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INDUCED SHEAVES AND GROTHENDIECK TOPOLOGIES

by Juan José Martinez

INTRODUCTION. The theory of sheaves, as it is exposed in the clas-
sical book of R. Godement {2}, has been generalized in sucessive
stops. Ending this process, M. Artin introduced the notion of Gro-
thendieck topology and developed the fundamental part of the theory
in a functorial way (cf. {1}). Although, the concept of Grothen -
dieck topology seems tobe insufficient to relate certain aspects of
the theory of sheaves; for example, the notion of subspace ( not
necessarily open !) is omited and so, induced sheaves and relative
cohomology must be ignored.

The purpose of this paper is to obtain the essential results about
induced sheaves (the concept of topological category enable us to
work in this direction; cf. §1). Topological methods play an im-
portant role in the problems in question, as Godement shows (cf .
{2} ; Ch. II, §2.9). Therefore, we are forced to introduce a var-
ious kind of axioms, valids -of course- in the classical situation
of a topological space. We mention that the results of this paper
are useful also in not conventional cases, namely, the "étale" Gro-
thendieck topology for preschemes (cf. {1} , Ch. III).

Resuits and notations of Artin's seminar ({1} , Ch. I, II) are con-
tinuosly used, frequently without specific reference. This results
are stated in {1}for sheaves of abelian groups, but all of them
could be generalized taking an arbitrary category of values and in-
serting axioms where necessary.Here, we have followed the abstract
formulation (the basic facts about limit of functors, existence of
injectives, adjoint situations, derived functors of a composition,
etc. are stated in the usual literature; for example, cf. {3} )

0f course, the reader couldsuppose that all sheaves in this paper
are abelian sheaves.

1. TOPOLOGICAL CATEGORIES AND INDUCED SHEAVES. This section is
of introductory character. Its aim is to lay down the terminology
used throughout this paper and to collect the basic facts. We be-
gin with the following:

DEFINITION 1.1. 4 topological category is a triple (M,T,¢) such
that M is a category, T is a family of Grothendieck topologies
(T_M)MeobM ¢ts a family of morphisms in M (¢ M — x)Me obM and the

following axioms are satisfied:
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tel) For all object M in M Cat Ty te a full subcategory of M. X
is an object of Cat Ty and ¢y is the identity morphism ey of X.

te2) The diagram
U—YV
oy N\ 4y
X
18 commutative, for all morphism f: U — V in Cat TX'

te3) M has fibered products of the form ,U &wM (briefly noted

.¢ 9

i) M
U XXM), where U is an object of Cat Tx and M is an object of M,
such that

U e Ob(Cat Ty) ==> U xg4M € Ob(Cat Ty)

(fi: Ui b U)iel € Cov Tx===> (fi Xyely' Ui XXM — U XXM)ieI € Cov TM

for all object M of M.

REMARKS 1.2. i) Axioms tcl and tc2 tell us that M is an object of
Cat T, , because X x,M = M and X is an object of Cat T,.

ii) Recall that if X is an object in a category M, then is called
prefinal (resp. final) iff Homy (M,X) # @ (resp. Homy (M,X) is a set
of one element), for all M e ObM. 1If < X > is the discret subcatego

ry of M associated to X, one easily checks that the following state
ments are equivalent (cf. {1} Ch. I, §0):

a) M satisfies axiom L1 and < X > is a final subcategory of M.
b) X is a final object of M,

c) M satisfies axiom L2 and X is a prefinal object of M such that
HomM(X,X) = {egl.

Clearly, if (M,T,¢) is a tc (topological category) then X is a pre-
final object of M.

Let ¥ be a category with final object X and let ¢ be the family of
‘morphisms canonically associated to X. If T is a family of topolo-
gies satisfying tcl and tc3, respect to M and ¢, then (M,T,¢) is a
tc of the following type:

} . 0o ..
DEFINITION 1.3. A4 topological category (M,T,¢) is called tc <iff
it satisfies:

te2') For all morphism £: M — N in M the diagram
P
£

M —— N

\
oy \x‘/ .
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18 commutative.

Given a tc C = (M,T,$), we shall be using a naive nomenclature:

M is called the category of subspaces of C (consistently, an object
M in M is called a subspace of C). The object X is referred to as
the space of C and so, an object M of M is also called a subspace
of X refering to ¢, as the inclusion morphism of M in X.

If M is a subspace of M, Ty is called the relative topology of M
and Cat T, is called the category of relative open objects of M
Abusing language, T, is called the topology of C and Cat Ty is cal-
led the category of open subspaces of C.

A morphism f: M — N in M is called a ¢-morphism iff the diagram

f

M —— N

w N\
X
is commutative. We define a category M¢ putting:

ObM¢ = ObM

Hom M¢ : ¢-morphisms of M

M¢ is a subcategory of M and clearly is a full subcategory (equiva
lently, is equal to M) iff C is tc?.

DEFINITION 1.4. A morphism of topological categories F: c — C'
ig a funetor F: M —— M' such that:

mtel) For all object M of M F/Cat Ty is.a morphism of topologies,
: [

of TM in TF(M)‘

mte2) F(¢) = ¢' (i.e. F(X) = X' and F(¢M) = ¢ﬁ(MY’ for all MeQObM).

mte3) F preserves fibered products of the form U XXM,UeOb(Cat T/
and M € ObM.

REMARKS 1.5. i) Now we can talk about. the category of small topo-
logical categories.

ii) If F: ¢ —— C' is a mtc then we have

U e Ob(Cat Ty) — F(U) xz F(M) e Ob(Cat Tpy,)

(fi:Ui;—» U)iEIe Cov TX~—~>(F(fi) x :F(Ui) xx,F(M) —_

X' CF (M)
-+ F(U) xx,F(M))ieI e Cov T%(M)

for all subspace M of C.
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iii) A mtc F: ¢ —— C' induces for each subspace M of C a mor -

phism of topologies F/Cat TM: TM —_— T%(M) and so, induces the u-
sual functors (direct and inverse image) between the corresponding
categories of presheaves or of sheaves.

Let M be a subspace of a tc C. If A is an arbitrary category, the
category of presheaves P(TM,A) is briefly denoted by PM, and a pre
sheaf in Py is called a presheaf over M. Similarly, if A is a cat
egory w1th products, Sy denotes the category of sheaves S(Ty-A)
and a sheaf in Sy is called a sheaf over M.

Pyt Ty — Ty is the morphism of topologies defined by the assign
ment of objects U — U xyM.

A category A will be called:

o) A0 iff it is a complete category (respect to functorial direct
limits) with products and zero object.

i) A1 iff it is A0 and abelian.
ii) A2 iff it is A1 and satisfies the Grothendieck axiom A.B.5.
iii)A3 iff it is A2 and has a generator.

Let C be a tc and let A be an Al category (as category of values).

DEFINITION 1.6. If M is a subspace of C and F is a sheaf over X ,
then we call Pu (F) the sheaf induced by F over M, and we denote
it by F/M.

DEFINITION 1.7. If M is a subspace of C and o:F — G is a mor-
phism of sheaves over X,them we call °M (a) the morphism induced by
a over M, and we denote it by o/M.

REMARKS 1.8. i) Since py = eTX it is clear that F/X = F and a/X = a

ii) Since PMg is a functor it is clear also that eF/M = e and

(Ba) /M = (8/M) (a/M).

F/M

iii) Remark that expresions of the type (F/M)/N have no sense here,
because the '"absolute'" topology Ty plays a special role in our devel
opments.

Now we need to prove some previous results. In the next lemma, and
only in the next, A may be an arbitrary category.

LEMMA 1.9. If f: K — K' 45 a morphism of small categories, the

following statements are true:
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1) If f is a full and representative functor, then fP: PP— P is
full.

ii) If f is representative and « € Hom P' is such that £ (o) is an

igomorphism, then ¢ is also an isomorphism.

Proof i) We want to show that the function HomP.(Pl , P2 ) —
— Homp (£° (P,) , £7(P,)) , o — £P(a) , is surjective. Given

B e Homp(fp(Pl) , fp(Pz)) we define a morphism o € Homp, (P, , P,)

in the following way: since f is representative, given an object V
in K' there exists an object U in K such that £(U) = V; therefore,
we take o (V) = B(U). The good definition of « is obtained by the
following argument: if U' is an object of K such that f£(U')=V,since
f is a full functor there exists a morphism m: U'—— U such that
f(m) = e, . Now, since B is a morphism of presheaves, we have the
commutative diagram

Py —EE - Py (u)

£P(P)) (m) £P(P,) (m)

U —ggry— £ U

i.e. we have the commutative diagram

B(U)
Py (V) — 0 P, (V)

e e
PI(V) PZ(V)

Py (V) — 3@y P, (V)

and so, B(U) = B(U'). It is trivial that fP(a) = 8

ii) Given o € Hom P' and V ¢ ObK', observe that

Vv = £(U)

> a (V) = £fP(a) (U).

COROLLARY 1.10. If £f: T — T' is a morphism.of topologies, the fol

lowing statements are true:
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i) If fis a full and representative functor, then £5: S'— § is
full.

i) If £ 4is representative and o € Hom S' is such that £%(a) 4is an
isomorphism, then o is also an isomorphism.

Proof : Apply the lemma, taking in mind that if% = fPi' | where i
(resp. i') is the inclusion functor of S$ (resp. S') in P (resp. P')

COROLLARY 1.11. If £: T —> T' {g a full and representative mor -
phism of topologies, then fs: S — S' is a representative functor.

Proof: Since fs is left adjoint to f%, there exists a canonicél
morphism of functors A: f_ o £% —> eq) . Now, since f° is full by
1.10,i, we have that f° (hge): fs(fso f5(F')) —» fS(F') is an iso -
morphism, for all sheaf F' in 8'. Therefore, applying 1.10 , ii ,
hpv: fsfS(F') — F' is also an isomorphism; and so,given a sheaf
F' in 8' the sheaf £° (F') is a preimage by £ of F'.

The situation above suggest us the following

DEFINITION 1.12. 4 te C is called tol iff the morphism % is a

full and representative functor, for all subspace M of C.

REMARK 1.13. If C is tc1 we can apply both corollaries to the mor-
phism e, : Tx —_— TM. In particular, 1.11 tell us that the restric-

tion functor ./M: Sy — SM is representative, for all subspace M

of a td C.

In order to obtain the classical theorems about ' characteristic "
sheaves (cf. {2}, Ch., II §2.9) our first result is

LEMMA 1.14. Let Mbe a subspace of a t01 C and let F be a sheaf
over X. If we define the sheaf F' by FM = £°5€_(F) then F"/M = F/M.

(fis Py’

Proof: Adjointness gives us a canonical morphism of functors a :%+

— £5f ; since £ is a full functor (cf. 1.10,i) £ A _): f (F) —
s s F s

M . .
— fs(Fi) is an isomorphism. Hence, F/M = FM/M
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The technique concerning to open subspaces will be obtained using
the following type of categories

DEFINITION 1.15. 4 te C is called te® tff for all open subspace
A of C the following conditions are satisfied:

z) T, ts a subtopology of Tx-

it) If V is open in A, then V XyA =V (i.e. eyXgby ¢V xgA —

—V xyX =V is an isomorphism).

