we 

'" define the funator' ~: (Cat T x) x Sx --+ A by: 

TIIEOREM 3.2. The foZZowing statements are true: 

i) 

ii) 

U xxM " U' xX~[ 

lln " Hn 
X TX 

'" 

F/M " F' /M => ~(U,F) " II~(U' ,F'). 

iii) 1~1 (U, ) is an exaat aohomoZogiaaZ functor. 

If the functor ./M: Sx --+ SM carries injective sheaves into fZask 

sheaves, then 
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iv) H~(U,) = Rn ~(U, ) • 

If e has a complement operator c such that re, c) is ctc 1 and 
closed subspace of e, then for any sheaf G over M hie have: 

v) Hn(uxxM,G) n( s H U,PM(G)) 

and for any sheaf F over X hie have: 

vi) H~(U,F) = Hn(U,FM) 

If e has a complement operator c such that re, c) is ctcS and 

closed subspace of e, then for any sheaf F over X hie have: 

vii) If F is null outside M, then .~(U,F) = Hn(U,F) . 

viii)There is a cohomological exact sequence of general term 

Proof: i) and ii) are trivial • .-

M is a 

M is a 

iii) Notice that Hr (U xxM, ) is an exact cohomological functor 
M 

and ./M: Sx --+ SM is an exact fUnctor. 

iv) Since Rn HTM (U xxM, ) = H~M(U xxM, ) and fS, where f:Tx--+TM 

is the morphism PM' is an exact functor,which carries injectives 
into HTM (U xxM, ) - acyclics, the proposition follows easily: 

Rn~(U, )=Rn(HTM (UxxM, )ofs) = (Rn.l.rM (Ux xM, ))ofs '" H~M(UxxM, )ofs= 

= H~(U, ) . 

v) We claim that fS is an exact functor; since the diagram 

where jM: SCM) --+ Sx is the inclusion functor, is commutative, it 
is enough to show that fO and jM are exact functors. The exactness 
of fO is clear by reasons of equivalence (see 2.11), and the exac~ 

ness of jM follows from the fact that S'(M) is closed in Sx under 
taking kernels and cokernels, as it is easily deduced from the de

finitions. 

The spectral theorem of Artin-Leray, applied to the morphism f:Tx-4 

-4 TM ' tell us that 

=> 
p 
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for any sheaf Gover M. Therefore, recalling that 

q > 0 ---0 Rq fS = 0 

(because fS is exact), we obtain 

Hn(U,fs(G)) • Hn(U xxM,G). 

vi) Applying the above result, we have 

~~(U,FJ. 

vii) If (e,c) is ctc3 , then for any sheaf F over X we have 

P null outside M ---0 P • pM 

In fact, from 2.13 follows that pM is null outside M and so, since 
PIN. pM/M , 2.12 yiel~s that p • pM • 

Applying this result and i, we obtain 

Hence, vi yields the desired result. 

viii) By 2.3, ii and 2.15,i the sequence of sheaves over X 

llF M o --+- p cM ----+ p ----+ p ----+ 0 

is exact and so, iii yields the desired result. 

REMARKS 3.3. i) Notice that the relative (read local) character 
of the cohomology just defined appears clearly in 3.2,i, 3.2,ii 
and 3.2,vii. 

ii) Of course, the hypothesis on 3.2,iv can not be removed. Suf
ficient conditions in the classical case are well known (cf. {2} , 
II §3.3). 

iii) Observe that the statement (notations as in 3.2, vi) 

HnM(U,P) • Hn(U,F M) 
c. c 

is not true, in general. Then, if we introduce the notation: 

under the hypothesis on 3.2,viii, we obtain an exact cohomological 

sequence of general term 
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Now, we focus our attention in the cohomology with presheaves values. 

DEFINITION 3.4. If M is a subspace of C. for each integer n ~ 0 we 

define the functor H:: Sx --+ PM by: 

THEOREM 3.5. The following statements are. true: 

ii) H;" H~x 

* iii) HM is an exact cohomoLogicaL functor. 

If the functor ./M: Sx --+ SM carries injective sheaves into fLask 

sheaves. then 

iv) 

Without assumptions. we have for any sheaf F over X: 

v) H: (F) 0 PM" I~ ( , F) • 

IfC has a compLement operator c such that (C,C) is ctc1 and M is a 

cLosed subspace of C. then for any sheaf F over X we have: 

vi) H:(F)oP M " Hn(FM) • 

If (C,C) is ctc3, we aLso have: 

vii) If F is nuLL outside M. then H:CF)oP M " Hn(F) • 

v·iii)There is an exact cohomoLogicaL sequence of generaL term 

Proof: i), ii), iii) and iv) can be obtained as in 3.2. 

v) Knowing that H~M (G) " H~M (,G), for any sheaf Gover H, the pr~ 

position follows easily: 

H: (F) (U xx~l) l~ (U ,F) • 

vi) Applying v and 3.2,vi, we obtain: 
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vii) The statement in question can be obtained as vi, applying now 
v and 3.2,vii. Also, it can be proved in the following way: since 
(C,c) is ctc 3 , for any sheaf F over X we have 

F null outside M =--9 F ~ FM 

HnCFM) and so, the proposition follows from vi. 

viii) It can be obtained as 3.2,vii. 

II) COHOMOLOGY OF PRESHEAVES. 

Let A be an Al category and let C be an arbitrary tc. First, we 
consider the cohomology of a covering. In order to conserve a spe£ 
tral result and to obtain a new one, we adopte the following 

DEFINITION 3.6. If M is a subspaae of C and Ku is the aategory of 

aoverings of an open subs~aae U of C. for eaah integer n ::. 0 we. 

define the funator II~: Ku x PM - A by 

THEOREM 3.7. The following statements are true: 

i) (U.---+- U). ~(U~-U). => HnC(U._U). I' )~j-!n(CU!_U). J' 
1 1 e: I .1- J e: J -~ 1 1 e: "M J J e: 

Hn ~ Hn 
X Tx 
* 

ii) 

iii) ~((UrU)ie:I' ) is an exaat aohomologiaalfunator. 

If A is an AS aategory. then we have: 

iv) H~((Ui-+ U)ie:I' ) ~ RnH~((Ui- U)ie:I' ) . 

v) H~((Ui- U)ie:I,H~(F)) => H~(U,F). 
P 

If A is an Al aategory. C has a aomplement operator c Buah that (C.c) 
ata 1• Cat Tx has fibered produats and M is a alosed subspaae of C • 
then for any sheaf F over X we have: 

vi) 

If A is an AS aategory and X is finaZ in Cat Tx' we also have: 

vii) If F is null outside M. then 

IIMPCCU.- U). I,P M (Hq(F))) 
1 1e: P 

Proof. i) and ii) are trivial. 
* 

=> 
p 

iii) Notice that HTM ((UiXxM -.. U xxM)ie:I' ) is an exact cohomolo-



86 

gical functor. 

iv) Since A is an A3 category, H~M «Ui xxM ----+ U "xM) hI' ) 

,. RnIlTM «Ui "xM -+ U "XM)i£l' ). 

v) Since A is an A3 category, the cohomologies of sheaves are de 
fined and we have 

HtM«UixXM -+ U"XM)i&I ' H1 (F/M» -==> 
M p 

H~ (U"xM, F 1M) 
M 

vi) It follows easily fT'01ll 1.1'O,iii, by 

complex which gives the cohomology. 
a direct analysis of the 

vii) Observe that SCM) has injectives, because it is equivalent to 
the category of sheaves over M (see 2.11) (since A is an A3 categ~ 

S ry, M has injectives). 
injectives into flasks, 

the morphism PM' and fS 

Also, observe that the functor jM carries 
because fS = jMofO, where f: Tx ---+ TM is 
has this property. 

Now, consider the (two) functors given by the commutative diagram 

sr --+ PM ~ «U .-+U). I' 1 1& ~ A 

jM 

1 
f p 

Sx ~ Px 1 

Let us evaluate its derived functors. By iv, we have 

RPHo «U .--+U). I' ),. HP «U .-+U). T , -"M 1 1& -"M 1 1& ,. 

Recalling that f 
P 

and that jM is an 
clics, we obtain 

is an exact functor, by the hypothesis on Cat Tx ' 
exact functor ,which carries injectives into i-ac~ 

Rq(fpijM)" fpoRq(UM),. fpo(Rqi)ojM = fpoHqojM 

Both results elucidate the first member of the spectral convergence 
in question. Concerning to the second member, 2.10,i implies 

o (f ijM) ,. W «U.-+ U). I ' P 1 1& 
Therefore, recalling that 11° «U i ->: U)iEI' ) ° i ,. ru ' we obtain 

W«U.-+ U). I "M 1 1& 
and so, since jM is an exact functor which carries injectives into 

ru-acyclics, we have 

Rn(~«Ui-+ U)iEI ) ° (fpijM») RnCrujM) (RnrM) ° jM 

= Hn (U, ) ° jM 
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We introduce the limit cohomology of presheaves by a more general 
procedure than the one used by Artin in'{l}. Of course, both d~ 

finitions agree in the case that the category of values is A3. 

Let A be an Al category and let T be an arbitrary topology. If U 
i,s an object of Cat T and K is a subcategory of Ku' for each integer 
n > 0 we define the funct~r HrCK, ): PCT,A) --+ A by: 

HrC ,P) = m HrC ,P) 0 k*, P E ObP 

where k: K --+ Ku is the inclusion functor Cnotice that Hr( ,P) 
K; --+ A). 

It i's straightforward, to check the following propositions: 

i) If A is an A2 category and K is filtrant, then H;CK, ) is an 
exact cohomological functor. 

ii) If A is an A3 category and K is filtrant, then IJrCK, )=RnHiCK, ). 
CConcerning to i, the usual statement about the exactness of the Ii 
mit is required; and for ii, the ptoposition i tell us that it is 
enough to show that HrCK, ) vanishes on injectives, if n > 0). 

Notice that all the other results of {l}, concerning to ~imit coh9m~ 
logy, are prese'rved by o'ur definition. 

v 
The Cech cohomology of presheaves is introduced fO'llowing {l}. 

Now, we focus our attention in the relative limit cohomology. 

DEFINITION 3.8. If M is a subspaae of C and K is a subaategory of Ku 
for eaah integer n ~ 0 we define the funator I~CK, ): ~M ---+ A by 

CNotice that K"xM is a subcategory of Ku"xM , which is a subcategory 

of Ku" M). 
X 

THEOREM 3.9. The fot.zowing statements are true: 

i) K"xM = K' "xilf => I~CK, ) .. ~~CK', ). 

ii) H~CK,) = HrxCK, ). 

If k: K --+ Ku is the inaZusion funator, then for any presheaf P roer 

1-1 we have 

iii) ~~CK,P) IE!~ Ir:C ,P) 0 k* 

If K* is fiZtrant, then: 

iv) I~CK,) 0 i M .. r u" M 
X 
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If A is an A2 category and K* is filtrant. then: 

* v) HM(K,) is an ezact cohomotogical functor. 

If A is an AS category and K* is fHtrant. then: 

vi) ~(K, "Rn~(K,). 

vii) ~(K,H~(F))=-p->H:(U,F) 

If A is an Al category. K* is fHtra'nt. C has a comptement operator 

c such that (C,c) is ctc 1• Cat Tx has fibered products and M is a 

closed subspace of C. then for any sheaf F over X ~e have: 

viii)If F is null outside M. then H:(K,F/M) " Hn(K,F). 