LEMMA 1.16. If A is an open subspace of a te? € and V is open in
A, then < (V,hy) > is initial in l‘f, , where f: T, — T, is the

morphism CIN and hV: V — (V) Zs the inverse morphism of eyXgba

Proof: Let (U,n) be any object in 15 . If Py* f(U) — U denotes
the first projection, we define a morphism m: V — U by m = pyn-.
We claim that m: (V,hv) — (U,n) is a morphism in 15 ; to prove
this we are reduced to check that the diagram

£v) £® £y

N

is commutative. In fact, if gy! f(V) — V is the morphism CyXg0a

we have the commutative diagram

F(V) —V £(U)

“ | v

\' —_— U
m

Therefore, recalling that gy is the first projection of f(V) , an
uniqueness result on fibered products yield§ f(m) = ng
f(m)hv = n.

v Hence,

The last thing to check is that End((V,hv)) is a set of one ele -

ment. In fact, if r: (V,hv) — (V,hv) is a morphism in 15 , then

£y 242 £y

S

the diagram
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is commutative, i.e. f(r) = € (v) Therefore, since the diagram

fov) —E), £y

v — \'s

is also commutative, results r = ey-
COROLLARY 1.17. If A is a complete category, Cat Tx has fibered
products and V is8 open in A, then the following statements are
true:

i) If P is a presheaf over X, then fp(P)(V) = P(V).
it) If in addition A has products and F is a sheaf over X, then
fpi(F) is a sheaf over A(i: Sx —_— Px 18 the inclusion functor).

112)If A is abelian too and F is a sheaf over X, then F/A(V)=F(V).

Proof: i) Since Cat Ty has fibered products and f preserves fib
ered products (because is a morphism of type pM), the category 15
satisfies axiom L1* (cf. {1} II, Th. 4.14). Therefore, applying

the lemma, we see that (V,hv) is an initial object in 15 , and so

£,(P)(V) = lin Py = P ((V,hy)) = P(V).
ii) Applying i, check the definition of sheaf.

iii) It is clear by ii that F/A = fpi(F). Hence, i yields the de
sired result.

2. COMPLEMENTED TOPOLOGICAL CATEGORIES AND CLOSED SUBSPACES.

At this point, we need the notion of closed object in a topologi-
cal category. Since we have the concept of open object, thinking
in the closed sets of a topological space it is enough to find a
notion replacing the set-theoretic operation of complement. Thus,
we give the following

DEFINITION 2.1. A complemented topological category is a te C, to
gether with a functor c: M* — M such that, if 6 = cX and U =CatT,,
the following axioms are satisfied:

etel) c is an involution functor (i.e. C*o C = eys).

cte2) o ¢ ObU, and there exists (Uj— o ) ;e Cov Ty such that 1=¢

I
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etes) cM x,M = 8 and © M = 0, for all M ¢ ObM

REMARKS 2.2. i) FX = cUX is called the category of closed sub -
spaces of C, and ¢ is called the complement operator of C.

ii) Axiom ctc3 says that the diagrams

c(¢ ) c(o )
e__cLM ,e__._ci,M
c(gy) j oy c(dy)=e, J oy
CMTX 6—¢->X
cM ¢}

are fibered products. We recall that (in the following proofs) we
only need the first condition of ctc3 for closed subspaces, and the
second for open subspaces.

iii) ctcl tell us:

a) the complement bf a closed object is open.
(The dual proposition is trivially true). From the definition of o
and ctc2 we obtain: '

b) 6 is open and closed.

Therefore:

c) X is open and closed.

Using ctc2 and the second condition of ctc3, we see:

d) If M is a subspace of C, then 6 ¢ OblU, and there exists a cov-
ering (Vi-——->e)ieI in T, such that I = 4.
Recalling that, in a category with zero object, the product of an

empty family of objects is the zero object, we obtain:

e) If A is a category with products and zero object and P is a
presheaf over a subspace M of C, then

P monopresheaf > P(e) =0

In particular,

P sheaf

> P(e) =0
(In the sense of {1}, a monopresheaf is a presheaf satisfying (+)).

Now, we have the necessary technique in order to prove one of the
crucial results of this paper.

THEOREM 2.3. If A is an Al category and M is a subspace of a thC,
then for any sheaf F over X we have:
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i) The sheaf 2 defined by FM = fsfs(F), where f: Tx —_— TM 18 the
morphism ey, satisfies /M = F/M.

If A is an A2 category,C is, in addition, tc2 and has a complement
operator C, Cat TX has fibered products, and X is final in Cat Tx,
then for any sheaf F over X we have:

21) If M is a closed subspace of L, then FM/CM = 0; if the sheaf

A
FcM is defined by the exactness of the sequence 0——»Fcu——+f?—1+ M

(i.e. Fy = Ker Ag), then FcM/CM = F/cM and FcM/M = 0.

Proof: i) it is 1.14, exactly.

ii) We begin with the first statement. Since cM is an open sub-
space of C, applying 1.17, iii it is enough to show that FM(V) =0,
for any V open in cM. Recalling that fP preserves sheaves, because
f is a morphism of topologies, we see that - fpiMfs(F). There-,
fore, we have FM(V) = fs(F)(f(V)); but £(V) = e, because V is an ob .
ject of TcM and Pu is a representative functor (see axiom ctc3) ,
and fs(F)(e) = 0, because fs(F) is a sheaf (cf. 2.2, iii, e).Hence,

/M = 0

Now, we prove the second statement. Since Cat Ty has fibered prod
ucts, X is a final object in Cat Tx, A is an A2 category, and Pyt
Ty = Ty where A is any subspace of C, preserves the 'spaces"
of the topologies and fibered products, then pAs: Sx ——»,SA is an

exact functor (cf. {1} II, th. 4.14). Hence, fs and g, are exact

functors (f = o, and g =

pcM) :
In Sx we have the exact sequence

M
cM

Thus, the sequence
M
0 — g (F ) — g, (F) — g (F)
is exact, or equivalently, is exact the sequence

0 — F_,/cM — F/cM —> M/eM = 0

Hence, FCM/CM = F/cM .

In a similar way, we obtain the exact sequence

0 —> F_, /M —> E/M — /M
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Since AF/M is an isomorphism, the exactness of this sequence yields
FcM/M =0 .

The main purpose of the latter part'of this section is to prove that,

under certain restrictive conditions, bp: F—s ™ is an epimorphism.
Until this moment, (C,c) will denote a fixed ctc.
If A is a category with products and zero object, we give the follow

ing

DEFINITION 2.4. If M is a subspace of C and F is a sheaf over X,we

say that F is null outside M iff for all open subspace U of C we
have:

U x,M =g == F(U) =0

If M is any subspace of C, S(M) will denote the full subcategory of
Sx defined by the sheaves null outside M. If f: Tx — TM is a
morphism of topologies and A is an Al category, fo: S(M)—-———»SM will
denote the functor fs/S(M).

THEOREM 2.5. (A of type Al). If M is a subspace of C and f: Ty—
—aTM is the morphism Py > then the functor fo: S(M) —> SM has a

right adjoint £°: SM — S(M)

Proof: Since f° is right adjoint to fs, it is enough to sh,w that
the image of f° is a subcategory of S(M). (Then, £° is £° with
S(M) as codomain).

Given a sheaf G over M, notice that fS(G) = fPiM(G), where iM is the

inclusion functor of Sy in PM , -and so, we only need to show that

U xeM = o —> fPiM(G)(U) =0

for any open subspace U of C. In fact, we have
P = = 3 = =
£P5, (G) (U) = i, (6) (£(U)) = i, (G)(e) = G(o) = O

(the last equality is true because G is a sheaf).

Now, we wish to obtain a theorem of equivalence between the catego-
ries S(M) and SM‘ A similar result of Artin concerning to closed
subschemes (cf. {1} III, Th. 2.2), guide us in the generalization
process.

LEMMA 2.6. Let f: K — K' be a functor and let V be an object of K'
such that for any A e ObK and any n € HomK,(V,f(A)) there exist



78

U e ObK and m ¢ Homy (U,A) satisfying V —%* £f(U) and £f(m)oh = n .
Then, the full subcategory 17 (V) of 1 defined by the class {(U,h);
U e ObK. h ¢ IaoK.(V,f(U))} i8 initial in 15.

Proof: Let (A,n) be any object in 15 ; applying the hypothesis on
V to the morphism n: V — f(A), we can find a morphism in K m :
U -— A and an isomorphism in K' V - £(U) such that £(m)h =
Therefore, the diagram

fU) —2® , £opy

N\, -

is commutative and so, m: (U,h) — (A,n) is a morphism in Is .

COROLLARY 2.7. If f: K — K' is a full and representative functon
then 1f V) in Iv » for all objeet V of K'.

COROLLARY 2.8. (A is a complete category). Let f: K — K' “be a
morphiem of small categories such that K has fibered products and f
is a full and representative functor which preserves fibered prod-
ucts. Then', any presheaf P in P(K,A) satisfies fp(P)(V) =

. f
= lim pv/I (V)* , V e ObK'

Proof: It is enough to notice that 15 satisfies the axiom L1* ,
because K has fibered products and f preserves fibered products.

DEFINITION 2.9. (C,c) is called-

1) ctcl iff C s tcl and for any closed subspace M the following
conditions are satisfied:

a) Any covering in TM is induced by Py from a covering in TX

" b) If U and U' are open subspaces of C such that U xgM = U'&XM
and F is a sheaf null outside M, then F(U) = F(U')

i1) ctcz iff C is te? and any closed subspace M satisfies:

U xxM =8 > U xXcM =U

for all open subspace U of C.

iii)ete’ iff (C,c) is ctel and ctel.

LEMMA 2.10. (A of type AO). If (C,c) is cicl, Cat Tx has fibered
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products, F is a sheaf null outside a closed subspace M of C, and
f: Tx —_— TM i8 the morphigm Pys then the following statements are
true, for any open subspace U of C:

<) fpi(F)(U XXMO = F(U).
i%) fbi(F) 18 a sheaf over M.

ti1) F/M(U M) = F(U).

Proof: 1) Since Cat Tx has fibered products, applying 2.9 we see
that £ 1(F)(U ;M) = lip i(F), xXM/If(u xM)*. Now, since (C,c)

satisfies 2.9, i, b it is obvious that the values of the functor
i(F)U x M are all isomorphic, because any one is isomorphic to F(U).

Hence, Lin i(F)y , \/1F (U x,m)* = F(V)
X

ii) Since (C,c) satisfies 2.9, i, a, applying i it follows easily
that £ i(F) is a sheaf (one only needs to check the definition of
sheaf).

iii) Because of ii we have fS(F) = fpi(F). Therefore, i yields
the desired result.

Now, it is almost obvious how to prove:

THEOREM 2.11. (A of type Al). If (C,c) is otel, cat Ty has fiber
ed products, M is a closed subspace of C, and f: Tx —_ TM is the
morphism Pys> then the funetor fo: S(M) —> SM is an equivalencé of
categories,which inverse is £°: SM — S(M).

Proof: By adjointness (see 2.5), there are natural transformations
. o . o . . ,
®: esin £°fo and ¥: fof°— oy It is a straightforward mat

ter,which we leave to the reader, to check that ¢ and ¥ are func -
torial isomorphisms.

COROLLARY 2.12. If F and F' are sheaves null outside M, then

F/M = F'/M => F = F!

THEOREM 2.13. (A of type A1). If (C,c) is ctcz, Cat Tx has fiber
ed products and M is a closed subspace of C, then

F/cM = 0 ==> F 4s null outside M

for any sheaf F over X.
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Proof: Let U be an open subspace of C such that U x,M = 6; taking
in mind that (C,c) is ctc2 and applying 1.17,iii we see that F(U)=
= F(U xycM) = F/cM(U xgzcM) = 0.

COROLLARY 2.14. If (C,c) ie cte® and F and F' are sheaves over X,

then
F/M = F*'/M , F/cM = 0 = F'/cM ==—> F = F!'

Now, we can obtain the desired result:

THEOREM 2.15. (A of type A2). If (C,c) is cte®, Cat T, has fiber
ed products, X is final in Cat Tx and M is a elosed subspace of C,

then the following statements are true, for any sheaf F over X :
i) Apr F—> ™ is an epimorphism.
ii) F' is uniquely determined by F.

Proof: 1) Recall that fs and g, are exact functors (see the proof
of 2.3). Let C be the sheaf over X defined by the exactness of the

sequence
Ay

F—Fs Pl — = C—— 0
Then, we have the exact sequence
M
g (F) — g (F) — g, (C) —— 0
or equivalently

F/M —— F1/cM — C/cM — 0
"
o]

and so, C/cM = 0.

In a similar way we obtain the exact sequence

E/M —— Fo/M — C/M 0

Therefore, since AF/M is an isomorphism, we conclude that C/M = 0.
Now, 2.14 yields that C = 0.

ii) If F' is a sheaf over X satisfying F'/M = F/M and F'/cM = 0 ,
then F'/M = FI/M and F'/cM = 0 = F'/cM. Hence, 2.14 yields that
Fro= Bt

We end this section with a well known result on "characteristic"

sheaves.
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THEOREM 2.16. (A of type A2). If (C,e) Zs t01 andvtcz, CatTy has
fibered products, X {s final in Cat Tx and M is a closed subspace
of C, then for any sheaf G over M there exists a sheaf F over X
such that F/M = G and F/cM = 0. If (C,c) is cte®, then F is unigue
1y determined by G.

1

Proof: Since C is tc™, ./M: sx —_— SM is a representative functor

(see 1.13) and so, given a sheaf G over M we can find a sheaf H
over X such that H/M = G. Then, taking F = ot , 2.3 enable us to
conclude that F/M = G and F/cM = 0

3. RELATIVE COHOMOLOGIES.

This section is devoted to realize an analysis of the cohomologi-
cal effects of induced sheaves. Of course, the well known results
exposed in the book of Godement (cf. {2} Ch. II, §4.9, §4.10, Th.
5.11.1) are obtained here, employing functorial methods. The com-
pact exposition of cohomological theory presented in the Artin's
seminar ({1} Ch. II) is continuosly used. Sheaves and presheaves
are considered in this order.

I) COHOMOLOGY OF SHEAVES.

Let A be an A3 category and let C be a tc such that Cat Tx has fiber
ed products and X is final in Cat Tx. (Notice that the hypothesis
on Cat Tx yield the exactness of the restriction functors).

We begin introducing the '"true'" cohomology.

DEFINITION 3.1. If M is a subspace of C, for each integer n x 0 we

*
define the functor HQ: (Cat TX) x Sx — A by:

HM“ = n?M(. x Mo, /M)

THEOREM 3.2. The following Statements are true:

i) U x,M=U' xM o, F/M = F'/M == Hy(U,F) = Hg(U',F').
ii) Hy = HY

111) 1§(U, ) 28 an exact cohomological functor.

If the functor ./M: SX —_ SM earries injective sheaves into flask
sheaves, then
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iv) H;(U,

" HG(U, ) .

If C has a complement operator c such that (C,c) is etel and M isa
elosed subspace of C, then for any sheaf G over M we have:

v)  HU(UxM,G) = H%(U,0y(G))

and for any sheaf F over X we have:

vi) HO(U,F) = H*(U,F") .

If C has a complement operator c such that (C,c) is cte® and M isa
closed subspace of C, then for any sheaf F over X we have:

vii) If F is null outside M, then Hy(U,F) = H"(U,F)

viii)There i8 a cohomological exact sequence of general term

H (U, F ) — H*(U,F) —— H(U,F")

Proof: i) and ii) are trivial.
*
iii) Notice that HTM(U xXM, ) is an exact cohomological functor

and ./M: S — S is an exact functor.
iv)  Since R" H° (U xgM, ) = H? (U x M, ) and £%, where £:T —T
M X X M

is the morphism pM, is an exact functor,which carries injectives
into H;M(U xxM, ) - acyclics, the proposition follows easily:

[}

R%Hg (U, )=R“(H;M(Uxxm, Jof ) = ;R“n° (UxgM, ))ef_ = H“ (Ux M, Jeof
= Hy (U, )
v) We claim that £° is an exact functor; since the diagram

S
S —£f S

Ny ™

where jM: SM) — SX is the inclusion functor, is commutative, it
is enough to show that f° and jM are exact functors. The exactness
of f° is clear by reasons of equivalence (see 2.11), and the exact
ness of JM follows from the fact that S(M) is closed in S under
taking kernels and cokernels, as it is easily deduced from the de-
finitions.

The spectral theorem of Artin-Leray, applied to the morphism f:Tx—»
, tell us that

—»TM

HP (U,R9£° (G)) - H“(UxXM,G)
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for any sheaf G over M. Therefore, recalling that
q > 0 == RY £5 = o
(because f° is exact), we obtain
H®(U,£%(G)) = H"(U x4M,G) .
vi) Applying the above result, we have
H*(u,f) = H“(U,fsfs(F)) = H*(U xM, £ (F)) = Hy(U,F).
vii) If (C,c) is ctc3 ,» then for any sheaf F over X we have

F null outside M ====> F = FM

In fact, from 2.13 follows that FM is null outside M and so, since
F/M = F®/M , 2.12 yields that F = FM

Applying this result and i, we obtain

H®(U,F) = H*u,Fh
Hence, vi yields the desired result.
viii) By 2.3, ii and 2.15,i the sequence of sheaves over X

Ap
0 FcM F — F

M

0

is exact and so, iii yields the desired result.

REMARKS 3.3. i) Notice that the relative (read local) character
of the cohomology just defined appears clearly in 3.2,i, 3.2,ii
and 3.2,vii.

ii) Of course, the hypothesis on 3.2,iv can not be removed. Suf-
ficient conditions in the classical case are well known (cf. {2} ,
II §3.3).

iii) Observe that the statement (notations as in 3.2, vi)
" . oyn
Hiy (U,F) = HY(U,F )

is not true, in general. Then, if we introduce the notation:

n _ 0
et (U,F) = HP(U,F )

under the hypothesis on 3.2,viii, we obtain an exact cohomological
sequence of general term

eyl (U,F) —— H*(U,F) —— H;(U,F)
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Now, we focus our attention in the cohomology with presheaves values.

DEFINITION 3.4. If M is a subspace of C, for each integer n > 0 we

. n, .
define the functor HM' Sx —_— PM by:
n _ ,n
HM = HTM(./M)

- THEOREM 3.5. The following statements are. true:

i) E/M = F'/M

> Hy (F) = Hy(F')
o n _ ,n
i1) Hx = HTX

*
iii) Hy is an exact ecohomological funector.

If the functor ./M: Sx —_ SM earries injective sheaves into flask
gheaves, then

. n _ phgyo

iv) HM = F HM

Without assumptions, we have for any sheaf F over X:
v)  Hg(Fopy = Hy( ,F) .

If C has a complement operator c such that (C,c) is cte! and M is a
closed subspace of C, then for any sheaf F over X we have:

vi)  HR(Flopy = H™(F")

If (C,é) 18 ctcs, we also have:

vii) If F is null outside M, then HQ(F)OQM = H™(F)

vii%)Therg is an exact cohomological sequence of géneral term
HP(F ) — HP(F) —— H (F)

Proof: i), ii), iii) and iv) can be obtained as in 3.2.

v) Knowing that H?M(G) = H?M( ,G), for any sheaf G over M, the pro

position follows easily:

Hi (F) (U x M) H?M(F/M)(U x M) = HE (U x;M,F/M) = Hy (U, F).

vi) Applying v and 3.2,vi, we obtain:

Hy (F) (U x4 M) H;tu,F) = Hh U, = HP(E) ().
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vii) The statement in question can be obtained as vi, applying now
v and 3.2,vii. Also, it can be proved in the following way: since
(C,c) is ctc3 » for any sheaf F over X we have

F null outside M == F = M

Hence, Hn(F) = Hn(FM) and so, the proposition follows from vi.

viii) It can be obtained as 3.2,vii.
ITI) COHOMOLOGY OF PRESHEAVES.

Let A be an Al category and let C be an arbitrary tc. First, we
consider the cohomology of a covering. In order to conserve a spec
tral result and to obtain a new one, we adopte the following

DEFINITION 3.6. If M is a subspace of C and Ky ©s the category of
coverings of an open subseace Uof C, for each integer n > 0 we

define the functor MP:

i Kyx Py — A by

n

_ 0
HM = HTM(. xxM, .)
THEOREM 3.7. The following statements are true:

1
ii) H; = H

. - — n ~yn 1
P U Dy Um0y = (U —0) o, )= (0 —0) L )
n .
Tx

*
i11) HM((U{—>U)161, ) 28 an exact ecohomological functor.

If A is an A3 category, then we have:

i) Hy((U=— U); 1, ) = RPMg((U;— ), ., )

v) Hﬁ((ui——» U) ;1o M (F)) —;:» Hy (U, F).

If A is an 41 category, C has a complement operator ¢ such that (C,c)
ctcl, Cat Ty has fibered products and M is a closed subspace of C ,
then for any sheaf F over X we have:

i) If F is null outside M, then Hy((U;—> U)o g F/M)=HY ((U;—U) F)

i iel?
If A is an 43 category and X is final in Cat Ty> we also have:

vii) If F is null outside M, then

P q n
”M((Ul——) U)iEI’pMP(H (F))) 0 > H (U’F)
Proof. i) and ii) are trivial.
s s . . * .
iii) Notice that HTM((UixXM — U xxM)ieI’ ) is an exact cohomolo-
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gical functor.

iv) Since A is an A3 category, HT. ((U.x M — U x M) =
™ iX X “iel’?

y ).

v) Since A is an A3 category, the cohomologies of sheaves are de
fined and we have

- Niro
R ”TM((Ui xxM — U xxM)ieI

P q U n
HTM((UixxM — UxxM)ieI , HTM(F/M)) > HT (UxxM,F/M)
P M
vi) It follows easily from 2.10,iii, by a direct analysis of the

complex which gives the cohomology.

vii) Observe that S(M) has injectives, because it is equivalent to
the category of sheaves over M (see 2.11) (since A is an A3 catego
ry, SH has injectives). Also, observe that the functor jM carries
injectives into flasks, because f5 = jM°f°, where f: Ty — Ty is
the morphism p,, and £% has this property.