If A is an AS category and X is final in Cat Tx' then ~e also have: 

i;x;) If F is null outside M. then 1~(K,PMHq(F)) ~> Hn(U,F). 
p p 

Proof: i) and ii) are trivial. 

iii) If ~: KXxM --+ KuxXM is the inclusion functor, by definition 

we have for any pre sheaf P over M 

H~M(KXXM.P) " ~ H~M( ,P) 0 k~ 

and it is clear that 

iv) Notice that 

K* fil trant ~=> KXxM* fil trant 

and so, we have 

liT (KxxH, ) 0 iM " r Ux M 
M X 

* v) Since KXxM* is filtrant, then HTM (KxxM, 

cal functor. 

vi) Recalling that K* is filtrant, we have 

H~ (KxxH, )" RnBT (KxxM, 
M M 

is an exact cohomologi 

vii) By the same reasons, we have the spectral convergence 

HP (Kx 01, Hi (F/~I)) ~~> B~ (Ux x"I,F/M). 
TM X M P M 

viii) Applie 3.7, vi and pass to the limit over K;, using the pro

position iii. 

ix) It can be obtained as 3.7,vii. 

v 

We end this section introducing the relative Cech cohomology of pr! 
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sheaves. The definition is not the expected one, because the nat~ 
ral definition do not preserves the relative character (see 3.11,i). 
However, in the special case 3.11,xi both procedures agree. 

DEFINITION 3.10. If M is a subspace of C and U is open, fol' each 

integel' n ~ 0 we define the functol' ~(U, ): PM --+ A by: 

THEOREM 3.11. The following statements al'e tl'ue: 

i) 

ii) 

iii) 

iv) HM(U,) 0 iM ~ rUxxM 

If A is an A2 categol'y, then: 
v* 

v) ~(U,) is an exact cohomological functol'. 

If A is an AS categol'y, then: 

vi) 

vii) 

viii) 

i\~(u, ) ~ Rn~(U. 

~(U,H~(F)) => ~(U,F) 
. p v 

~(U,F/~I) ~ ~(U,F) II~(U,F/M) ~ I~(U,F) 
If A is an Al categol'Y, C has a complement opel'atol' c such that 

(C,C) is ctc 1, Cat Tx has fibel'ed pl'oducts and M is a closed sub

space of C,then fol' any sheaf F ovel' X we have: 

ix) If F is null outside M, then ~:(U,F/M) ~ ~n(U,F) 

If A is an A2 categol'Y and X is final in Cat Tx' then we also have: 

x) If F is null outside M, then i~(U'PMp(Hq(F))) => Hn(U,F). 
p 

If A is an Al categol'Y and j,1 is a subspace of C such that any covel' 

ing of UxxM is induced by PM fl'om a covel'ing of U, then we have: 

xi) I\; (U, ) n ) . ~ HH(Ku ' 

Pl'oof: i), ii), iii), iv), v), vi) and vii) can be obtained as the 

homdlogous propositions of 3.9. 

viii) It follows immediately from 

j'I}H(lJXxr.I,F/~I) ~ II}H(Ux xM,F/II) , il}M(LJxxM,F/~I) c;;;: II}M(Uxx~I,Fr.l). 

It should be pointed out that viii could be obtained from vii just 

as in the absolute cohomology case. 
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ix) and x) can be obtained as 3.9, viii and 3.9,ix, resp. 

xi)" The hypothesis on M tell us that KuxxM "Kux M' Hence, we have 
x 

or equivalently 
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REVISTA D~ LA UNION 
MATEMATICA ARGENTINA 
Volumen 24, Numero 2, 1968 

NOTE ON GALOIS EXTENSION OVER THE CENTER 
by Monabu Harada 

- In {2} S.U.Chase, D.K.Harrison and A.Rosenberg obtained a Galois 
Theory for strongly Galois extensions of commutative rings (CHR

Galois). This was generalized to non commutative rings by F.R. 
Demeyer {3} , T.Kanzaki {6} , H.F.Kreimer {a} and others. Rece~t 

ly, O.E.Villamayor and D.Zelinsky obtained in {11} a weak Galois 
theory of commutative rings in order to study the strong one from 
a different point of view. 

In the first section of this short paper we shall use similar ar
guments to those of {11} to show that if an algebra A over a com

mutative ring R is a strongly Galois extension of R, then A and its 
center C are weakly Galois extensions over C and R, respectively • 
If A is a weakly Galois extension over C, A is the sum of all C-mo· 

dules J o (see below or {10} for the definition of J o ). By means 
of some properties of the Jo's, we shall study in section 2, a Ga
lois theory over the center, the argument being similar to that of 
{7} and {S}, Theorem 1. 

The author would like to express his thanks to Professor O.E.Vil~ 

mayor for inviting him to Universidad de Buenos Aires and giving 
an opportunity to see his and Zelinsky's preprint of {11}. 

1. GALOIS EXTENSION OVER R. 

Let R be a commutative ring with identity, A an algebra overR, C 
the center of A and G a finite group of automorphisms of A. We 
say that A is a 

ring AG if there 

that LOEGO(xi)Yi 
nitely generated 

Galois extension with respect to G of its G-fixed 

exist elements xi 'Yi i=1,2, ... ,n, in A such 
= 6 1. We note that if AG = R, then A is a fi-

0, 
and separable R-algebra by {9} , Lemma 2. 

Let r be an R-subalgebra of A and G the group of all automorphis~ 

of A leaving invariant the elements of r.We quote here the defini 
tion of weakly Galois extension of {11}: A is said to be a (rigtt) 
weakly Galois extension of r if the following two conditions are 

satisfied: 

a) A is a finitely generated projective right r-module. 

b) GAt = Homr(A,A), whete Lgixi£(A) = Lgi(XiA) for giEG,Xi,AEA 

LE~I~IA 1. Let A be a strongly Galois ext~nsion of R 1JJith group G. 

If R has no proper idempotents. then A and its aenter Care 1JJeakZy 
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Galois eztensions of C and R, pespectively. 

ppoof: Since A is a finitely generated R-module, there exist mutua! 
ly orthogonal primitive central idempotents e. such that ~~ Ie. = 1. 

1 1- 1 

Then Home(A,A) = ~ .• Home (Ae.,Ae.) and HomR(C,C)=~ .• HomR (Ce.,Ce.). 
1 ei 1 1 1 ei 1 1 

Let T. = {gl£G,g(e.)=e.}. We can easily see that Ae. is a strongly 
1 1 1 1 

Galois extension of Rei with group Ti (see {3}). Furthermore, Ae i 
and Ce i are strongly Galois extensions over Ce i and Rei with respect 
to H. and T./H. by {3} and {9}, where H.={gl&T.,g(d)=c V c£Ce.}.Hence 

1 1 1 1 1 1 

Home (Ae.,Ae.) = H.(Ae.). and HomR (Ce.,Ce.) = (T./H.)(Ce.). .Now, ei' 1 1 1 1. ei 1 1 1 1 1. 

we put H~ = {hl&G,hIAe.=h' for some h'£H.,hIAe.=IA for i~j} .Then 
1 1 1 J ej 

H~ ~ H {hl£G,hlc=Ie }. Therefore, Home(A,A) = HAR.. Similarly we 
obtain HomR(C,C) = G'CR. ' where G' is the group of all automorphisms 
of Cover R. Condition a) follows from {1} , since A is separable 
over R. 

THEOREM 1. 
gpoup G. 

Let A be a stpongly Galois eztension of R with finite 

Then A and its centep C ape weakly Galois eztensions of 
C and R, pespectively. 

ppoof: We shall use the same notation and argument of {11} .Since 
A is A 8A* -projective, C = (HomAR.(A,A)) = HomAR.(A ,A) (cf.{l1}, x x x a a 
(2.7)). Furthermore, Rx has no proper idempotents by {11}, (2.13). 

Hence, H(x)(Ax)t = Homex(Ax,A x) and G'(x)(Cx)t = HomRx(Cx,Cx ) , 
where H(x), G' (x) are as above in Ax and Cx. Since C is R-finite
ly generated, all elements of H(x) and G'(x) are induced by ele
ments of Hand G', respectively (by {11}, (2.14)). Hence (HAt)x= 
= H(x)(Ax)t= ilomcx(Ax,A x) = (Home(A,A))x since A is C-finitely ge
nerated and projective. Therefore, HAt = Home (A ,A). Similarly 
G'CR. = HomR(C,C). 

We shall give latter an example in which a strongly Galois extension 
of R is not a strongly Galois extension over its center with respect 
to the corresponding subgroup. 

2. GALOIS EXTENSION OVER CENTER. 

In this section we always assume that A is a separable algebra over 
its center C. If HAt = Home(A,A), then for any element x in A H, xt 
belongs to the center of Home (A ,A) = C; hence A H = C. We shall study 
some properties are treated in {7} and {1 O} • For 0 E H let J o = 
= {xIEA , yx = xa(y) for all YEA} = HomAt0 ,Ao), where Ao is the 
same module as A as left A -module and the 0 per a t ion 0 f 
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A as right II-module is defined by x*y • xa(y). Furthermore, Aa = 
A 8 eJ a and A - AJa (see {lOll. For any element xta ~ Jata ~ 

AtH(xta)(y) .. xa(y)= YXr for every y ~ A. Hence, (J a)7 • (Ja)r 
and A,a .. AtJata = At(Ja)r .. At .C(Ja)r since AtAr • At .eAr by {l}. 

PROPOSITION 2. Let A be 8eparab~e·over its center C and S a 8ub8et 

of H. Then SAt" Home(A,A) if and on~y if A • La~sJa • 

Proof: SAt" La~sAta .. LAt 8 (Ja)r' Since C is a C-direct sum
mand of A and Home(A,A) .. At geAr' the propo:sition follows. 

COROLLARY. A i8 a ~eak~y Ga~oi8 e:ten8ion if and on~y if A=ra~sJa' 
where S i8 a finite 8ub8et of H. Furthermore, A i8 generated by u

nit8a8 C-modu~e if and on~y if SAt" Homc(A,A) and the e~ementso.f 
S are inner-automorphism8. 

Proof: It is clear. 

Let S be a subset of H. We call S strongly distinct if there ex~ts 

a family of elements {x~a), y~a)}~-n(a) a ~ S such that 
1 1 1-1 ' 

It is cleat that this condition is equivalent with the existence a. 
Galois generators if S is a group. 

THEROREM 3. Let S , J a be a8 above and r .. r sJ. If S i8 strong~y a£ a 
di8tinct, then r .. r s.J. Conver8e~y,if r = L s.J and r i8 a di . a£ a a£ a 
rect 8ummand of A a8 C-modu~e, then S i8 8trong~y di8tinct. 

Proof: ASSume that r = ~.J and r is a direct summand of A as C-La a 
module. At 8 Ar = Homc(A,A), since A is C-separAble. Let Pa be a 
projection of A onto J a • Then Pa ~ Homc(A,A). Hence, there exist 

elements {x~a) y~a)}~-n(a) in A such that ~x~~) • y~a) .. p. There 
1 '1 1-1 I. 1'" 1 r a -

fore, 0 .. p (J ) = J ~T (x~o) )y!a) for af:T. Since AJ =A ~T (x~a) )y~a)= a T TI. 1 1 T 'I. 1 1 

= O. Similarly, Ja(I - ra(x~a»y~a» = O. Hence, I=ra(X~a»y~a) 

Conversely, assume S is strongly distinct. We assume Oar sZa ' 
a~ . 

za ~ J a • Then 0 .. ~.~. x~a)z y~a) = ~. t (~.T(X~a»y~a» .. Z .Hence 
1.11.T 1 T 1 I..a a 1.1 1 1 a ' 

LEMMA 2. Let A ~ B be R-a~gebra8. If B i8 R-8eparab~e, then VA(B) 
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is a di~ect summand of A as t~o-sided ~ (B)-moduLe, ~he~e VA(B) -
= {al£A , ba = ab fo~ aLL b £ B}. 

* P~oof: We consider A as a left B 9RB -module. Since B is R-sepa-
rabIe, there exist elements {Xi'Yi}i in A such that XXiY i - 1 and 

XbX i 9 Yi - XXi 9 Yib for all b £ B. Now we define a map ,:A -+ A 

by setting ,(a) X(Xi 9 y~)a XxiaYi for a £ A. From the above 

relations of {xi,Yi } we obtain ,(A) ~ VACB) and ,IVA(B) IVA{B}' 

Furthermore, ,Caa') = X.x.aa'y. = (Xx.ay.)a' = ,Ca)a' for a'£VACB). 
/' 1 1 1 1 1 

Similarly ,Ca'a) = a'+Ca) .• Hence" is VA(B) - VACB) homomorphism. 
Since VACB) is VACB) - projective, A = VA(B) ct ker ,. 