Now, consider the (two) functors given by the commutative diagram

s) — R W(G;—Wy 00 ),

Let us evaluate its derived functors. By iv, we have

RPHO ((U,—U), . , ) = HP(WU,—U), -, )
i iel i iel

‘ Recalling that fp is an exact functor, by the hypothesis on Cat Tyo

and that jM is an exact functor,which carries injectives into i-acy
clics, we obtain )

RACE ij.) = £ oRY(ijy) = £ o(R¥i)ejy = £ o %e]

p M P M P M P M

Both results elucidate the first member of the spectral convergence
in question. Concerning to the second member, 2.10,i implies

o s ~ o
Ho((U— U); ;5 ) o (£,i§y) = H°((U,— U)
Therefore, recalling that H°((Ui——* U)ieI , ) o 1= Iy » we obtain
Hy ((U,— W) r 5 ) oo (fpijM) = Tyoely

and so, since jM is an exact functor which carries injectives into

cep 0 ) Uiy

FU-acyclics, we have

RMHS ((U,— ), s ) o (£,05)) = R(rgdy) = (R7ry) o gy =

=HYNU, ) o dy
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We introduce the limit cohomology of presheaves by a more general
procedure than the one used by Artin in {1} . Of course, both de
finitions agree in the case that the category of values is A3.

Let A be an Al category and let T be an arbitrary topology. If U
is an object of Cat T and K is a subcategory of KU, for each integer
n 2 0 we define the functor Hy(K, ): P(T,A) —> A by:

H?( ,P) = lim H;‘.( sP) o k* , P e ObP
where k: K — KU is the inclusion functor (notice that H?( »P)
*
Ky — A).
It is straightforward, to check the following propositions:

i) If A is an A2 category and K is filtrant, then H;(K, ) is an
exact cohomological functor.

ii) If A is an A3 category and K is filtrant, then H?(K, )=RnH?(K, ).
(Concerning to i, the usual statement about the exactness of the 1i
mit is required; and for ii, the proposition i tell us that it is
enough to show that H?(K, ) vanishes on injectives, if n > 0).

Notice that all the other results of {1}, concerning to limit cohomo
logy, are preserved by our definition.

v
The Cech cohomology of presheaves is introduced following {1}.

Now, we focus our attention in the relative limit cohomology.

DEFINITION 3.8. If M is a subspace of C and K is a subcategory of K
for each integer n > 0 we define the functor H;(K, ): PM — A by

u

Hy (K, ) = Hp (KegM, )

(Notice that Kx,M is a subcategory of K, x_M , which is a subcategory
X gory ux

of KUXXM)'

THEOREM 3.9. The following statements are true:
i) KxgM = K'x M =—> u;;(K, ) = HMn(K', ).
ii) H;(K, ) = H?xck, ).

If k: K — KU is the inclusion functor, then for any presheaf P wer
M we have

iii) HJ(K,P) =lim u;( »P) o k*
If K* is filtrant, then:

iv) HQ(K, ) o iM = FUXXM
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If A ig an A2 category and K* i filtrant, then:
*
v) HM(K, ) is an exzact cohomological funetor.
If A is an A3 category and K* is filtrant, then:
vi) Hy(K, ) = R°Hy(K, ).
.o p q n
vit) HM(K,HM(F))='77'>HM(U.F)

If A ig an Al category, K* {8 filtrant, C has a complement operator
c such that (C,c) is ctcz, Cat Tx has fibered products and M 18 a
closed subspace of C, then for any sheaf F over X we have:

viii)If F ie null outside M, then Hy(K,F/M) = H*(K,F).
If A is an A3 category and X is final in Cat Txs then we also have:

iz) If F is null outside M, then Hﬁ(K,p“Hq(F)) > H®(U,F).
P P

Proof: i) and ii) are trivial.
iii) If kM: KXXM —_— KUxXM is the inclusion functor, by definition
we have for any presheaf P over M

H?M(KxxM,P) = li$ H?M( P) o ki
and it is clear that
lin u?M( ,P) o kit = linm H?M(.xXM,P) o k*
iv) Notice that
K* filtrant > Kx,M* filtrant
and so, we have

19 3 -~
1ITM(KXXM, ) o iy = FUXXM
* .
v) Since KxxM* is filtrant, then HTM(KxxM, ) is an exact cohomologi

cal functor.

vi) Recalling that K* is filtrant, we have
n ~ Nyro
HTM(KxxM, ) = R HTM(KxXM, )
vii) By the same reasons, we have the spectral convergence
H%’.M(KXXM , H‘}M(F/,\l)) — H'.} (Ux M, F/M) .
P M

viii) Applie 3.7, vi and pass to the limit over K*, using the pro-
position iii.

ix) It can be obtained as 3.7,vii.

v
We end this section-introducing the relative Cech cohomology of pre
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sheaves. The definition is not the expected one, because the natu
ral definition do not preserves the relative character (see 3.11,i).
However, in the special case 3.11,xi both procedures agree,.

DEFINITION 3.10. If M is a subspace of C and U is open, for each
integer n > 0 we define the funetor ﬁ;(U, ): Py — A by:

Hy(U, ) = Hp (Ux,M, )

THEOREM 3.11. The following statements are true:

L) UxM = Utk M > (U, ) = HA(U', )
Hy W, )

lim n;( ,P)

i) HI(U, ) o iy = -

If A is an A2 category, then:

i) HR(U, )

n

iii) ﬁg(u,p)

v) ﬁ;(U, ) is an exact cohomological functor.
If A is an A3 category, then:
vi)  Hy(U, ) = RPH(U, )
vii) Hg(U,Hg(F)) - H;(U,F)~

ey vl 2 2
viii) Hy(U,E/M) = Hé(U,F) » Ty (U,E/M) © Hy (U,F)

If A is an Al category, C has a complement operator c such that
(C,c) is ete”, Cat Ty has fibered products and M is a closed sub-
space of C, then for any sheaf F over X we have:

iz) If F is null outside M, then Hy(U,F/M) = U"(U,F)
If A is an A2 category and X is final in Cat TX’ then we also have:

x) If F is null outside M, then HP(U

.oMp(Hq(F))) == H"(U,F).

If A is an Al category and M is a subspace of C such that any cover
ing of UxxM is induced by Py from a covering of U, then we have:

zi)  HR(U, ) = HR (K, ).

Proof: i), ii), iii), iv), v), vi) and vii) can be obtained as the
homologous propositions of 3.9.

viii) It follows immediately from
v1 1 . -2 2 MR
g, (Ux LB = By (UxMLE/M) gy, (Ux M, E/M) C gy (UxM,E/M)

It should be pointed out that viii could be obtained from vii just
as in the absolute cohomology case.
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ix) and x) can be obtained as 3.9, viii and 3.9,ix, resp.

xi) The hypothesis on M tell us that KUXXM = Kyx Hence, we have

XM

n . oyn
HTM(KUxXM, ) = HTM(KUXXM’ )

or equivalently

v

Hg (U, ) = Hy(Ky, )
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NOTE ON GALOIS EXTENSION OVER THE CENTER
by Manabu Harada

"In {2} S.U.Chase, D.K.Harrison and A.Rosenberg obtained a Galois
Theory for strongly Galois extensions of commutative rings (CHR-
Galois). ' This was generalized to non commutative rings by F.R.
Demeyer {3} , T.Kanzaki {6} , H.F.Kreimer {8} and others. Recent
1ly, O0.E.Villamayor and D.Zelinsky obtained in {11} a weak Galois
theory of commutative rings in order to study the strong one from
a different point of view.

In the first section of this short paper we shall use similar ar-
guments to those of {11} to show that if an algebra A over a com-
mutative ring R is a strongly Galois extension of R, then A and its
center C are weakly Galois extensions over C and R, respectively

If A is a weakly Galois extension over C, A is the sum of all C-mo-
dules Jo (see below or {10} for the definition of Jg ). By means
of some properties of the J_ 's, we shall study in section 2, a Ga-
lois theory over the center, the argument being similar to that of
{7} and {5}, Theorem 1.

The author would like to express his thanks to Professor 0.E.Villa
mayor for inviting him to Universidad de Buenos Aires and giving
an opportunity to see his and Zelinsky's preprint of {11}.

1. GALOIS EXTENSION OVER R.

Let R be a commutative ring with identity, A an algebra over' R, C
the center of A and G a finite group of automorphisms of A. We
say that A is a Galois extension with respect to G of its G-fixed
ring A® if there exist elements X 5 ¥y i=1,2,...,n, in A such
that Z“Go(xi)yi = 60’1. We note that if A® = R, then A is a fi-
nitely generated and separable R-algebra by {9} , Lemma 2.

Let T be an R-subalgebra of A and G the group of all automorphisms
of A leaving invariant the elements of r.We quote here the defini
tion of weakly Galois extension of {11}: A is said to be a (right)
weakly Galois extension of I if the following two conditions are
satisfied:

a) A is a finitely generated projective right r-module.

b) Ga, = Hom (A,A), where Zgixil(x) = Zgi(xix) for gieG,xi,AeA

LEMMA 1. Let A be a strongly Galois extension of R with group G.

If R has no proper idempotents, then A and its center C are weakly
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Galois extensions of C aqnd R, respectively.

Proof: Since A is a finitely generated R-module, there exist mutual
ly orthogonal primitive central idempotents e, such that 21_1 i = 1.
Then Homg (A,A) = ziOHONCei(Aei’Aei) and HomR(C,C) ZiOHom ei(Cel,Ce-i).

Let Ti = {gleG,g(ei)=ei}. We can easily see that e, is a strongly
Galois extension of Re with group T (see {3}). Furthermore, Aei
and Ce are strongly Galo1s exten51ons over Ce and Re with respect
to H; and T,/H; by {3} and {9}, where H, ={g|eT »g(d)=c V ceCe,}. Hence

Hom (Ae Ae ) H. (Ae )2 and HomRe (Ce ,Ce ) = (T /H )(Ce ) .Now,
we put H‘ = {hIeG hIAe =h' for some h'eH hlAe =I, ; for 1#3} .Then
H‘ cH = {hIeG h|C= I, }. Therefore, Hom,, (A A) = HA Similarly we

obta1n Hom (C C) = G C, , where G' is the group of all automorphisms
of C over R. Condition a) follows from {1} , since A is separable
over R. '

THEOREM 1. Let A be a strongly Galois extension of R with finite
group G. Then A and its center C are weakly Galois extensions of
C and R, respectively.

Proof: We shall use the same notation and argument of {11} .Since
A is A ® A* -projective, C, = (HomA!L(A,A))x = HomAi(Au’Aa) (cf.{11},
(2.7)). Furthermore, R has no proper idempotents by {11}, (2.13).
Hence, H(x) (A )1 = HomC (A ,A ) and G’(x)(Cx)2 = Home(Cx,Cx) ,
where H(x), G'(x) are as above in A and Cx. Since C is R-finite-
ly generated, all elements of H(x) and G'(x) are induced by ele-
ments of H and G', respectively (by {11}, (2.14)). Hence (HAl)x=

= H(x)(Ax)2= Homcx(Ax, x) = (Hom , A)) since A is C-finitely ge-
nerated and projective. Therefore, HAz = HomC(A,A). Similarly
G’Cl = HomR(C,C).

We shall give latter an example in which a strongly Galois extension
of R is not a strongly Galois extension over its center with respect
to the corresponding subgroup.

2. GALOIS EXTENSION OVER CENTER.

In this section we always assume that A is a separable algebra over
its center C. 1If HA, = Homg (A,A), then for any element x in AH, X,
belongs to the center of Homg (A,A) = C; hence L C. We shallstudy
some properties are treated in {7} and {10} . For o ¢ H let Jg; =

= {x|er , yx = x0(y) for all yeA} = Hom, % (A ,Ac), where Ac is the
same module as A as left A-module and the operation o f
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A as right A-module is defined by x#y = xo(y). Furthermore, A =

A ®.J, and A = AJ_ (see {10}). For any element X0eJ 0 <

A H(x,0)(y) = X5 (y)™ YXr for every y € A, Hence, (J )¢ = (J’a)r

.and Ao = AJo,0 = Az(Jc)r = A, e.c(J'u)r since A,'Ar = A, @A by {1}.

PROPOSITION 2. Let A be separable -over its center C and S a subset
of H. Then SA, = Homc(A,A) if and only if A = Zoech .

Proof: SA, = Zces o=, e (J,), - Since C is a C-direct sum-
mand of A and Hom (A,A) = L Ar’ the proposition follows.

COROLLARY. A is a weakly Galois extension if and only if A= Zaes o?
where S is a finite subset of H. Furthermore,A is generated by u-
nitsas C-module if and only if SA, = Homc(A,A) and the elements of
S are inner-automorphisms.

Proof: It is clear.

Let S be a subset of H. We call S strongly distinct if there exists

a family of elements {xéa) (°)}::T(°), o € S such that

(o), (o) _
Zt(xi )yl o= 61’0 for all o,t ¢ S.

It is cleatr that this condition is equivalent with the existence of
Galois generators if S is a group.

THEROREM 3. Let S ,J  be as above and T = Zoes g+ If S isstrongly
distinct, then T = Xoes g+ Conmversely,if I = zaeSOJ and T is a di
rect summand of A as C-module, then S is strongly distinct.

Proof: Assume that T = ZUOJG and T is a direct summand of A as C-
module. A, ® A = Hom (A,A), since A is C-separfble. Let p, be a
projection of A onto J . Then P, € Homc(A,A). Hence, there exist

elements {xgo) (0)}::?(°) in A such that Xxgg) ® ygg) = p,. There

fore, 0 = p_(J ) = JTZr(x§°))yi°) for ofr. Since AJ =A, Zr(x("))y(“)=
= 0. Similarly, J (I - Xu(xé°))y§°)) = 0. Hence, I =Zu(x(°))y(°)
Conversely, assume S is strongly distinct. We assume O-ZuszO ’

2, ¢ J . Then 0 = Ziz;xéc)zryia) = Zcza(zir(x§°))y£°)) = z_ .Hence,

r = XQJU .

LEMMA 2. Let A D B be R-algebras. If B is R-separable, then VA(B)
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i8 a direct summand of A as two-sided %‘(B)-module, where VA(B) =
= {a|e¢A , ba = ab for all b ¢ B}.

Proof: We consider A as a left B ORB*-module. Since B is R-sepa-
rable, there exist elements {xi,yi}i in A such that inyi = 1 and
be1 oy, = in © y;b for all b ¢ B. Now we define a map $:A — A
by setting ¢(a) = Z(xi ® yHa = inayi for a ¢ A. From the above
relations of {xi,yi! we obtain ¢(A) & VA(B) and ¢|VA(B) = IVA(B)'
Furthermore, ¢(§gﬁj = Zixiaa'yi = (inayi)a' = ¢(a)a' for a'eVA(B).

Similarly ¢(a‘a) = a'¢(a). Hence, ¢ is VA(B) - VA(B) homomorphism.
Since VA(B) is VA(B) - projective, A = VA(B) ® ker ¢.

PROPOSITION 4. Let A be a central separable C-algebra and T a se-
parable subalgebra (T = C). Then T is a direct summand of A as a
two-gided T'-module.

Proof: We know from {6}, Theorem 2 that r =V A w A (r)) and
vV, (r) is C-separable. Hence the proposition follows from Lemma 2.

From now we assume that the subset S of H is a finite group G.

PROPOSITION 5. Let A be a central separable C-algebra and G a fi-
nite subgroup of the group of C-automorphism of Ay let T = XceGJo'
Then the following statements are equivalent:

1) r=7F .8 and |G| is a unit in C.
2) r=7J .8 and T is C-separable.

3) A is a strongly Galois extension of £¢ and ¢ is C-geparable.

Proof: 1) «— 2) It is clear from ({4} Lemma 4) by localization
of C.

2) — 3) Since r is C-separable, T is a direct summand of A as
r-module by Proposition 4. Hence, G is strongly distinct by Theo-
rem 3.

3) — 1) |G| is unit in C by {5} , Proposition 5,and the rest is
clear.

LEMMA 3. Jth = Jro for any o,t .

Proof: Let m be a maximal ideal in C. Then (Ja)'n = HomAz(Am,Amo)=
= = u-1 - = -1
Cmuo, where o(y) u-lyu . Hence, (JOJT)m CmuauT and utc(uour) .
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uu belong to C Therefore, JOJT =J

ott¥1o 10 °

PROPOSITION 6. Let G be a finite subgroup of H and assume A is a
strongly Galois extension of AG; let Q be a separable C-algebra be
tween A and A®. Then the following statements are equivalent:

1) Q= A for some subgroup H of G.
2) A Q) = ZcesJ for some subset S of G.

3) There exist elements {xi € Ry, € A} such that inyi = 1 and
Ie(x;)y; = 0 for ola # Io, o € G. ({8}, Proposition 3.5).

Proof: Since v, (2)¢g ZasGeJO"S is a subgroup from Lemma 3. Fur
thermore, Homnr(A,A) = A, Oc v, (n)r by {6} , Theorem 2, since @
is C-separable and therefore 1) and 2) are equivalent.

1) — 3) Let G = EinH. Then T = zoec ZiPHin and T is a

direct summand of A as r-module, where Ty = ZOEHOJU' Let p be a
projection of A onte r J. = J.. Then p ¢ Hom (A,A) = (AH) ® A_.
H i PHR. L

H
Hence, there exist {x; e AR, y; € A} such that ing ® y;r = P.

3) — 2) Put H = {0]|eG, of@ = I_}. Then V, (2) 5] Let

Q osH o’
y eV, (@) andy

+ o . = yl=
xpl xp2 , where xp. e J 03 Then y = yI

= yzxiyi = inyyi = ijixixpjy Xx Zp (xg)y; = Xo, " Hence VA(Q)=

- ZceHJu'

Finally, we shall give an example of a strongly Galois extension A
of R, such that A is not a strongly Galois extension over its center
with respect to its subgroup. However A is a strongly Galois ex-
tension over its center with respect to a suitable group.

Let G2 be a cyclic group of order 2 and Q the field of rational num

bers. Put G = G, x G, and K = Q(¥2). Then L = K GQK is a strongly

Galois extension of Q with respect to G by {9} ,Proposition 1
Let g and h be the inner-automorphisms of innduced by
-1 0 0 1

and
0 1 1 0

respectively. Then (g) x (h) = G and Q2 is a strongly Galois exten
sion of Q with respect to G, since %{311,311,322’3221e211312,3121321}

is a family of Galois generators. Put A = Q2 ® L. Then A is a strong
ly Galois extension of Q with group G if we define g(a+b) = g(a)+g(b)
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for g e G, a e Qand b ¢ L. It is clear that the fixing group of
its center is equal to G. But if we define g(a + b) = g(a) + b ,
then A is a strongly Galois extension of its center with respect

to G.

{1}

{2}

{3}

{4}

{3}

{ 6}

{7}

{8}

{9}

{10}

{11}
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A MEAN VALUE THEOREM AND DARBOUX'S PROPERTY FOR THE
DERIVATIVE OF AN ADDITIVE SET FUNCTION WITH

RESPECT TO A MEASURE ON E"
by R. J. Easton, and S. G. Wayment

1) INTRODUCTION: During a recent investigation of existence and
equality almos everywhere of the cross partial derivatives fx and
fyx, a somewhat different derivative Df for a function f(x,y) was
used {4} . This derivative Df is also defined for a function f of
n-variables. The purpose of this paper is to establish a mean val
ue theorem and a Darboux property for the function Df, and to gen-
eralize these results to the derivative T'* as defined on pp. 268-
271 of {8}. A similar result was obtained by L. Misik in {7}, but
the technique is much more cumbersome. The method of proof is the
same as that given in {5}. In the case n=2 the technique of proof
is used to establish a theorem concerning the equality of the three
derivatives. For simplicity the proofs and definitions will be given
for n=2,

I1) THE DERIVATIVE Df: Let R = [a,bjc,d] = {(x,y) |xe[a,b],ye[c,d]}.
If £f(x,y) is a function whose domain contains R, then the f-area of
R is denoted by F(R) = f(b,d) - £(a,d) - f(b,c) + f(a,c). The or-
dinary area of R will be denoted by A(R). A rectangle R [a,b;c;ﬂ
is said to be of order M, if M > 1 and 1/M < (d-c)/(b-a) < M. One
then defines the upper and lower derivatives of order M at a point
(x,y) to be 1iIm and lim respectively of ratios of f-areas to ordi-
nary areas of rectangles or order M which contain (x,y) and whose
areas converge to zero. Then f is said to have a derivative of or-
der M, DMf(x,y) = DMf(P), at P = (x,y) if the upper and lower deri-
vatives of order M are equal. The function f is said to be two non-
decreasing if the f-area of each sub-rectangle of R is non-negative.
It follows {2}, that if f is of bounded variation in the sense of
Hardy, then except for a set of measure zero, DNf = DMf for each

N >M > 1. The common value is denoted by Df. It also follows {4},
that fxy and fyx each exist except possibly on a set of measure zero

111) THE MEAN VALUE THEOREM:

THEOREM 1: If DMf exists at each point P of a closed rectangle R of
order M and f is continuous at each point of R, then there exists a
point Q € R such that D £(Q) = F(R)/A(R).
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Proof: Suppose R1 =R = [a,b;c,d] and divide R1 into four rectan
a+h/2 , y = b+k/2 where h = b-a and k =d-c.
Denote the rectangles, beginning in the lower left hand corner and
proceeding counterclockwise, by Rll’ R12’ R13, Rla’ and observe that
each of the four rectangles is similar to Rl. It follows that

gles using the lines x

4 - 4 -
Zi=1F(Rli) F(Rl) and zinlA(Rli) = A(Rl)
and hence there must exist a j and a k such that

F(le) > (1/4)F(R) and F(R (1/4)F(R1).