PROPOSITION 4. Let A be a cent~aL sepa~able C-aZgeb~a and r a se

pa~abZe subaZgeb~a (r d C). Then r is a di~ect summand of A as a 

t~o-sided r-moduZe. 

P~oof: We know from {6}, Theorem 2 that r = V A CV A Cr)) and 
V A Cr) is C-separable. Hence the proposition follows from Lemma 2. 

From now we assume that the subset S of 1/ is a finite group G. 

PROPOSITION S. Let A be a cent~aZ sepa~abZe C-aZgebra and G a fi

nite subg~oup of the g~oup of C-automo~phism of AJ Zet r = XOEGJO' 
Then the foZZo~ing statements a~e equivaZent: 

1) r = X ctJ and IGI is a unit in C. OEG 0 

2) r X ctJ aEG 0 
and r is C_sepa~abZe. 

3) A is a st~ongZy GaZois extension of AG and AG is C-sepa~abZe. 

Proof: 1) +-+ 2) It is clear from C{4} Lemma 4) by localization 
of C. 

2) --+ 3) Since r is C-separable, r is a direct summand of A as 
r-module by Proposition 4. Hence, G is strongly distinct by Theo
rem 3. 

3) --+ 1) IGI is unit in C by IS} , Proposition S,and the rest is 
clear. 

LEMMA 3. J J 
o T 

J TO fo~ any a,T 
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PROPOSITION 6. Let G be a finite subgroup of Hand assume A is a 

strongIy GaIois e~tension of AG; Iet 0 be a separabIe C-aIgebra b~ 
t"'een A and AG. Then the foIIo",ing statements are equivaIent:. 

1) 0 = AH for Borne subgroup H of G. 

2) VA (0) = ra&sJa for some Bubset S of G. 

3) There e~ist eIements {Xi & O'Yi & A} such that rXiYi ~ I and 

rp(xi)Yi = 0 for pin ~ In' P & G. ({B}. Proposition 3.5). 

Proof: Since VA (0) ~ ra&GIBJ a' S is a subgroup from Lemma 3. FUr, 

thermore, Homor(A,A) .. A .. 8 c VA (n)r by {6} , Theorem 2, since 0 

is C-separable and therefore 1) and 2) are equivalent. 

1) ->- 3) Let G = YPiH. Then r • r IBJ .. r·r J and r is a 
a&G a 1 B Pi 

direct summand of A as r-module, where r H .. ra&B·Ja· Let p be a 

projection of A onto rBJ i = J B, Then p & HomrB (A ,A) = (A B) .. 8 A r' .. 
Hence, there exist {Xi & AH , Y i & A} such that rX'l 8 Y'r = 

1 1 
p. 

Y & VA (n) and Y = X + X +, •• , where x & 
Pl P2 Pi 

.. yrXiYi = rXiYYi .. rjriXiXpjYi .. rXpjrPj(Xi)Yi 

ra&BJa' 

rHJ Pi 
.. X 

Pl 

Then Y = yI= 

Hence V A (n) .. 

Finally, we. shall give an example of a strongly Galois extension A 
of R, such that A is not a strongly Galois extension over its cen~ 
with respect to its subgroup. However A is a strongly Galois ex
tension over its center with respect to a sui table group'. 

Let G2 be a cyclic group of order 2 and Q the field of rational num 
bers. Put G = G2 x G2 and K = Q(i2). Then L .. K 8QK is a strongly 

Galois extension of Q with respect to G by {9} ,Proposition 1 • 
Let g and h be the inner-automorphisms of Q2induced by 

[ -: ~ 1 and 
[ ~: 1 

respectively. Then (g) x (h) = G and Q2 is a strongly Galois exte~ 
sion of Q with respect to G, since ~{ell,ell,e22,e22,e2l ,el2,el2,e2l} 

2 

is a family of Galois generators. Put A .. Q2 • L. Then A is a stro!J 
Iy Galois extension of Q with group G if we define g(a+b) = g(a)+g(b) 
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for g £ G, a £ Q and b £ L. It is clear that the fixing group of 
its center is equal to G. But if we define g(a + b) = gea) + b , 
then A is a strongly GalOis extension of its center with respect 
to G. 
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A MEAN VALUE THEOREM AND oARBoUX'S PROPERTY FOR THE 
DERIVATIVE OF AN ADDITIVE SET FUNCTION WITH 

RESPECT TO A MEASURE ON En 
by R. J. Eoslon, and S. G. Waymenl 

I) INTRODUCTION: During a recent investigation of existence and 

equality almos everywhere of the cross partial derivatives fxy and 
f , a somewhat different derivative Df for a function f(x,y) was yx 
used {4} . This derivative Df is also defined for a function f of 
n-variables. The purpose of this paper is to establish a mean va! 
ue theorem and a Darboux property for the function Df, and to gen
eralize these results to the derivative T'* as defined on pp. 268-
271 of {8}. A similar result was obtained by L. Misik in {7}, but 
the technique is much more cumbersome. The method of proof is the 
same as that given in {5}. In the case n=2 the technique of proof 
is used to establish a theorem concerning the equality of the thr~ 
derivatives. For simplicity the proofs and definitions will be~ven 
for n=2. 

II) THE DERIVATIVE Of: Let R = [a,b;c,d] = (Cx,y) IXEla,b],YE[c,d]}. 
If f(x,y) is a function whose domain contains R, then the f-areaof 

R is denoted by F(R) = f(b,d) - f(a,d) - f(b,c) + f(a,c). The or
dinary area of R will be denoted by A(R). A rectangle R = (a,b;c,d) 
is said to be of order M, if M ~ 1 and 11M ~ (d-c)/(b-a) ~ M. One 
then defines the upper and lower derivatives of order M at a point 

(x,y) to be lim and lim respectively of ratios of f-areas to ordi
nary areas of rectangles or order M which contain (x,y) and whose 
areas converge to zero. Then f is said to have a derivative of or
der M, DMf(x,y) = DMf(P), at P = (x,y) if the upper and lower deri
vatives of order M are equal. The function f is said to be two non
decreasing if the f-area of each sub-rectangle of R is non-negative. 
It follows {2}, that if f is of bounded variation in the sense of 
Hardy, then except for a set of measure zero, DNf = DMf for each 
N ~ M ~ 1. The common value is denoted by Df. It also follows {4}, 
that f and f each exist except possibly on a set of measure zer~ 

xy yx 

II I) THE MEAN VALUE THEOREM: 

TilEOREH 1: If DMf exists at eaah point P of a aZ-osed reatangZ-e R of 

order M and f is aontinuous at each point of R. then there exists a 

point Q E R suah t'hat DMf(Q) = F(R)/A(R). 
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ppoof: Suppose RI = R = [a,b;c,d) and divide RI into four rectan 
gles using the lines x = a+h/Z , y = b+k/Z where h = b-a and k = d-c. 
Denote the rectangles, beginning in the lower left hand corner and 
proceeding counterclockwise, by Rll , R12 , R13 , R14 , and observe that 
each of the four rectangles is similar to RI • It follows that 

L~=IF(Rli) = F(R I ) and L~=IA(Rli) = A(RI ) 

and hence there must exist a j and a k such that 

We now proceed 'to find a rectangle R2 of order M with sides paral

lel to the sides of Rl such that R2 ~ RI ' F(R2) = (1/4)F(RI ), and 

A(R2) = (1/4)A(R I ). If FeRli) = (1/4)F(RI ) for some i, then cho~e 

,R2 = Rli . Suppose equality does not hold for any i and considerfue 
case j=3 and k=l. The other cases would follow in a similar manner. 
Let a = h/k and define the auxiliary function 

g(t)=f(a+t+h/Z,b+at+k/Z)-f(a+t,b+at+k/Z)-f(a+t+h/Z,b+at)+f(a+t,b+at). 

Then g(O) = F(RII ) , g(h/Z) = F(RI3 ) , and g is a continuous functkn 
of t for 0 ~ t ~ h/Z. The ordinary intermediate value theorem for a 
function of one variable guarantees the existence of a to£(O,h/Z) 
such that g(to) = (1/4)F(RI ). This value to defines R2 and we note 
that F(R2)/A(R2) = F(R1)/A(RI ). In the sequel we shall refer to1iE 
above selection process for determining R2 as the sliding technique. 
We proceed inductively to define a nested sequence of closed recta~ 
gles {Ri } , each of order M with sides parallel to RI , such that 

i) F(Ri+l) 

ii) A (Ri+l) 

(1/4)F(Ri ) and 

(1/4)A(Ri )· 

By the nested interval theorem there exists exactly one point Q£(\R., 
1 

and 
R,f(Q) = ~im F(R.)/A(R.) = F(R1)/A(R1). 

lWJ. 1+00 1 1 

We shall say that the set function F has property I provided the au~ 
iliary function get) has the irttermediate value property along the 
lines x = constant, y = constant, and y = ~aX. We have the somewhat 
stronger result. 

THEOREM Z. If DMf e~ists at each point p of a closed pectangle R of 
opdep M and the set function F has ppopepty I. then thSP8 e~ists a 

point Q £ It such that DMf(Q) = F(R)/A(R). 

The following example shows that theorem 2 is a stronger result. 
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EXAMPLE 1: Let f(x,y) be defined as follows on the unit square: 

f(x,y) 

f(x,y) 

if Y is rational and 

o if y is irrational 

Then DMf exists and is zero at each point of the unit square and the 
set function F has property I. 

We now proceed to remove the condition that DMf exist along the bmud 
ary of R. 

T~EOREM 3. If R is a re~ng~ of order M. DMf exists at eaah point 

P E inteR). and F has property I. then there exists a point QEint(R) 

suah that. DMf (Q) = F (R) I A(R) . 

Proof: We will use the same notation as in theorem 1 and modify the 
sele~tion process to obtain, for some k,an Rk c inteR). We consider 
the following two cases: 

1) If R2 # Rli for any i, then R2 has at most o~e edge contained 
in bdrY(R). 

2) If R2 = Rli for some i, say i=l, then the following a·rgument 
allows us to choose R3 with at most one edge contained in bdry(R). 

Di~ide R2 into R21 , R22 , R23 , R24 , and if F(R21 ) = F(R22 ) = F(R23 ) = 

= F(R24 ) = (1/4)F(R 2), choose R3 = R23 C inteR). If F(R21 ) # (1/4)F(R2) 

for some i, then the sliding technique gives an R3 with at most one 
edge contained in bdry(R). For case (1), suppose the bottom edge of 
R2 is contained in bdry(R1) and divide R2 as before; If F(R2i ) = 

= (1/4)F(R2) for i=3, choose R3 = R23 and if F(R23 ) # (1/4)F(R2),then 

the sliding technique will again give an R3 c inteR). 

~v) A DARBOUX PROPERTY: 

THEOREM 4: Let cr be a aonneated open set in E2. Suppose DMf exists 

at eaah point of cr and that F has property I. Let p. Q E ~ and sup

pose DMf(P) = a. DMf(Q) = Il. a < Il. and A E (a,Il). If PQ is an ara 
bJhiah is aontained in 0 bJith endpoints P and Q. then for· eaah E > 0 

there exists a point S E 0 suah that the distanae d(S,PQ) from S to 

PQ is Less than E and DMf(S) = A. 

Proof: Construct a poiygonal arc PQ from P to Q consisting of hori
z~ntal and vertical straight line segments such that each point of 
PQ is within min(~/2,E/2) of PQ, where ~ = d(PQ,bdry 0). Let u = 
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min (E/Z,(A-m)/Z , (S-A}/Z). There exist rectangles Rl and R2 of 
order M centered at P and Q respectively with edges parallel to the 
coordinate axes and having the same base and height, such that 

IfCR1)/A(R1)-ml < U , IF(R2)/A(R2)-SI < u, and diam(R1) = diam(R2) ~ 

~ min(E/Z,f;/Z). 

Since F has property I the sliding technique allows us to obtain a 
rectangle R or order M, Awith sides parallel to the coordinate axes, 
centered at a point of PQ such that diam(R) = diam(R1) and F(R)/A(R~ 
= A. Theorem 1 implies the existence of a point S E R such that 
DMf(S) = A and d(S,PQ) < E. 

REMARK. Let u be Lebesgue measure on En and let T be any absolutely 
continuous measure with respect to u. Further suppose that the de
rivative T' *(x), as defined in {8}, exists at every point in an i~ 
terval Rn C En. The above technique may be used to establish a m~ 
value theorem and a Darboux property for this derivative. These re 
suIts also hold if T is an additive set function defined onat least 
the closed intervals in En and has the intermediate value property 
along straight lines in the appropriate directions, u is a transla
tional invariant measure which is finite on regular rectangles, and 
T' *(x) exists at every point in Int (R). A further generalization 
is given in Section VI of this paper. 

vI A THEOREM ON THE EQUALITY OF THE DERIVATIVES f xy ' f yx ' and Of. 

It is well known that if fxy(x,y) exists at each point of an open 
set a and R is a closed rectangle ~ith Rca, then there exists a 
point P £ int (R) such that f (P) = F(R)/A(R}. Example 1 shows xy 
that there are functions for which f (x,y) and Df exist on a recxy 
tangle and f fails to exist at any point. Also, the example can yx 
be modified by defining f(x,y) = 2 whenever x and yare rational , 
f(x,y) = 1 if exactly one of x or y is rational, and zero otherwise 
to give a function such that Df exists on a rectangle while both 
f and f fail to exist at any point. xy yx 

THEOREM S. If f and DMf exist on an open set a and (aJ the fu~n xy 
f is continuous 01' (bJ thereZated set function F has .the intermexy 
diate vaZue property aZong straight Zines in the appropriate direc-

tions and DMf is continuous, then fxy(P) = DMf(P) for each P £ a. 

Proof: Suppose fXy is continuous. Let {R i } be a sequence of nested 
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rectangles of order M contained in 0 and closing down on P. Then 
DM~(P) .. ~im F(Ri)/A(Ri ). For each i there exists a point Pi £ Ri 

1 ..... 

such that f (P.) = F(R.)/A(R.) and the continuity of f gives the xy 1 . 1 1 xy 
desired result. 

Suppose that DMf is continuous and that the set function F has the 
intermediate value property and hence theorem 2 applies. Let P = 
(xo'Yo) £ 0'. If £ > 0 then there exists tl such that 0 < tl < £ and 

1 (f (x ,y +t1)-f (x ,y -t1))/2t1-f (x,y) 1 < £/3. There exists x 0 0 x 0 0 xy 0 0 

t2 > 0 such that t2 = nt 1 for some integer n and so that 

[(f(XO+t2'YO+tl)-f(Xo-t2'YO+tl)/[2t2J-fx(Xo'YO+tl)J/[~t1J <£/3 and 

[[f(XO+t2,yo-tl)-f(Xo-t2,yo-tl)/(2t2)-fx(Xo'Yo-tl))/(2t1J <£/3. We 

can now divide rectangle R = (xo-t2,xo+t2;yo-tl'Yo+tl) into n scpares 

and conclude from the sliding technique that there exists a square 
R' such that R' c Rand F(R)/A(R) = F(R')/A(R'). Hence there is a 
point P' £ R' c R such that DMf(P') = F(R)/A(R) and hence IDMf(P')-

- f (p)1 < £ and d(P',P) < £. Continuity implies the desired re xy 0 

suIt. 

VI) A FURTHER GENERALIZATION: 

We shall say that the additive set function F has property C provided 
the auxiliary function get) as defined in theorem 1 is continuous a
long the lines x=constant, y=constant, and y = tax. Note that pro
perty C implies property I. 

THEOREM 6. Suppose that Sand T are additive set funations defined 

on reatangles. u is a translational invariant measure. and S' *(p) 
and T' *(p) exist at eaah point p E Int (R) and T' *(p) # 0 for any 

p. Then there exists a point q E Int (Ro) so that 

S' '" (q) 

T' *(q) 

Proof: Let U(R) = S(Ro)T(R)-T(Ro)S(R). Then U(Ro) = 0 and U has 
property I. HenCe there exists a point q E Int (Ro) so that U' *(q)= 
= 0 = S(Ro)T' *(q)-T(Ro)S'*(q). This holds without the conditionfuat 
T' *(p) # 0 for p £ Ro. The result now follows. 

The method of proof in the preceding theorem allows one to remove the 
condition of translational invariant u. Suppose Sand T are additive 
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set functions defined on rectangles and having property C. Define 

dS(p)/dT to be the limit of the ratio of the S area to the T area 

of regular rectangles as the diameters of the rectang,les tend to 

zero. 

THEOREM 7. If dS/dT ezists at eaah point p in Int (R l. T(R) ~ 0 , a 
fo~ R eRa. and Sand T have p'l'.ope~ty C. then t~e'l'e is a point 
q e Int (Ro)so that dS(q)/dT - S{Ro)/T(Ro). 

P~oof: Define U as in theorem 6. Then use the procedures of the

orems 1 and 3 to. define a nested sequence {Ri } of rectangles closmg 

down on q e Int Ro and such .that U(Ri ) = o. Then S(Ro'/T(Ro) = 
• S(Ri)/T(Ri ) and the result follows. 

{3} 

{ 5} 

{ 6} 

{ 8} 

{ 9} 
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NOTES ON COMARGINAL PROBABILITY MEASURES 
by A. Diego and R. Panzone 

1. INTRODUCTION. 

By S = (0,A,B,C,P l ,P 2 ) we shall denote a system consisting of two 
a-algebras B, C of subsets of n, the generated a-alg~bra A=T(B~C), 
and probabilit.ies PI' P2 defined on B,C respectively, which are 
compatible in the sense that PI = P2 = P on the intersection a-al
gebra V = B " C. 

A probability Q on A such that its restrictions to B, C a~e Pl ,P 2 , 

respectively, is said to be comarginal with PI' P2 , or briefly co
marginal. 

A probability Q on A, not neccesarily comarginal, is called commu

tative if on A-measurable Q-integrable functions: 

(1 ) [QJ 
G where EQ denotes the conditional expectation operator with respect 

to the a-algebra G c A and to the measure Q. 

The main problem we consider here is to search under'what condttions 
a system S admits a comarginal and commutati~e measure Q. For such 
a measure we can assert its uniqueness. Owing to this fact and to 
the following example we shall call Q the ~enerali2ed) product mea-

8ure on S. 

Given the probability spaces (Ol,B' ,Pi) , (n 2 ,C' ,P~) the system S 
formed by 0= 01 x °2 , B = III l(B'), C = lli 2 (C'), A = T(B,C) , 
Pi = Pi Il i ' (Il i = projection on oil, i=1,2, admits the comarginal 
and commutative measure Q = Pi x Pi. The relation of commutation 
(1) is here Fubini's theorem. 

In this example V = {"O} ;' the opposite extreme case, when V = B 
(or V C), gives us also an example very trivial for a product mea 

sure: Q = P2 (or Q = PI)' 

Intermedia,te cases can be given as follows: 

Let n = ° x ° x nand probabilTties dx, dy, dz be given on a-al-x y z 
gebras Bx' By' Bz of ox' 0y' o;-respectively. We define B = {"Ox} 8 
8 B 8 B , C = B 8 {"O } 8 B and the probabilities dP l = dy dz , 

y z x y z 
dP 2 = dx dz. Here V is isomorphic to Bz and the system (o,A,B,C,Pl~) 
has the product measure dQ = dx dy dz. 

The preceding situation always appears in a. Markov process. Assume 
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{X i }i_l,2" is a Markov chain and B T(X l , ... xn) , e= T(Xn,Xn+ l ,,) 

and V = T(Xn). The product ~easure Q turns out to be the probability 
associated with the process. and the rela:tion of commutation (1) can be 
rewritten as expressing the conditional independence of past (B) 

and future (e), given the present (0). (cf. {1},§14,or {4}, part A, 

ch. II). 

For fU't'ther ·examples we refer to {1} , § 3. 

2. COMARGINAL MEASURES AND BILINEAR FORMS. 

We shall say that T: B x e --+ [O,+~) is a (positive) bilinear form 
on the system S .. Co,A,B,e~Pl,p2) if T(B,C) is additive in each va
riable separately; and T will be said to be aompatible (with Pl ,P2) 
if T{B,Il)" Pl(B) ,T(Il,C) .. P2 CC) , for any B € B, C € e. 

To each finitely additive measure Q on the algebra Ao .. B v e coma£ 
ginal with Pl ' P2 we associate the compatible bilinear form T(B,C)= 
• Q(BC), which verifies: TCB,C) = 0 if BC = ¢. Conversely: 

THEOREM 1. Every aompa*ible bilinear form T on e suah that T(B,C)=O 
~henever BC = ¢. defines on Ao a unique finitely additive aomarginal 
probability given by Q(B.C) = T(B,C). 

Proof: We define Q(BC) = T(B,C). If BC = B'C', then BC=(BB')(CC')
= BlC l . To prove that T(B,C) .. T(B',C') it is enough to prove that 
TCB,C) = T(Bl,Cl ). It follows from T(B,C) = TeBl,C) + T(~-Bl'C) = 
= TCBl,C), since (B-Bl)C .. ¢, and from T(Bl,C) .. T(Bl,C l ). Hence Q 
is well defined on sets of the form BC , B £ B. C £ e. 

Let BC .. LaBaCa' where a runs on a finite family of indices. Tffor 
der to prove that Q can be (uniquely) extended to ~o as a finitely 
additive measure it is enough to prove that Q(BC) .. LaQ(BaCa)' 

Let {Bi } be the partition of B defined by the B~s and {Cj } that de
fined by the C~s on C. We can assume from the beginning that Ba c B. 

Ca c C. Since Ba = L~Ba.m • Ca .. LnCa •n , denoting by Ba •n (Ca.n)the 
sets of the mentioned partition of B (C) included in Ba (Ca ). we have: 

Li.jBiCj = BC .. LaBaCa .. La(LmBa,m)(LnCa,n) = La(Lm.nBa,mCa.n) 

This means that in the first and last sums appear the same non-void 
terms. Therefore, from the bilinearity of T we get 
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Q.E.D. 

REMARKS. 1) It is not true, in general, that Q is a-additive. In 
fact, let n be the triangle on the plane defined by x > 0 , y > 0, 
x + y < 1. S (C)· the Borel sets of n depending only of x(y). For 
B £.S (C £ C) we define PI(B) - m(B'), (P2(C) .. m(C')), .where B'(C, 
denotes the proj ection of B (C) on the x (y) axis and m the Lebes
gue measure on (0,1). 

The bilinear form T(B,C)=!: lB,(t) lc ,(l-t)dt is co~patible with PI' 

P2 but, as it is easy to see, n can be put as a countable sum of 
rectangles B.C for which T(B,C) = O. 

2) Let us observe that if T is bilinear and comarginal then T is 
also a-bilinear; i.e. a-additive in each variable. In fact, 

T(r4_0Bj ,C) = T(r~_IBj'C) + T(r:+IBj,C), then 

IT(rj.IBj,C) - r~.IT(Bj,C)1 ~ r:+IT(Bj,n) - r:+IPI(Bj) --+0 if n--+-. 

Then the proof of the .theorem.remains true if we assume that a runs 
on a countable family of indic·~s such that the Ba' s and the C~ s d!, 
fine, respectively, countable partitions of the spaces n. 

For example, we can assert the a-additivity of Q if A is defined by 
a countable partition of n. 

3) In theorem 1 we can assume T(Bo ,Co) = 0 if BoCo = 91 for Bo£ So 
C S, Co £ Co c: C , where So'Co are collections of sets with the ap

pro~'mat'on property: PI(B) = sup PI(Bo) , P2 (C) = sup P2(C) ,for 
B sec B.cB C.cC 0 

£ , £ • B.aS. C.EC. 