1) <

We now proceed 'to find a rectangle R2 of order M with sides paral-
lel to the sides of R1 such that R2 c R1 , F(RZ) = (1/4)F(R1), and

A(Rz) = (1/4)A(R1). 1f F(Rli) = (1/4)F(R1) for some i, then choose

R2 = Rli' Suppose equality does not hold for any i and consider the"
case j=3 and k=1. The other cases would follow in a similar manner.

Let o = h/k and define the auxiliary function
g(t)=f(a+t+h/2,b+at+k/2)-f(a+t,b+ut+k/2)-f(a+t+h/2,b+at)+f(a+t,b+at).

Then g(0) = F(Rll) , g(h/2) = F(R13) , and g is a continuous functim
of t for 0 < t < h/2. The ordinary intermediate value theorem for a
function of one variable guarantees the existence of a toe(O,h/Z)
such that g(to) = (1/4)F(R1). This value t, defines R2 and we note
" that F(Rz)/A(Rz) = F(Rl)/A(Rl). In the sequel we shall refer to the
above selection process for determining R2 as the sliding technique.
We proceed inductively to define a nested sequence of closed rectan
gles {Ri} , each of order M with sides parallel to Rl’ such that

DOFRyp -

ii) A(Ri+1)

By the nested interval theorem there exists exactly one point Qe(\Ri,

(1/4)F(Ri) and
(1/8)A(R,).

and DMf(Q) = }iﬂ F(Ri)/A(Ri) = F(Rl)/A(Rl)'

We shall say that the set function F has property I provided the aux
iliary function g(t) has the intermediate value property along the
lines x = constant, y = constant, and y = tax. We have the somewhat
stronger result.

THEOREM 2. If DMf exists at each point P of a closed rectangle R of
order M and the set funetion F has property I, thenm there exists a

point Q ¢ R such that DMf(Q) = F(R)/A(R).

The following example shows that theorem 2 is a stronger result.
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EXAMPLE 1: Let f(x,y) be defined as follows on the unit square:
f(x,y) = 1 if y is rational and
f(x,y) = 0 if y is irrational

Then DMf exists and is zero at each point of the unit square and the
set function F has property I.

We now proceed to remove the condition that DMf exist along the bound
ary of R.

THEOREM 3. If R ig a rectangle of order M,VDMf existe at each point
P ¢ int(R), and F has property 1, then there exists a point Qeint(R)
such that.DMf(Q) = F(R)/A(R).

Proof: We will use the same notation as in theorem 1 and modify the
selection process to obtain, for some k,an R < int(R). We consider
the following two cases:

1) If R, # Rli for any i, then RZ has at most ome edge contained
in bdry(R). '

2) If R, =Ry, for some i, say i=1, then the following argument
allows us to choose R3' with at most one edge contained in bdry().

Divide R2 into R21, R22, R23, Rza, and if F(R21) = F(Rzz) = F(R23) =

= F(RZA) = (1/4)F(R2), choose R, = R,q c int(R). 1If F(RZI) # (1/4)F@2)

for some i, then the sliding technique gives an R, with at most one
edge contained in bdry(R). For case (1), suppose the bottom edge of
_ R2 is contained in bdry(Rl) and divide R2 as before: If F(RZi) =

= (1/4)F(R2) for i=3, choose Ry = R,, and if F(R23) # (1/4)F(R2),then

the sliding technique will again give an R, C int(R).
IV) A DARBOUX PROPERTY:

THEOREM 4: Let 0 be a connected open set in E2. Suppose DMf exists
at each point of O and that F has property 1. Let P, Q e (O and sup-
pose DMf(P) = a, DMf(Q) =8, a < B, and » ¢ (a,B). If PQ is an arec
which is contained in 0 with endpoints P and Q, then for each e > 0
there exists a point S € 0 such that the distance d(s,PQ) from S to
PQ is less than ¢ and DMf(S) = ). K

Proof: Construct a polygonal arc ﬁb from P to Q consisting of hori-
zontal and vertical straight line segments such that each point of
PQ is within min(£/2,e/2) of PQ, where £ = d(PQ,bdry 0). Let u =
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= min [e/Z,(A-a)/Z R (B—x)/Z]. There exist rectangles R1 and R2 of
order M centered at P and Q respectively with edges parallel to the
coordinate axes and having the same base and height, such that

|E(R1)/A(Rl)-u| <u, |F(R2)/A(R2)-B| < u, and diam(R;) = diam(R,) <
< min(e/2,£/2).

Since F has property I the sliding technique allows us to obtain a
rectangle R or order M, with sides parallel to the coordinate axes,
centered at a point of ﬁQ such that diam(R) = diam(Rl) and F(R)/A(RF
= A. Theorem 1 implies the existence of a point S ¢ R such that
DMf(S) = 1 and d(S,PQ) < €.

REMARK. Let u be Lebesgue measure on E" and let T be any absolutely
continuous measure with respect to u. Further suppose that the de-
rivative T' *(x), as defined in {8}, exists at every point in an in
terval R < E®. The above technique may be used to establish a mean
value theorem and a Darboux property for this derivative. These re
sults also hold if T is an additive set function defined onat least
the closed intervals in E" and has the intermediate value property
along straight lines in the appropriate directions, u is a transla-
tional invariant measure which is finite on regular rectangles, and
T' *(x) exists at every point in Int (R). A further generalization
is given in Section VI of this paper.

V) A THEOREM ON THE EQUALITY OF THE DERIVATIVES fxy” fyx’ and Df.
It is well known that if fxy(x,y) exists at each point of an open
set 0 and R is a closed rectangle with R ¢ 0, then there exists a
point P ¢ int (R) such that fxy(P) = F(R)/A(R). Example 1 shows
that there are functions for which fxy(x,y) and Df exist on a rec-
tangle and fyx fails to exist at any point. Also, the example can
be modified by defining f(x,y) = 2 whenever x and y are rational ,
f(x,y) = 1 if exactly one of x or y is rational, and zero otherwise
to give a function such that Df exists on a rectangle while both
fxy and fyx fail to exist at any point.

THEOREM 5. If fxy and DMf exist on an open set 0 and (a) the function
fxy is continuous or (b) the related set function F has the interme-
diate value property along straight lines in the appropriate direc-

tions and DMf 18 continuous, then fxy(P) = DMf(P) for each P e 0.

Proof: Suppose fxy is continuous. Let {Ri} be a sequence of nested
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rectangles of order M contained in 0 and closing down on P. Then

DMf(P) = lim F(Ri)/A(Ri). For each i there exists a point Pi € Ri
i+

such that fxy(Pi) = F(Ri)/A(Ri) and the continuity of fxy gives the

desired result.

Suppose that DMf is continuous and that the set function F has the

intermediate value property and hence theorem 2 applies. Let P =

(xo,yo) e 0. If ¢ > 0 then there exists t, such that 0 < t, < e and

l[fx(xo,y°+t1)-fx(xo,yo-tl)]/2t1-fxy(xo,y°)| < €/3. There exists
t, > 0 such that t, = nt, for some integer n and so that

[[f(x°+t2,y°+t1)-f(xo-tz.yo'ftl]/ [2t2] -f, (xo,y°+t1)]/[2t1] <e/3 and
A

[[f(x°+t2,yo-tl)-f(xo-tz,yo-tl]/[21:2]-fx(xo,y‘o-tl)]/[Ztl] <e/3. We
can now divide rectangle R = fxo-tz,x°+t2;y°-t1,y°+t1] into n sqares

and conclude from the sliding technique that there exists a square
R' such that R' ¢ R and F(R)/A(R) = F(R')/A(R'). Hence there is a
point P' ¢ R' ¢ R such that D,f(P') = F(R)/A(R) and hence ]DMf(P')-

- fxy(Po)l < e and d(P',P) < e. Continuity implies the desired re
sult.,

VI) A FURTHER GENERALIZATION:

We shall say that the additive set function F has property C provided
the auxiliary function g(t) as defined in theorem 1 is continuous a-
long the lines x=constant, y=constant, and y = tax. Note that pro-
perty C implies property I.

THEOREM 6. Suppose that S and T are additive set funections defined
on rectangles, u is a translational invariant measure, and S' *(p)
and T' *(p) exist at each point p € Int (R) and T' *(p) # 0 for any
P. Then there exists a point q e Int (Ro) 8o that

S(R,) 8" *(q)

T(R,) T' *(a)

Proof: Let U(R) = S(RO)T(R)-T(RO)S(R). Then U(Ro) = 0 and U has
property I. Hence there exists a point q ¢ Int (Ro) so that U' *(q)=
=0 = S(RO)T' *(q)—T(Ro)S'*(q). This holds without the condition that
T' *(p) # 0 for p ¢ R . The result now follows.

The method of proof in the preceding theorem allows one to remove the
condition of translational invariant u. Suppose- S and T are additive
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set functions defined on rectangles and having property C. Define
ds(p)/dT to be the limit of the ratio of the S area to the T area
of regular rectangles as the diameters of the rectangles tend to
zero.

THEOREM 7. If dS/dT exzists at each point p in Int (Ro), T(R) # 0
for R Ro, and S and T have property C, then there i8 a point
q ¢ Int (Ro)so that dS(q)/dT = S(Ro)/T(Ro).

Proof: Define U as in theorem 6. Then use the procedures of the-
orems 1 and 3 to, define a nested sequence {Ri} of rectangles closing
down on q ¢ Int R and such that U(Ri) = 0. Then S(Ro)/T(Ro) =

= S(Ri)/T(Ri) and the result follows.

REFERENCES

{1} Burkill, J.C., and Haslam-Jones, U.S., The Differentiability
0§ functions of Two Vaniables, Journmal of the London Mathema-
tical Society, vol. 7 (1933), pp. 297-305.

{2} cClarkson, J.A., and Adams, C.R. On Definitions of Rounded Va-
niation fon Two Variables, Transactions of the American Mathe
matical Society, vol. 35 (1933), pp. 824-854.

{3} clarkson, J.A., and Adams, C.R., Propenties of a Function Fix,y)
of Bounded Vardiation, Transactions of the American Mathematical
Society, vol. 36 (1934), pp. 711-730.

{4} Easton, R.J., Tucker, D.H., and Wayment, S§.G., On the Existen-
ce Afmost Evenywhere of the Cnoss Pantial Denivatives, Mathe-
matische Zeitschrift, 102, 171-176 (1967). )

{5} Easton, R.J., and Wayment, S.G., The Sfiding Inteaval Technique,
The American Mathematical Monmthly, vol. 75, Oct. 1968,pp.886-888.

{6} Marcus, Solomon, On Communtativity of the Second. Onden Cross
Pantial Denivatives, Proceedings of the American Mathematical
Society, vol. 12, N°4, (1961), pp. 562-564.

{7} Misik, L., Der Mittelfwenrtsatz Fur Additive Inteaval Funktionen,
Fund. Math. XLV, (1957), pp. 64-70.

{8} Munroe, M.E., Introduction Zo Measunre and Integration, Addison-
Wesley Publishing Co., Inc., Reading, Massachusetts, (1953).