In fact, if Bo c B , Co c C, and B.C = 91 T(B,C) = TtB-Bo+Bo,C-Co+CJ= 

= T(B-Bo'C) + T(Bo'C-Co) + T(Bo'Co) ~ PI (B-Bo) + P2 (C-Co). The last 

member can be done arbitrarily small, hence T(B,C) = O. 

4) The a-additivity of·Q follows under the following hypothesis 

1) KS c S, KC c Care sem'-~ompact classes (i.e. every countable 
family of KS (KC) with an empty intersection has a finite subfa-· 
mily which also intersects in the empty set) verifying the approxi 
mation property (as defined above). 

2) KS.KC = {K.L ; K £ Ks , L £ KC} is a semicompact class of sets. 

In fact, the classL of finite unions of sets of KB.KC enjoys the pro 
perty of approximation in S v C , since , as it was shown above , 
for K c B L c C we have Q(BC - KL) ~ PI(B - K)· + P2 (C - L) 
then Q(BC - KL) can be done arbitrarily small. L being compact 
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and with the approximation property the a-additivity of Q follows 
from a theorem of Alexandrov (cf {4}, pp. 47). 

3. V-COMMUTATIVE SYSTEMS. 

For any probability space (o,A,P) we define the measurable hull of 
X c: 0 as a set A I: A containing X except by a set of P-outer measure 
zero and with minimal P-measure. Of course, the measurable hull is 
defined except on a null set of A, and it provides a well <ie-fined ~ 
lement of the Boolean measure a~gebra: A/[P]. If B c A is a a-sub
algebra of A the measurable hull of X I: A with respect to B coinci
des with {E: 1x > O} , [pJ • 

For a system S = (o,A,B,C,P I ,P2) we shall designate vlX , v2 X , vX 

the measurable hulls of X cO with respect to B,C,V and to the mea
sures PI' P2 ' P respectively. 

If Q is a comarginal measure on Sand E, F , G denote 

respectively, we can see that the condition EF FE = 

B C V 
EQ ' EQ • EQ 

G[Q] (on boun 

ded A- measurable functions) is equivalent to Ef = Gf [pd (on C-m~ 
surable functions) and also to Ff = Gf [P2] (on B-measurable functions) 
(cf {1} ,§ 1). 

For a comarginal measure Q on S, the condition EF = FE = G implies 

vl v2X = v2vl X vX [Q] for X E A. This condition is equivalent to 

V2B VB [P2) for any B E B, and also to vIC = vc [pd, for any 
C I: C. (cf. {1} , is). 

We note that any of these last conditions can be introduced even if 
we do not assume that a comarginal measure Q is known. Then we adopt 
the following definition: 

We shall say that the system S V-oommutes if ~2B 

From the above considerations it follows: 

vB [P2) , Y B E B. 

In opdep that thepe exists a oomapginaZ and oommutati~e measupe on 

S = (O,A,B,C,PI,P2 J it is neoessapy that S be a V-oommutative system. 

An independent proof will be given in next theorem 2. 

A V-commutative system is said to be simpZe if VI[pJ is the Boolean 
algebra {O, 1} • 
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4. THE FINITELY ADDITIVE MEASURE ASSOCIATED TO A v-COMMUTATIVE' 

SYSTEM. 

Given the system S = (n,A,B,C,P 1,P 2) we observe that the conditional 
expectation operator G can be calculated on B (C)-measurable functions, 
with respect to PI (P2) even if there is no comarginal measure. Hence 
we can define the compatible bilinear form: 

(2) T(B,C) = I G1 B·G1 e dP 

THEOREM 2. In order that Q(BC) = T(B,C)defines a finiteZy additive c£. 

mapginaZ measure on S it is neccesary and sufficient that S be a v-co~ 

mutative system. 

In this case. if Q is a probabiLity on A (i.e. if Q is a-additive). Q 
is the unique commutative comarginaZ measure on S. (uniqueness of the 

product measure). 

Proof: By theorem 1, to prove that v-commutativity implies that Q is 
a finitely additive measure, we have to show that B.C = ~ implies 
T(B,C) = O. From B.C = ~ we get v2B.C = vB.C = p[P 2]; i.e. {G1 B>0}.C= 
= p[P2]· Then T(B,C) = Ie G1 B·dP2 = O. Conversely, if Q is a finit~ 
ly additive and comarginal measure, S v-commutes. In fact, v2 B 
c.vB[P2] and on the other hand from Pi(S - v2B) = 0 we have B - v2B 
eC' E C with P2 (C') = O. Hence Q(B - v2B) s Q(C') = P2(C') = O. Then, 

Q(B - v2 B) = I G1 .dP o. 
CV2B B 2 

T.his means {G1 B > 0}.Cv 2B /J [P21 which implies vB c v2B[P21. 

If Q, as defined above, is a measure, and E, F the conditional expec
tations with respect to B,C 

(3) Q(B.C) = IG1 B.G1 e dP = IeG1B dQ = IeF1B dQ 

Then G1B F1 B , V B E B. This implies the commutation of Q. Another 
comarginal commutative measure Q' must verify (3), but since 

J G 1 dQ' = I F1 dQ' = Q' (B.C) = Q(B.C) , 
e B e B 

Q and Q' coincide on B v C, and therefore on A. QED. 

REMARK: The condition v2 B = vB [p21 , B E B, defining a v-commutative 
system implies the symmetric one VIC = vC [PI]' C E C. 

In fact, the first one implies that JG1 .G1 dP defines a finitely a~ 
B e 

ditive measure, and from this we derive VIC = vc [PI] as it was done 
with V2 B = vB [p2J in the proof of theorem 2. Now, we obtain easily 
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THEOREM 3. i), If the V-commutative system S is simple (i.e. V/[p].= 
.. {O,ll) then Q(B.C) "l' P1 (B).P2 (C). In particular for a system S 

obtained from a cartesian product (as described in the introduction), 

Q = Pi )( Pi 
ii) If, conversely, Q(B.C) = P1 (B).P2 (C) defines a finitely additive 
measure on B v C, S is a simple V-commutative system. 

Proof: i)' It follows from theorem 2. and the fact that Gl B = PI (B) .10, 

Ole = P2 (C).1 0 • 
, 2 

ii) If D E V we have Q(D) = P(D) = Q(D.D) = peD) ,then P(D) .. 0 or 
1. G1 B , G1e are computed like in i), then f G1 B.Gl e = P1(B).P 2(C). 
From theorem 2) it follows ~hat S is a V-commutative system. 

We shall say that a system S is complete with respect to a comarginal 
probability P defined on A if every P-null set of A belongs to V. 

THEOREM 4. If the system S is complete 1JJith l'espect to a comal'gina1. 
probabHityP and R is a commutative probability on S equivalent to P 

then the product measure Q e:x:ists and it is eq.u'ivalent to P. 

Proof: Assume f = ~ By hypothesis FR = GR on B-measurable func-

tions and ER = GR on C -measurable functions. We have (c. f, { 1 } § 2) : 

ER (h) .. E(f.h) / E(f) 

F~(g) = F(f.g)/ F(f) GR (m) = G (f .m) / G (f) 

where E, F, G denote here the conditional expectation operators with 
respect to the measure P and B, C, V respectively. ' 

In {1} , tho ~ , §10 , it is proved that the probability measures e
quivalent to R th~t also commute are characterized as those whose Ra
don-Nikodyin deriva'~ives with re~pect to R are of the form: g.h, where 
g (h) is a B(C)-measurable function (both positive and finite [RJ ). 

Let Us consider the functions: 

+ VGI 
g =-U- h =:..w 

Then, g.E(h.f) = Gf.E(f/F'f) IEf = Gf.ER(l/Ff) = Gf.GR(l/Ff) =1](f/Ff)

.. GFct/Ff) = 1. Analogously h.F(g.f) .. 1. From JBghf dP"JBgE(hf) dP= 
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= fBl dP = PCB) and f cghf dP • P(C) 

we see that the probability Q defined by 

Q(A) • fAgh.f dP • fAg h dR 

is comarginal with P and since ~ • g.h , it commutes and obviously 
Q ~ R • QED. 

REMARK: If the system S is complete with respect to P any other c£ 
marginal measure R is absolutely continuous with respect to P, since 
peA) = 0 implies A £ V and then R(A) • peA) = O. Then, if a product 
measure Q exists on S, we have Q« P. In spite of the fact that for 
B £ B, C £ C, Q(B.C) a 0 implies P(B.C) = 0 (since fG1BG1cdP = 0 
implies P2 (VB.C) = 0 and then P(B.C) • 0) we have not Q~P, in gene
ral. Let us see the following example: 

Let n be the product of X and Y, X = Y = (0,1), A = the Borel sets 
of X x Y, B (C) the Borel sets independent of y (x), P the probabi
lity on A equal to ~ (m the Lebesgue measure on (0,1» plus a'mea
sure of total mass 1/2 concentrated on the diagonal and uniformely 
distributed there. 

The product measure Q = m x m is not equivalent to P. 

If D £ V defines an atom of the a-algebra VI[p] it can be seen that 

SD = (D,A ~ D,B A D,C I' D,P1/P1 (D),P2/P2 (D» is a simpl~ v-commuta-

tive system, whenever S is a v-commutative system. Moreover, if Q 
is the (product) finitely additive measure on S defined above 
Q(B.C.D) 

Q(D) is the product measure on SD as it is easily seen. Since 

SD is simple' Q(B.C.D) = P~~B.D) P~fC.D) and then . Q(D) D)' D) , 

(4) Q(B.C.D) = P1(B.D).P2 (C.D)/P(D) 

THEOREM 5. If in a V-oommutative system S. A is defined by a ooun
tabZe partition of n. there e~ists the produot measure Q. If {D i } 

is the partition definin~ V. then Q is defined by: 

(5) 

Proof: The a-additivity of Q follows from the second remark in §Z. 
We have Q(B.C) = liQ(B.C.Di ), and applying (4) we obtain the equal
ity (5). 
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5. THE 800LEAN MEASURE STRUCTURE OF A V-COMMUTATIVE SYSTEM 

From a given probability space (O,A,P) and a a-subalgebra B of A , 
we get the (measure) Boolean algebra A = A/(P) quotient of A mod. 
P-null sets and the subalgebra B " B/[P]. To the Qperation of take 
ing the B-measurable hull in A corresponds in A a so called monadic 
opBPatop (c.f. {2} ). 

Let A be a Boolean algebra with a subalgebra B such that for each 
a E A there exists an element b E B which is the least element of 
B verifying b ~ a ; we set b = Va, and we call V the monadic opera
tor in A related to B. 

A monadic operator verifies the following properties: VO • 0 , 
v(avb) • Va v Vb , VVa = Va , v(a"vb) = Va" Vb. 

The algebraic system (A,B,V) is called a monadic a1.gebra. Let us 
consider a V-commutative system S = (O,A,B,C,P1,PZ) with a product 
measure Q. By passing to the quotient mod. [QJ we get the Boolean 
(measure) algebras A,B,C,D, which are the images of A,B,C,V resp.; 
B,G.,D are subalgebras of A and D = B (\ C. If we denote by Ao = B v C 
then Ao .= B v C " Ao/ [Q) , where B v C is the Boolean algebra gene
rated by Band C. 

If Vl ,V2,V designate the monadic operators in A corresponding to the 
measurable hull operations in A denoted before with the same symbols 
we have vlv 2a = v2v l a = Va for any a E A. The same hold if we res
trict our-selves to elements a E Ao .. B VC. So we have an instance 
of ,,,hat is called a biadic algebra (c.f. {2}). 

The algebraic system (Ao ,B,C,Vl,V2) is called a biadic a1.gebpa if 
(A ,B,Vl), (A ,C,v 2) are monadic algebras, A = B v C and V1 V2 = 

o 0 0 

= V2Vl. It is easy to see that in this case v = V1 V2 defines the m~ 
nadic operator related to D = B (\ C. 

We can say that the underlying Boolean structure of a v-commutative 
system is a biadic algebra. We have seen this when a product mea~re' 
Q is given in the system and it is easy to see that the same is true 
even if Q does not admit a a-additive extension from Ao to A. 

In particular, if S is a simple v-commutative system,. we obtain a 
simple biadic algebra (A ,B,C,Vl,V 2) i.e. it verifies D = B A C 

o . 
={ 0,1} For such simple algebras we have Ao .. B e C, direct sum 
of B, C which means that A = B V C and, for bE B, c E C, b" c = 0 

o 
implies b = 0 or c = 0 (in fact, if b" c = 0 then 0 = v (b" c) = 

Vl v2 (b"c) = vl(v 2bl' c) Vl{V2V l bl'c) = Vl (V 1 V2b"c) = vbl'vlc 
= vb"vc , therefore vb .. 0 or vc = 0, so b = 0 or c = 0) (The con-
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verse also holds: if Ao = B • C , (Ao ,B.C,V 1 ,V 2 ) is a simple biadic 
algebra). 

In simple v-commutative systems, for example the systems obtained 
from cartesian products, what really matters from the point of view 
of the theory of measure Boolean algebras are the algebras B, C and 
Ao. Explicitly, if A~ , B' , C' are obtained from another sim.ple 
v-commutative system S', then if we have Boolean isomorphisms B = B' 
and C = C' we get Ao = A~. This is due to the fact that Ao' A~ are 
direct sums. In fact, the direct sum Ao = B • C has the property of 
extension of homomorphisms: if B -+-A and C -A are Boolean homo
morphisms with range a Boolean algebra A, there exists one .and only 
one extension of them to a homomorphism: A =BeC---+A. (c.f. {5}). 

o 

On the other hand, if (B,PI ) (C,P2) are given Boolean measure alge
bras we can construct at ·least a simple v-commutative system S for 
which the associated biadic algebra is precisely (B. C,B,C,V 1 ,V 2 ). 

In fact,it is well known that the Stone space of B • C is the cart~ 
sian product of the Stone spaces of Band C, S(B • C) = S(B) x S(C) 
(Precisely the algebra of clopens of S(B) x S(C) is used to define 
B • C). We set on the clopens of S(B) and S(C) the measures PI and. 
P2 in the obvious way and we extend PI' P2 to the a-algebras gene
rated by clopens associated to elements of B, C respectively. The 

! 

p~oduct of the probability spaces so obtained gives us the required 
system S. 

For general V-commutative systems we can prove analogous results. 

To a V-commutative system S = (Il,A,B,C,PI ,P2) we have associated a 
b.iadic algebra (Ao,B,C). Moreover B,C are measure Boo-lean algebras 
with the probabilities PI' P2 defined on B, C, respectively, coinci£ 
ing in D = B A C. Let us call ~1(S) = (Ao ,B,C,PI ,P2) this Boolean 
measure structure associated with S. We shall say that the V-commu
tative systems S, S' have the same Boolean measure structure, M(S) = 
= M (S'), if under a unique Boolean isomorphism Ao = A~ , B = B' , 
C = C' and D = D'; and the probabilities Pi' Pi (i=1,2) correspond 
under the isomorphism. 

THEOREM 6. 1) Given two ppobabiZity BooLean aLgebpas (B,P1L (C,P2) 
and sub-a-a Lgebpas DeB, D t C C such that D = D' undep a fi:J: ed iso

mopphism ppesepving the measupes PI I D, P2 I D' , thepe exists a V -col!!. 

mutative system S such that M(S) = (Ao ,B,e,i\,P2 ) , whepe ii = B,e = C 

ape measupe ppesepving isomopphisms (with pespect to Pi' Pi i=1,2) 
which pestpicted to 0 = B.~ e ape isomopphi~ms 0 = D , 0 = D' commu! 

ing with the given one D = D'. 
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2) Such a V-commutative system admits a product measure Q. 

3) If S' is another V-commutati've system verifying the properties of 
S in (1), then M(S) E M(S'). 

The proof of 1) and 3) are based on an algebraic theorem concerning 
biadic algebras that we give next. 

We shall write the complete proof of theorem 6 in §7. 

THEOREM 7. 1) Given two monadic algebras (B~D,VI) and (C,D',V 2 ) 

and a fixed isomorphism: D .. D' there exists a biadic algebra (A,B,C) 
such that B .. B, C .. C are isomorphisms which restricted to D B (\ C 
give isomorphisms D .. D, D .. D' commuting with the given one: D .. D' . 

2) If there is another biadic algebra (A,B,C) with the same prope~ 

ties, then the isomorphisms ii .. B, C .. C obtained through the isomo~ 

phisms of B, C with Band C, have a unique common extension to an i--
somorphism A .. A. 

Proof: By identifying the isomorphic algebras D, D' through the gi
ven isomorphism we can, without loss of generality, cqnsider only 
the case that Band C are extensions of the same algebra D. So 
we have the monadic algebras (B,D,V I) and (C,D,V:l). 

A filter FeB corresponds in X = S(B) with the set XF of ultrafil
ters of B that contains F, this is a closed subset that represents 
with the relative topology the quotient alg~bra B/F fc.f. ,IS}). In 
other words, XF = S(B/F), and inA such a way that if b is the clopen 
set that represents b E B, then b A XF is the clopen set that repr~ 
sents the class in B/F containing b. Given an ultrafilter 0 in D, 
let us denote with (D) the filter generated in B by D. Then {X(U)} 

is a partition of X. In fact, if ~ E X corresponds to the ultrafi! 

ter M and 0 = M (\ D', then mE X(U); if mE X(U) (\ X(U')' then MnD 
~ 0, 0', which implies 0 = 0'. 

Moreover, the monadic operator VI corresponds with saturation with 

respect to th: partition {X(U)} ; i.e. if a E B, v~a = sat a = 
= U {X(U) ; a A X(U) # .6}. 

We include the proof of this well-known fact (c.f. {2}) for the sake 

of completeness. AIf d E D, then d E 0 iff X(U)c d , and it is equi
~alent to X(U) (\ d # .6, as it is easy to see. In consequ~nce, 
a (\ X(U) #.6 iff v la::> x(U)' which is also equivalent to vIa E D. In 

A C A I' 
fact, vIa E U implies a (\ X(U) # .6, since otherwise X(U)c a = Ca, 
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i.e. Ca £ (U), then for some d £ U, d ~ Ca, and hence d f'\ vIa = 0, 
which contradicts the fact that U is a proper filter of D. 

Let us observe that given a set X, a partition n of X and a algebra 
B of subsets of X stable under the sat operation with respect to n, 
if D is the algebra of saturated sets of B, we have a monadic algebra 
(B,D,sat.) 

Let us suppose now that a~ extension A of the algebras B, C exists, 
such that (A,B,C) is a biadic algebra; it is easy to verify that the 
V opera tors defined by B, C on A coincide on B, C with the previously 
given. We call V - Vl V2 = V2 Vl to the monadic operato'r defined by D. 

Since B e C applies homomorphically onto A, preserving the identity 
mappings on Band C, A = BeC/F for a filter F in Be C. Then the Sto 
ne space of A is a closed subset T of SeBeC) = X x Y. 

Calling {Y(u)} the partition of Y associated to the ultrafilters U 
of D we have, after elimination of superfluous parentheses: 

(*) 

In fact, if MET corresponds to an ultrafilter M of A, and M = (M' ,Mil) 
(M' E X, Mil E V), considering the homomorphism mentioned above it fol
lows that M' = B.M', Mil = C.M. Therefore, M'.D = M".D = U is an ultr!. 
filter of D. Therefore, M E Xu x Yu ' Conversely, if (M',M")EXuxYU' 
M'.D = M'!D = U. To see that (M' ,Mil) E T it suffices to see that there 
is an ultrafilter M of A which is a simultaneous extension of M' 
and Mil. It is enough to ve,rify that if b E M', c £ Mil then b /I. c .; O. 

But vb ~ Vc = v(b~ c) E U and therefore is not zero, which implies 
b"c'; 0 

I 
Let us consider now the following partitions of T: 

1 ) 

(X x {y}) ('I T T 
Y 

({x} x Y)" T 2) {T } , Y E Y 
Y 

3) {TU} , U ultrafilter of D, Tu Xu x Yu . 

They define the sat operators corresponding to Vi, v2 , v of the bia
dic algebra (A,B,C). This is immediate for Vi, v2 • For V we observe 
that the monadic algebra (A,D) is represented by T and the partition 
associated with the ultrafilters U of D, which is precisely {XuxYu } 
as it was shown in the prodf of (*). 

If we start with another extension A' of Band C such that (A' ,B,C) 
is a biadic algebra we get again the same set T representing SeA') 
because the second member of (*) depends only on (B,D) and (C,D). 
Then A = A' by a unique common extension of the identity isomorphisms 
of Band C. This proves 2) (except for isomorphic identifications). 
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The fact that the definitions of T, the partitions 1), 2), 3). and 
the clopens corresponding to elements of Band C depend only on (B.D) 
and (C,D) allow us to construct a biadic algebra of sets (A' ,B' .C') 
such that B ~ B' , C ~ C' and these isomorphisms when restricted to 
D give an isomorphism D ~ B'n C' = D'. That will prove (except for 
isomorphic identifications) the first part of the theorem. 

Let us define A' as the algebra of sets of the form a' 
a is a cl~pen in S(B) x S(C) = X x Y. The algebras B' 
C' {(Xxc)" Tl CEC generate A'. 

an T, where 
A 

{ (bxY) ("\ T\e:B' 

We define for a' E A' .Vla' as the 
and V2 a' that obtained from {T }. 

y 
that (A',B') is monadic. the same 

saturated set with respect to {Tx }' 

We must show that vl a' E B' to show 
for v2,and that v l , v2 commute. To 

this end, let us prove: 

(6) vl c' = 
.... 

(vc x Y) n T forc' EC'. 

vl c' = vl cr'" Xu x (~f"\ Yu))' where ~ is the projection of c' on Y. and 
the star means that the sum is extended to those U such that ~("\Yu; ¢. 

Therefore, Vlc' = p(Vl (Xu x (c nYu)) = [(PXu ) x y1" T. Then. since 

c "Yu ; ¢ is equivalent to v"c::J Yu ' i. e. to vc E U, we get L"'Xu = vc , 

which proves the formula. 

To show that. Vla' E B'. for every a' E A'. it suffices to see it for 
a' = b'" c' , b '. E B' , C' E C' j vl (b' n c') = b'" vl C' = 

= [(b f'I VAc) x Y) n T E B'. 
A 

!f b'A= c', then from (6) b' = (d l x Y)nT = (X x d2)nT.which implies 
dl = d2 . Therefore, D' = B'~ C' is defined as those sets of A' such 
that are Saturated with respect to {Tu } and project on the same ele -
ment of D. Therefore, (6) means that VlC' E D', which is equivalent 
to the commutation of vl , v 2 (c. [. {1} ). 

6. AN APPROXIMATION PROCESS. 

The generalized product measure Q, when it exists, and in general the 
finitely additive product measure Q. associated with a v-commutative 
system S, can be obtained as a limit of simpler measures in the way 
described in the next theorem. We need the following preliminary re 

suIt: 

PROPOSITION 1. i) If F is a finite part of (A,D,v), a monadic aZg~ 

bra, and al, ... ,ar , the atoms of the BooZean subaZgebra generated py 
F, then al, ...• ar , val"" ,var generate a subaZgebra Ao which is the 
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the least one oontaining F and stable fo1' v, (i.e., VAocAo )' 

ii) Assume Ao is a finite subalgeb1'a of thebiadi,o algsibra (A;B,C, 

Vl,V2), stable fo1' V = V1V2. D = B"C. If Bo" ~I\Ao' Co = CI\Ao 

then the1'e e~ist ope1'ato1's v!.v: • suoh that (Ao"o'Co'V!'V:) is a 
biadio algeb1'a. 

iii) Suppose that (A")"EA is the family of all the finite subalge

b1'as of A stable fo1' v. o1'de1'ed by inolusion. and gene1'ated by th~ 
e~ements be~onging to B 01' C. Then: 

1) eve1'Y (A".B"=A,,n B .C1 =A"n C.vt.v~) is a biadio a~geb1'a. 