{9} Serrin, James, On the Differentiability 0f Functions of Several
Variables,Archive for Rational Mechanies and Analysis, vol. 7,
N° 5, (1961) , pp. 359-372.

{10} Young, W.H., Sur La Derdivation des Functions a Varndiation Bornee,
Comptes Rendus, vol. 164 (1917), pp. 622-625.

Indiana State University
Utah State University









REVISTA DE LA UNION
MATEMATICA ARGENTINA
Volumen 24, Numero 3, 1969

NOTES ON COMARGINAL PROBABILITY MEASURES
by A. Diego and R. Panzone

1. INTRODUCTION.

By S = (Q,A,B,C,PI,PZ) we shall denote a system consisting of two
c-algebras B, C of subsets of 2, the generated c-algebra A=1(B,(),
and probabilities P, P2 defined on B,C respectively, which are

compatible in the sense that P, = P2 = P on the intersection o¢-al-
gebra D = B n C.

A probability Q on A such that its restrictions to B, C are Pl’Pz’
respectively, is said to be comarginal with Pl’ P
marginal.

g» OT briefly co-

A probability Q on A, not neccesarily comarginal, is called commu-
tative if on A-measurable Q-integrable functions:

B c B _ D
(M Eqy - Eq = Eq « Eq = Eg @] ,
where Eg denotes the conditional expectation operator with respect
to the o-algebra G < A and to the measure Q.

The main problem we consider here is to search under’what conditions
a system S admits a comarginal and commutative measure Q. For such
a measure we can assert its uniqueness. Owing to this fact and to
the following example we shall call Q the (generalized) product mea-
sure on S.

Given the probability spaces (2,,8',P]) , (nz,c',pé) the system S
formed by @ = @) x 9, , B = 171 (8') , € = m;2(C') , A = <(3,0) ,
Pi = Pi L, (ni = projection on ni), i=1,2, admits the comarginal
and commutative measure Q = Pi x Pi . The relation of commutation

(1) is here Fubini's theorem.

In this example D = {¢,R} ; the opposite extreme case, when D = B
(br'v = C), gives us also an example very trivial for a product mea
sure: Q = P2 (or Q = Pl)'

Intermediate cases can be given as follows:

Let @ = Q,  x Qy x Q, and probabilities dx, dy, dz be given on o¢-al-
gebras Bx, By, Bz of Q. ny, ﬂé“respectively. We define B = {¢,ﬂx} -]
® By ® Bz, C = Bx (] {¢,ny} ® Bz and the probabilities dP1 = dy dz ,
sz = dx dz. Here D is isomorphic to Bz and the system (Q,A,B,C,PIIE)
has the product measure dQ = dx dy dz.

The preceding situation always appears in a Markov process. Assume
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{xi}i-l,z.. is a Markov chain and B = r(xl,... xn) » €= v (x ,X 4q.)
and D = r(xn). The product measure Q turns out to be the probability
associated with the process, and the relation of commutation (1) canbe
rewritten as expressing the conditional independence of past (B)

and future (C), given the present (p). (cf.{1},§14,0or {4}, part A,

ch. II).

For further examples we refer to {1} , §3.
2. COMARGINAL MEASURES AND BILINEAR FORMS.

We shall say that T: B x C — [0,+=) is a (positive) bilinear form
on the system S = (Q,A,B,C?PI,PZ) if T(B,C) is additive in each va-
riable separately; and T will be said to be compatible (with Pl’PZ)
if T(B,q) = P, (B) , T(2,C) = PZ(C) , for any Be B, C e C,

To each finitely additive measure Q on the algebra A, = Bv C comar
ginal with Pl' P2 we associate the compatible bilinear form T(B,C)=
= Q(BC), which verifies: T(B,C) = 0 if BC = g. Conversely:

THEOREM 1. Every compatible bilinear form T on C such that T(B,C)=0
whenever BC = g, defines on Ao a unique finitely additive comarginal
probability given by Q(B.C) = T(B,C).

Proof: We define Q(BC) = T(B,C). If BC = B'C', then BC=(BB')(CC')=
.= B;C;. To prove that T(B,C) = T(B',C') it is enough to prove that
T(8,C) = T(B;,C;). It follows from T(B,C) = T(BI,C) + T(B-BI,C) =

= T(B,,C), since (B-BI)C = g, and from T(Bl,C) = T(Bl'cl)' Hence Q
is well defined on sets of the form BC , B¢ B, Ce C.

Let BC = ZaBaCa, where o runs on a finite family of indices. 'In or
der to prove that Q can be (uniquely) extended to 50 as a finitely
additive measure it is enough to prove that Q(BC) = ZGQ(BuCu).

Let {B;} be the partition of B defined by the B}s and {Cj} that de-
fined by the Cys on C. We can assume from the beginning that B e B,
C, © C. Since B, = sta’m » Cy = chu,n» denoting by B, . (C, ,)the
sets of the mentioned partition of B (C) included in B, (Cu), we have:

zi,jBicj = BC - zaBuca = zu(ZmBu,m)(ana,n) = zu(zm,nBa,mCa,n)

This means that in the first and last sums appear the same non-void
terms. Therefore, from the bilinearity of T we get

QBC) = T(B,Q) = [; 5T(B3,Cq) = Loy oT(B00G0) = L T(UgBy olnGoed =
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= 1, T(B,,C,) = ZGQ(BG.CG) Q.E.D.

REMARKS. 1) It is not true, in general, that Q is o-additive. In
fact, let 2 be the triangle on the plane defined by x > 0 , y > 0,
X +y < 1. B (C) the Borel sets of @ depending only of x(y). For
Be B (Ce C) we define PI(B) = m(B'), (PZ(C) = m(C')), where B'(C)
denotes the projection of B (C) on the x (y) axis and m the Lebes-
gue measure on (0,1).

The bilinear form T(B,C)=I IB.(t)1C,(1-t)dt is compatible with Pl’
0

P, but, as it is easy to see, 2 can be put as a countable sum of
rectangles B.C for which T(B,C) = 0.

2) Let us observe that if T is bilinear and comarginal then T is
also o-bilinear; i.e. o-additive in each variable. In fact,
T(13aBy»C) = T(I1.1B;,C) + T(I ,B;,C), then

IT(15a1B55C) - I3 T(B5,ON| < I, T(B ,0) = [N P (By) —0 if n—e.

Then the proof of the .theorem remains true if we assume that a runs
on a countable family of indices such that the Ba's and the C;s de
fine, respectively, countable ﬁartitions of the spaces Q.

For example, we can assert the o-additivity of Q if A is defined by
a countable partition of Q.

3) In theorem 1 we can assume T(BO,CO) = 0 if BOCo =4 for Boe Bo
c B, C° eco < C , where BO,CO are collections of sets with the ap-
proximation property : PI(B) = sup PI(B ) , PZ(C) = sup P2(C ) , for
BocB ° CocC °
B ¢ B, CecC. B°¢B° CoeCo
In fact, if B, <B, C,< C, and B.C =g : T(B,C) = TIB-B°+B°,C-C°+CJ=

= T(B-B_ ,C) + T(B,,C-C ) + T(B ,C ) < P, (B-B ) + P,(C-C ). The 1last
member can be done arbitrarily small, hence T(B,C) = 0.
4) The o-additivity of Q follows under the following hypofhesis

1) KB c B, Kc < C are semi-compact classes (i.e. every countable
family of Kg (KC) with an empty intersection has a finite subfa-
mily which also intersects in the empty set) verifying the approxi
mation property (as defined above). ‘

2) Kg.Kp = {K.L ; K ¢ Kg,

In fact, the classlL of finite unions of sets of KB.Kc enjoys the pro

Le KC} is a semicompact class of sets.

perty of approximation in BV C , since , as it was shown above ,
for KeB , L e C we have Q(BC - KL) < PI(B - K) + Pz(C -L .,
then Q(BC - KL) can be done arbitrarily small . L being compact
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and with the approximation property the g-additivity of Q follows
from a theorem of Alexandrov (cf (4}, pp. 47).

3. V-COMMUTATIVE SYSTEMS.

For any probability space (Q,A,P) we define the measurable hull of

X c 2 as a set A ¢ A containing X except by a set of P-outer measure
zero and with minimal P-measure. Of course, the measurable hull is
defined except on a null set of A, and it provides a well defined e
lement of the Boolean measure algebra: A/[P]. If B cA is a g-sub-
algebra of A the measurable hull of X ¢ A with respect to B coinci-
des with (Ef 1, > 0} , [P] .

For a system § = (2,A,B,C,P;,P,) we shall designate vlx , V22X, vX

the measurable hulls of X c @ with respecf to 8,C,0 and to the mea-

sures Pl’ P P respectively.

2 ’
If Q is a comarginal measure on S and E, F , G denote Eg , g s Eg

respectively, we can see that the condition EF = FE = G[Q] (on boun

E

-ded A- measurable functions) is equivalent to Ef = Gf [PI] (on C-mea

surable functions) and also to Ff = Gf [Pz](on B-measurable functions)
(cf {1} ,5 1).

For a comarginal measure Q on S, the condition EF = FE = G implies
vlo2x = v2ylx = vx [Q] for X ¢ A. This condition is equivalent to

v28 = vB [P,] , for any B ¢ B, and also to VlC = vC [Py], for any
CeC. (cf. {1}, §5).

We note that any of these last conditions can be introduced even if
we do not assume that a comarginal measure Q is known. Then we adopt
the following definition:

We shall say that the system S V-commutes if v2B = vB [Pz], ¥ B ¢ B.

From the above considerations it follows:

In order that there exists a comarginal and commutative measure on
S = (2,A,B,C,P,,P,) it is necessary that S be a V-commutative system.

An independent proof will be given in next theorem 2.

A V-commutative system is said to be simple if D/[P] is the Boolean
algebra {0,1}
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L, THE FINITELY ADDITIVE MEASURE ASSOCIATED TO A v-COMMUTATIVE
SYSTEM.

Given the system S = (n,A,B,C,Pl,Pz) we observe that the conditional
expectation operator G can be calculated on B ((C)-measurable functions,
with respect to P1 (Pz) even if there is no comarginal measure. Hence
we can define the compatible bilinear form:

(2) T(B,C) = J G1B.G1C dp

THEOREM 2. In order that Q(BC) = T(B,C)defines a finitely additive co
marginal measure on S it is neccesary and sufficient that S be a v-com
mutative system.

In this case, if Q is a probability on A (i.e. if Q is g-additive), (
is the unique commutative comarginal measure on S. (uniqueness of the
product measure).

Proof: By theorem 1, to prove that v-commutativity implies that Q is
a finitely additive measure, we have to show that B.C = g implies
T(B,C) = 0. From B.C = g we get v2B.C = VB.C = p[PZ]; i.e. {61,>0}.cC=

= ﬁ[Pz]. Then T(B,C) = J G1B.dP2 = 0. Conversely, if Q is a finite
C
ly additive and comarginal measure, S v-commutes. In fact, V2 B

C,VB[PZ] and on the other hand from P;(B - y2B) = 0 we have B - v2B
cC' ¢ C with PZ(C') = 0. Hence Q(B - v2B) < Q(C') = PZ(C') = 0. Then,
Q(B - v2B) = J G1_.dP, = 0.

v2B B 2
This means {G1B > 0}.Cv2B =g [PZ] which implies VB < VZB[PZ].