2) (A")"EA is fiZte1'ing, if o1'de1'ed by inoZusion. 

3) U"A1 = A 

P1'oof: i) It is evident that every subalgebra containing F and s~ 
ble for V must contain the ai'S and the vai's. Then, it suffices ro 
prove that Ao is stable for V. Every atom of Ao is of the form a 

a 1. 1\ A. Va. where j runs on some indices 1, ••• , r. 'Therefore, Va = 
J J 

Va. "I\,va. E Ao' 
1 J J 

To finish the proof it suffices to observe that every element of Ao 
is a union of atoms and that V distributes over the union. 

ii) V! exists because Ao is finite. 
< V2 V1 a < V a = Va, where V denotes 
- 0 0 - 0 0 

Then V2V1 = V and analogously, V1V2 o 0 0 0 0 

a E A implies Va = v2V 1a ~ o 
the operator relative to D (\ Ao 
= V • 

o 

iii) It follows from i) and ii) and the observation that every aEBv C 
belongs to a finite subalgebra generated by a finite set F uG with 
FeB GeC. 

Given the V-commutative system S = (n,A,B,C,P1 ,P2) let M(S) = (Ao,B, 
C,P1 ,P2) be the associated Boolean measure structure. We apply pro
position 1 to the biadic algebra (Ao,B,C) to get the filtering fami 
ly (A"),, described in iii). For each" we select a representative 

Sa = (n,A",B",C",P1 ,P2) of (A",B",C",P1 ,P2), that means: B1 , C" are 
finite subalgebras of B, C such that M(Sa) = (A",B",C",P1 ,P2), A" = 
= B"v C". Here a = A", and we assume the a's ordered by inclusion 
of the AAs. Ussing theorem 5 we know that the measure Qa associated 
to Sa is defined by 

Qa(B.C) = L/1 (BDj ) P2 (CDj )/P(Dj ) 

where the sum is on the atoms of V" (it defines a comarginal commu
tative measure on Sa)' Denote with Ga the conditional expectation 
operator relative to V" and the probability Qa in the system Sa.Then 
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THEOREM 8. In a V-commutative system S. it hoZds: 

i) For B £ B • C £ C • Gal B --+ G1 B and Gal C --+ G1c' "'hen ilt • u-
niformeZy a.e. [p) . 

-€i) Q(A) .. Hm Qa(A) • for any A £ B v C • a 

Proof: ii) follows from i) and 

Qa(B.C) . J GalB·Gal c dP - J G1B·Gl c dP Q(B.C) 

i) For B £ B). ,a = A). ,we have G'B - r.(P1(BD.)/P(D.» 1D ' 
. a J J J j 

where the sum is on the atoms of VA' since Q (BD.) - J G 1B dP 
a J D. a 

J 

Given G'B' let us divide the set of real numbers on intervals Ii = 
.. [mi,Mi ) of le.ngth £ > O. Only for a finite number of them Di -

- (G1 B)-1 (Ii) ~ ~ [p). Consider any finite system Sa such that 
Di £ VA for all those Di • Call {Dij } the family of atoms of VA con 
tained in Di • 

Since, 

we obtain: 

a.e [p) QED. 

REMARK: If a coma~ginal probability P exists on A we;have Ga 1B • 
• Ep('BIVA) .. Using a result from martingale theory due to Helms {3}, 
we know that the G~s form a uniformly integrable martingale conve!.8. 
ing in Ll to G lB' which implies ii). 

7. PRODUCT MEASURE 

foot special cas.es of v-commu·tative systems we can. assert that a prod
uct measure exists. 

One of these cases, the discrete case, was considered in theorem S. 
Using remark 4) of §2 we have also: 

THEOREM 9. If the V-commutative system S 
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that there are semi-compact classes KBcB, KCC:C with the property 

of approximation and KB.K C = {K.L ; K E KB ' L E KCHs alsosemi-c<;!!l 
pact, then Q(B.C) = /G1 B .Gl cdP defines, when extended to A, a pr£ 
bality, i.e. the product measure on S. 

Another case in which we can assert the existence of product meruure 
is referred in theorem 6, the proof of which we give now: 

Proof of theorem 6. We will suppose, like in the proof of theorem 

7, that D is identified to D' through the given isomorphism. By 

theorem 7 we have an extension algebra Ao of B, C such that (Ao,B,C) 

is biadic and B" C = D. A The!,l we A have in the Stone space T of Ao 

the algebras ofAclopens Ao ' ~ , C relative to Ao ' B , C. A WeAset B= 
= T(B) ,C = T(C) and A = T(Ao) = TeB,C). We define in B, C the 

measures PI' P2 given in B, C in. the canonical way and extend them 
to B, C. 

~et ~s pro~e t~at S = (T,A,B,C!P1 ,P2) is a V-commutative system. IT 

b E Band c E C are such that b.c = pJ , i.e. b "AC : 0 in A ; we hAave. 
o = v2 (b~c) = v2 b" c = V2 v 1 b f\ c = Vb" c. Then vb.c = pJ , where VbE 
EB n C contains b. Hence {Gl b > O} c VAb [p], and then 

JGlb·Gl~ dP = JGlb·l~ dP2 ~ P2 (Vb.c) = 0 

where G is defined on B(C)-measurable functions is the expectation 

operator relative on V = B r-. C. 
A A 

But B c Band C c C have the approximation property. Using remark 

3 of §2 we can assert that Q(B.C) = /G1 B .Gl c dP is a finitely ad
ditive comarginal measure on S, and from theorem 2, S is a V-com

mutative system. 
A 

Q being finitely additi~e on B v C ::J Ao is a fortiori a-additive on 
the algebra of clopens A and then can be extended uniquely to A = 

A 0 

= T (Ao) • 

This proves 1) and 2) of the theorem (except for identifications) 

3) follows immediately from theorem 7. 

Finally we shall prove: 

THEOREM 10. If S 
the property: 

(n,A,B,C,P 1 ,P2) is a v-commutative system ~ith 

(P) n is the onZy set of B containing a set C E C ~ith P2 (C) > O. 
then Q(B.C) = PI (B).P2(C) can be extended to a probability on A. 

((P) implies that S is simple). 



118 

Proof: Let us define the "section" in x of a "rectangle" B.C by 
(B.C)x .. C if x £ Band" otherwise. 

In order to prove the a-additivity of Q = P1. P2 it is enough to 

prove that ~aBa.Ca - 0 implies ~aP1(Ba).P2~) .. 1. For each pair 

a ~ a of indices the set Na,a = {x ; (BaCa)x.(BaCa)x ~ " [p2)} is 

contained in a set of 8 of PI-measure zero.In fact,from BaCaBaCa=¢ 

we have eithe.r P1 (Ba .Ba) = 0 or P2 (Ca .Ca) .. o. In the first case, 

it follows from Naa C BaBa' in the second one, since'(BaCarx.(BaCa)x 

C Ca.C a for every x, we have Naa .. " • 

Then except for a set Bo of ,8 of PI-measure zero (~~a Naa ) 

(7) P2 (Y(Ba ·Ca )x) = ~aP2«Ba·Ca)x)" ~~P2(Ca)·lBa(x) 

Let bx be the set of the partition of 0 defined by the sets Ba such 
that bx a x 

(8) 

In fact, let y £ bx and suppose y £ Ba .Ca , then Ba;:) bx a x and this 

implies (Ba.Ca)x .. Ca. Since y £ Ca we have y £ \( (Ba.Ca)x. This 
proves (8). 

From 8 3 bx C \J (Ba.Ca)x £ C , and the assumed property (P) we have 

P2( Y (Ba·Ca)x) .. 1 for every x. 

Hence, by virtue of .(7) we have yx t B : ~ P2 (C )lB (x) .. 1. i.e. o a a a 

~aP2(Ca).lB - 10 [PI)· By integration with respect to PI : 
a 

QED. 

Remark: Condition (P) is equivalent to: (P*) if C £ C contains B,I¢, 
B £ B, then C .. n a. e. [p 21 • 
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SOBRE 0 plSTO DE UM MODUlO II, 
Jorge Aregone e Artibeno Miceli 

o objetivo desta nota 6 0 de generalizar um resultado sabre formas 
lineares que se encontra em {2} • No que segue, todo anel 6 supo~ 

to comutativo e com elemento unidade. 

1. PRELIHINARES. 

Sejam A um anel e M um A-m6dulo. Designaremos por M* 0 dual de M 
e, se. A for un anel de integridade, por t(M) 0 sub-A-m6dulo de to~ 
~ao de M. E conhecido que t(M) 6 0 nucleo da aplica~ao natural 
M --+ M 8A K, onde K 6 0 corpo de fra~aes de A. 

Seja A --+ K um homomorfismo de an~is de A num corpo K que tran~~_ 
forma elemento unidade em elemento unidade. Entaa K pode .ser DLmido, 

de uma mane ira evidente. de uma estrutura de A-m6dulo. Para todo 
A-m5dulo M, 0 K-pasto de M 6 definido como sendo a dimensao do K
espa~o vectorial M 8 A K e notaremos rK(M) = [M 8 A K : K] • Se A 
for um anel de integridade en K 0 corpo de fra~oes de A, falaremos 
simplesmente do pasto de M e indicaremos com reM) = [M 8 A K : K] • 

LEMA 1. Bejam A um aneZ e 0 --+ 

oia ezata de A-moduZos. Temos 

M' --+ M --+ M" --+ 0 uma seqlta!!; 

ri.(M) .~ rK(M') + rK(M") e se 

Com efeito, 6 suficiente ver que se tem a sequ&ncia exata de K-es
pa~os vectoriais 

••••• --+ Tor~(M" ,K) --+ M' 8 A K --+ M 8 A K --+ M" 8 A K --+ 0 

, 
COROLARIO. Be A tap um aneZ de integridade e 0 --+ M' --+ M --+ 

~W' --+ 0 uma sequenoia ezata de A-moduZos. entao r(M) = reM') + 

+ r(M"). 

Isto resulta do fato de que K, corpo de fra~oes de A, ·6 um A-m6dulo 
plano. 

Observemos finalmente que se A 6 um anel de integridade e 11 ~ 0 um 
ideal de A, entao r(l1) = 1; Com efeito, 6 claro que r(l1) < 1. SU
pondo que r(l1) = 0, deduzirlamos que 11 8A K = 0, onde K 6 0 corpo 

(1) Trabalho realizado com aux{lio de FAPESP 
66/038. 

Proc. Matemitica 
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de fra~oes de A, e como 4 esta contido em a 8A K, seguiria que 4=0. 

2. MODULOS DE POSTO n. 

TEOREMA. Sejam A um aneZ de integpidade, M um A-modulo e n ~ 1 um 

inteipo. As seguintes condigoes sao equivalentes: 

i) e~iste uma famllia livpe (xi)l~j~n de elementos de M tal que 
Ann(M{xl, ••• ,xn)A) ~ 0; 

ii) e~iste uma familia (fi)lsisn de fopmas linares sabre M e uma 

familia (xi)l'iSn de elementos de M tais que 

f l (x 1 ) = ••. = fn(x n) ~ 0 , fi(x j ) = 0 se i ~ j e 

fi(xi)y = I;.lfj(Y)Xj papa todo Y E M e papa i = 1, ••• ,n 

Hi) reM) = n; 

iv) e~iste uma familia (fi)l~i~n de fopmas linapes sobpe 
a duas distintas, tais que: t(M) = ~~. lKer (f.) e 

1- l' 

M, duas 
papa todo 

j, 1 ~ j ~ n , (\ ..... Ker (f .) ~ t (M) 
~rJ ~ 

(i) => (ii). Como Ann (M/(xl , ••. ,xn)A) ~ 0, existe urn e1emento aEA, 
a ~ 0 tal que aM C (xl"" ,xn)A. Logo, para todo Y E M, se tern 

ay = I~_l fi (y)xi onde fi (y) E A para todo i e como a familia (xi1.a~ 

~ livre, fi ~ uma ap1ica~ao linear de M em A para todo i.Com efeito, 

(a - fi(xi))x i - Ijpifj(xi)Xj = 0 imp1ica que fi(x i ) a ~ 0 para 

todo i e fj (xi) = 0 para i ~ j. Temos assim fi(xi)y 

para todo Y em M. 

De outro 1ado, tomando Yl e Y2 em M, se tern I~=lfi(Yl - y2)xi 

+ l~=lfi(Y2)xi' logo fi(Yl + Y2) = fi(Yl) + f i (y2) para todo i. A 

na10gamente, se c E A eyE M, deduzimos que fi(cy) = c.fi(y) para 
todo i. 

(ii) (i) In . 0 onde estao em A. Resu1ta, da => Seja j"lajxj os a. 
J 

igua1dade precedente, que 0 fi (I;=l ajx j ) = aifi(x i ) e como 

fi(x i ) ~ 0 e A ~ urn ane1 de integridade, entao a. .= 0 para todo i. 
~ 
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r~ If .(y)x. para todo y £ M, m6dulo (x1, ••• ,xn)A, deduziriamos 
J- J J 

f .(x.) £ Ann(M/(x 1, ••• ,x )A) de onde, f.(x.) = 0 para todo i. 1 1 n 1 1 

(i) => (iii). Como A e urn anel de integridade e a familia (x) 1 . i S1Sn 
e livre, a sequencia exata de A-m6dulos 0 --+ (x1, ..• ,xn)A --+ M -+ 

-+ M/(x1, ••• ,xn)A --+ 0 nos da r(M)=r((x1, ••• ,xn)A)+r(M/(x1, •.. ,Xn)A)= 

n+ r(M/(x1, •.. ,xn)A). AHim dis so como Ann(M/(x1, ••• ,xn)A) ,; 0 , 

entao (M/(x 1, •.• ,xn)A) @A K = t(M/(x 1, •• ·,xn)A) @A K = O. Logo, 
reM) = n. 

(iii) => (i). Se reM) = n, e claro que 0 K-espa~o vectorial M ®A K 
tern sempre urna base do tipo (x. @ 1)1' e isto implica que a fami-1 S1Sn 
lia (xi)lSisn e livre. De o~tro lado, para todo y £ M, Y ~ 0, pod~ 

mos escrever y @ 1 = l~ l(a./b.)(x. @ 1) onde os a./b. estio em K. 
1= 1 1 1 1 1 

Pondo b = TT~=lbi e c i = aiTTi,;jb j , a relafao precedente e equiva -

lente a relal;io (by - ~n i-I cix i ) 8 o. Isto implica (cf. {1}, 

cap Z, prop. 4) que by - l~=lcixi nio e livre em M, logo que existe 

urn elemento c e: A , c ~ 0 tal que Logo , 

cb £ Ann(M/(x1, ... ,xn)A) e cb ,; 0, uma vez que A e urn anel de inte
gridade. 

(iv) --> (iii). Com efeito, para todo j, 1 ~ j ~ n, existe urn ele
mento x~ £ (l ..... Ker(f.) - t(M) tal que x! i Ker(f.). As hip6teses 

J 1rJ 1 J J 
feitas implicam que a familia (x!)I' e livre. Pondo x. 

/'. J SJSn 1 
= fl(xi) ..•.. fi(xi) •.••. fn(x~)xi para todo i, segue-se que a fami 

lia (x i )lsisn e livre, que fj (xi) = 0 se i ~ j e que fl (Xl) = f2 (X2) .•. 

= fn(x n) ,; O. Seja f: M -E9~=lfi(M) a aplica<5ao A-linear definida 

por f(x) (fi(x))lSisn para todo X em M e J = Im(f). A sequincia 

exata de A-m6dulos 0 --+ t(M) --+ M --+ J --+ 0 nos da reM) = r(J). 

Consideremos a familia (ei)ISi~n de elementos de J definida por ej = 

(f i (x j ))lsisn' Mostremos que a familia (ei)ISisn e livre maximal. 

Com efeito, a rela~ao 0 = l~=lciei = (cifi (xi))I~isn' onde os ci es

tao em A, implica que cifi(xi ) = 0, logo que ci = 0 para todo i. De 

outro lado, se y e: J existe un elemento x e: M tal que y=(fi (x))l~i~n 
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lacao nio trivial cy + L~ 1f.(x)e. = 0 entre os e 1• e y. Isto nos 
lO 1- 1 1 

mostra que,a familia (e i )1sisn 6 livre maximal, logo que r(J) - n. 

(ii) - (iv). Trivial. 

OBSERVAGOES. 

(1) Sejam A l'm anel de integridade, M um A-m6dulo e n ~ 1 um intei 
roo Se uma qualquer das condi~oes equivalentes do teorema precede~ 
te for verificada, entao M nao pode ser um m6dulo de tor~ao. Com ~ 
feito, se M = t(M), entao reM) = 0, 0 que e absurdo, uma vez que 
r (M) n ~ 1. 

(2) No caso n • 1, f1 - f, em (iv) ~ (iii) se tem a sequencia ~ 
ta de A-m6dulos 0 --+ t(~) --+ M --+ f(M) --+ 0 e portanto, as con
di~oes t(M) ~ M e f ~ 0 sao equivalentes. 

3. A x-CONDI~AO 

1. Em seguida, vamos mostrar como 0 tebrema acima se relaciona com 
a no~ao de x-condi~ao introduzida em {2}. Sejam A um anel de inte
gridade, M um A-m6dulo e f uma forma linear s8bre M. Se existir um 
x em M tal que f(x) ~ 0 e f(x)y = f(y)x para todo y £ M, diremos 
que a forma linear f obedece a x-oondivao. 

EXEMPLOS. 

1) Se f e uma forma linear inj ectiva sabre M, entio. f obedece a x
condi~ao, com x £ M - {OJ , x qualquer. Reclprocamente a x-condi~o 
mio implica que f seja injectiva, mas somente que Ker(.,,) = O:f(x)A. 
Vemos assin que se O:f(x)A = 0 as duas nOGoes coincidem. 

2) Daremos aqul um exemplo d~ forma linear que obedece a x-condi~o 
mas que/nio IS injectiva. Para isto, sejam A = Z 0 anel dos inteiros 
racionllis, M = Z lC Z/ (2) (produto direto) e f a !orma linear sabre 
M definida por f(m,n) = 2m para todo (m,n) £ M. E claro que f e u
ma linear s~bre M e se consideramos 0 elemento x = (l,D) £ M,f(x)~O. 

De outro lado, para todo y = (m,n) E M se tem f(x)y = 2(m,n) = 
= (2m,D) e f(y)x = 2m(1,D) = (2m,D). Assim f obedece a (l,D)-cond! 
~ao. 0 nucleo de f e 0 sub-A-m6dulo de M formado pelos pare~'(O,D) 
e (0,1); 

3) Consideremos 0 anel A = Z, 0 A-m6dulo M = Z lC Z (produto dire
to) e a forma linear f stlbr,:e M definida por f(m,n) = m + n, para to
do (m,n) E M. Suponhamo.s que exista um x (p,q) E M tal que x obe
del;a a x-condi<sao, Ipara todo y = (m,n) E M se deve ter (p+q) (m,n)= 
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- (m+n)(p,q), isto e np - mq. Ora, uma tal rela~ao e impossivel 
para todo (m,n) E M, exeeto se p - q - 0, 0 que daria x - 0 e por
tanto f(x) - o. 

Z. Indiquemos com M*(x) 0 sub-A-modulo de M* das formas lineares 
que obedeeem a x-eondi~ao. E logieo que podemos exeluir sempre 0 

easo x-O, uma vez que tvl* (0) - iii Obtem-se assim: 

U M*(x)cM* XEM logo < U MM*(X) c M* XE 

onde indieamos com <S> , se S e urn sub-eonjunto de M, 0 sub-A-mo
dulo de M gerado por S. Veremos, no N° 4, que em geral: 

< UXEMM* (x) > ¥ M* 

isto e, nao e possivel "aproximar" toda forma linear por formas Ii 
neares que obedeeem a x-eondi~oes, x em M. 

3. Do teorema preeedente, resulta uma earaeteriza~ao dos modulos 
munidos de uma forma linear que satisfaz a uma x-eondi~ao . 

.-
COROLARIO. Sejam A um aneL de integridade e M um A-moduLo. As con 

diqoes seguintes sao equivaLentes: 

(1) existe um eLemento x em M taL que Ann({x}) - 0 e Ann(M/Ax) ~ O. 

(2) existe uma forma Linear f sobre M que obedece a x-condiqao. 

(:5) r (M) - 1. 

(4) M nao e um moduLo de torqao e existe uma forma Linear f sobre 

M taZ que Ker(f) - t(M). 

4. CONTRA - EXEMPLO A FORMULA < U MM* (x) ) XE M* . 

Suponhamos que a formula aeima seja verdadeira . Toda forma linear 

f E M* se esereve f = Iifi (soma finita), onde fi E M*(xil para t~ 
to i. Logo fi(xi)y = fi(ylx i para todo y E M. Isto nos mostra que 
f. (x.)y - f. (y)x. E Ker(f.) = t(M) (pelo eorol1i.rio) isto e, existe 

J ~ J ~ ~ 

urn elemento e E A, e ~ 0 tal que f. (ex.)y = f.(y) (ex.) para todo y. 
J ~ J ~ 

Logo f. E M*(ex.) e portanto f E M*(ex.). Mas, 0 exemplo 3) do N°3 
J ~ ~ 

nos mostra que, em geral, isto nao e posslvel. 

NOT.A: La traduccion de "-p~sto" es "rango". 
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PROCESE STOCHASTICE ~I APLICATII IN BIOLOGIE ~I MEDICINA, por Iosi 

fescu, Marius y Petre T~utu, Editura Academiei Republicii Sociali~ 

te Romania, Bucura~ti - 1968 pp. 345. 

Este volumen constituye una excelente y apropiada exposicion de las 
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discrete y continuo respectivamente los cuales constituyen una in -

troduccion al ultimo capitUlo dedicado a las aplicaciones, que son 

muy variadas. Como dato ilustrativo cabe citar a modo de ejemplo 

los estudios de los modelos de poblacion, migraciones epidemia, mo

delo de Karlin-McGregor en los procesos estocasticos de la evolu -

cion, modelo estocastico de la contraccion muscular y hasta un muy 

reciente modele de la carie dentaria debida a Lu (1966). 

En sintesis, es una obra muy completa y muy competente en el tema , 

tal vez una de las primeras en su tipo. El lector se enfrenta con 

una larga bibliografia. 

E. Marchi. 

THEORY OF RANDOM FUNCTIONS,por A.Blanc-Lapierre y R.Fortet,Vol.I,~ 

don and Breach~New York-London-Paris,1967,454 pgs., 29,50 dolares. 

Este libro es una traduce ion al ingl~s por J. Gani de la primera mi 

tad del bien conocido texto "Th~orie des fonctions al~atoires". A

demis de un ap~ndice sobre las nociones matematicas basicas necesa

rias para desarrollar el material expuesto contiene: Cap. I. Intr£ 

duccion practica al estudio de las funciones aleatorias. Cap. II. 

Axiomas, conceptos basicos y teoremas fundamentales de la teoria de 

la probabilidad. Cap. III. Introduccion general a las funciones ~ 

leatorias. Cap. IV. Introduccion general a los procesos estocasti 

cos: funciones aleatorias con incrementos independientes. Cap. V 

Funciones aleatorias derivadas de procesos de Poisson. Cap. VI. 

Procesos de Markov. Cap.' VII. Cadenas de Markov. Funcionales adi 

tivas de un proceso de Markov., 

La encuadernacion y la impresion son excelentes y el volumen II-que 

~ompletaria la traduccion del original franc~s - es prometido. 

R. Panzone. 
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