If Q, as defined above, is a measure, and E, F the conditional expec-
tations with respect to B,C :

(3) Q(B.C) = IG1B.G1C ap = I G1, dQ = JCF1B dq
Cc

Then GIB = F1B , V B¢ B. This implies the commutation of Q. Another
comarginal commutative measure Q' must verify (3), but since

JcmB 4Q' = JCF1BdQ' = Q' (B.C) = Q(B.C) ,

Q and Q' coincide on B v ¢, and therefore on A. QED.

REMARK: The condition y2B = ¢B [Pz]’ B ¢ B, defining a v-commutative
system implies the symmetric one y¢lC = vC [Pl], Cec.

In fact, the first one implies that [G1_.G1_ dP defines a finitely ad
ditive measure, and from this we derive V!C = vC [Pl] as it was done
with v2B = vB [Pz] in the proof of theorem 2. Now, we obtain easily
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v2ylx = vlv2X = vX (P] for each X ¢ Bv C.

THEOREM 3. i) If the V-commutative system S is simple (i.e. D/[P]:=
= (0,1}) then Q(B.C) = P,(B).P,(C). 1In particular for a system S
obtained from a cartesian product (as described in the introduction),
Q=P x P} |

ii) If, conversely, Q(B.C) = PI(B)'PZ(C) defines a finitely additive
measure on B v C, S ig a simple V-commutative system.

Proof: i) "It follows from theorem 2.and the fact that Gl = PI(B).kr
Glg = P, (C).1,.

ii) If D e D we have Q(D) = P(D) = Q(D.D) = P(D)2 , then P(D) = 0 or
1. Glz , Gl; are computed like in i), then [ Gl1g.G1, = Pl(B).PZ(C).
From theorem 2) it follows that S is a V-commutative system.

We shall say that a system S is complete with respect to a comarginal
probability P defined on A if every P-null set of A belongs to D.

THEOREM 4. If the system S is complete with respécet to a comarginal
probability P and R is a commutative probability on .S equivalent to P

then the product measure Q exists and it is equivalent to P.

Proof: Assume f = %% . By hypothesis F; = Gp on B-measurable func-

tions and E; = G on C-measurable functions. We have (c.f. {1} §2):

R

Ep(h) = E(£.0) /¢ gy ,

Fa(@) = F(E.8) [ pegy » Gpm) = GCEm) /gy

" where E, F, G denote here the conditional expectation 6perators with
respect to the measure P and B, C, D respectively.

In {1}, th. 2, §10 , it is proved that the probability measures e-

quivalent to R th%t also commute are characterized as those whose Ra-
don-Nikodym derivd;ives with respect to R are of the form: g.h, where
g (h) is a B(C)-measurable function (both positive and finite [RJ ).

Let us consider the functions:
=+VG—f h=
g —Ef_ ’ F
Then, g.E(h.f) = Gf.E(f/Ff) /Ef = Gf.ER(1/Ff) = Gf.GR(1/Ff) = G(f/Ff) =

= GF(f/Ff) = 1. Analogously h.F(g.f) = 1. From J ghf dP=J gE(hf) dp=
: B B
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- J 1dP = P(B) and j ghf dP = P(C)
B c
We see that the probability Q defined by

QA) = J gh.f dP = J g h dr
A A
is comarginal with P and since Hg = g.h , it commutes and obviously

Qv R. QED.

REMARK: If the system S is complete with respect to P any other co
marginal measure R is absolutely continuous with respect to P, since
P(A) = 0 implies A ¢ D and then R(A) = P(A) = 0. Then, if a product
measure Q exists on S, we have Q « P, In spite of the fact that for
BeB, Ce C, Q(B.C) = 0 implies P(B.C) = 0 (since fG1BG1CdP =0
implies PZ(VB.C) = 0 and then P(B.C) = 0) we have not Q~P, in gene-
ral. Let us see the following example:

Let @ be the product of X and Y, X = Y = (0,1), A = the Borel sets

of X x Y, B (C) the Borel sets independent of y (x), P the probabi-

lity on A equal to E%E (m the Lebesgue measure on (0,1)) plus a mea-

sure of total mass 1/2 concentrated on the diagonal and uniformely
distributed there.

The product measure Q = m x m is not equivalent to P.
If D e D defines an atom of the o-algebra D/[P] it can be seen that
SD = (D,A A D,BAD,CA D,Pl/Pl(D),PZ/PZ(D)) is a simplgiv-commuta-

tive system, whenever S is a V-commutative system. Moreover, if Q
is the (product) finitely additive measure on S defined above ,

gi%t%igl is the product measure on SD as it is easily seen. Since

Sp is simple: ‘g'C'D = E*{%jgl . 2&%%&21 , and then

4 Q(B.C.D) = P, (B.D).P,(C.D)/P(D)

THEOREM 5. If in a V-commutative system S, A is defined by a coun-
table partition of Q, there exists the product measure Q. If {Di}
i8 the partition defining D, then Q is defined by:

D,).P, (CD,)
P(D,)

P. (B
(5) aee.cy = f, -

Proof: The o-additivity of Q follows from the second remark in §2.
We have Q(B.C) = ZiQ(B.C.Di), and applying (4) we obtain the equal-
ity (5).
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5. THE BOOLEAN MEASURE STRUCTURE OF A V-COMMUTATIVE SYSTEM

From a given probability space (2,A,P) and a o-subalgebra B of A ,
we get the (measure) Boolean algebra A = A/[P] quotient of A mod.
P-null sets and the subalgebra B = B/[P]. To the operation of take
ing the B-measurable hull in A corresponds in A a so called monadie
operator (c.f. {2} ).

Let A be a Boolean algebra with a subalgebra B such that for each

a € A there exists an element b € B which is the 1least element of
B verifying b > a ; we set b = Vva, and we call Vv the monadic opera-
tor in A related to B.

A monadic operator verifies the following properties: v0 = 0 ,
v(avb) = Vvawv Vb, VWa = Va , V(a~nVb) = Va A Vb.

The algebraic system (A,B,V) is called a monadie algebra. Let us
consider a V-commutative system S = (n,A,B,C,Pl,PZ) with a product
measure Q. By passing to the quotient mod. [Q] we get the Boolean
(measure) algebras A,B,C,D, which are the images of A,B,C,D resp.;
B,C,D are subalgebras of A and D = B n C. If we denote by A°= BvC
then A, = B v C = A,/(Q] , where Bv C is the Boolean algebra gene-
rated by B and C. -

If vl,v2,v designate the monadic operators in A corresponding to the
measurable hull operations in A denoted before with the same symbols
we have vlv2a = v2yla = va for any a ¢ A. The same hold if we res-
trict our-selves to elements a ¢ Ao = Bv C. So we have an instance
of what is called a biadic algebra (c.f. {2} ).

The algebraic system (AO,B,C,Vl,Vz) is called a biadie algebra if
(AO,B,VI), (AO,C,VZ) are monadic algebras, A = BV C and vlvZz =

= y2yl, It is easy to see that in this case v = vlv2 defines the mo
nadic operator related to D = B n C.

We can say that the underlying Boolean structure of a v-commutative
system is a biadic algebra. We have seen this when a product measure!
Q is given in the system and it is easy to see that the same is true
even if Q does not admit a ¢g-additive extension from Ao to A.

In particular, if § is a simple v-commutative system, we obtain a
simple biadic algebra (AO,B,C,vl,vz) i.e. it verifie; D=BnC=

= {0,1} . For such simple algebras we have A° =B ® C, direct sum
of B, C which means that Ao =BV C and, for be B, c ¢ C, bac =0
0 then 0 = v(bac) =

= vly2(bac) = vl (v2bnac) = vl(v2vlbac) = vl(vlv2bac) = vbavic =
= ybAavc , therefore vb = 0 or vc = 0, so b = 0 or c = 0) (The con-

implies b = 0 or ¢ = 0 (in fact, if bac
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verse also holds: if Ao =BecC, (AO,B,C,vl,VZ) is a simple biadic
algebra).

In simple v-commutative systems, for example the systems obtained
from cartesian products, what really matters from the point of view
of the theory of measure Boolean algebras are the algebras B, C and
Ao. Explicitly , if Aé » B' , C' are obtained from another simple
V-commutative system S', then if we have Boolean isomorphisms B = B!
and C = C' we get A = Al . This is due to the fact that Ao, A; are
direct sums. In fact, the direct sum A = B @& C has the property of
extension of homomorph1sms if B——A and C —A are Boolean homo-
morphisms with range a Boolean algebra A, there exists one and only
one extension of them to a homomorphism: A =BeC —A. (c.f. {5}).

On the other hand, if (B,P ) (c,p ) are given Boolean measure alge-
bras we can construct at least a s1mp1e V-commutative system S for
which the associated biadic algebra is precisely (B ® C,B,C,v!,v2),
In fact,it is well known that the Stone space of B ® C is the carte
sian product of the Stone spaces of B and C, S(B® C) = S(B) x S(C)
(Precisely the algebra of clopens of $(B) x S(C) is used to define
B ® C). We set on the clopens of S(B) and S(C) the measures P and
P, in the obvious way and we extend P, » P, to the o-algebras gene-
rated by clopens associated to elements of B, C respectively. The
pioduct of the probability spaces so obtained gives us the required
system S.

For general V-commutative systems we can prove analogous results.

To a V-commutative system S = (Q,A,B,C,PI,PZ) we have associated a
biadic algebra (AO,B,C). Moreover B,C are measure Boolean algebras
with the probabilities P,, P, defined on B, C, respectively, coincid
ing in D = B~ C. Let us call M(S) = (AO,B,C P,,P,) this Boolean
measure structure associated with S. We shall say that the V-commu-
tative systems S, S' have the same Boolean measure structure, M(S) =
2 M(S'), if under a unique Boolean isomorphism A, = Al , B=B',
C=2C' and D = D'; and the probabilities P, P{ (i=1,2) correspond
under the isomorphism.

THEOREM 6. 1) Given two probability Boolean algebras (B,P,), (C, P )
and sub-o-algebras Dc B, D' c C such that D = D' under a fized iso-
morphism preserving the measures P1|D s IDv s there exists a v -com
mutative system S such that M(S) = (Ao,ﬁ,C, 1,P ) , where B= B,C =¢C
are measure preserving isomorphisms (with respect to P,, P; i=1,2)
which restricted to D = B A C are isomorphisms D=0>D 5 D= D' commut
ing with the given one D = D'.
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2) Such a V-commutative system admits a product measure Q.

3) If S' is another V-commutative system verifying the properties of
S in (1), then M(S) = M(S').

The proof of 1) and 3) are based on an algebraic theorem concerning
biadic algebras that we give next.

We shall write the complete proof of theorem 6 in §7.

THEOREM 7. 1) Given two monadic algebras (B;D,v!) and (C,D',v2)
and a fized isomorphism: D = D' there exists a biadic algebra (A,B,0)
nC

give isomorphisms D = D, D = D' commuting with the given one: D = D',

’
such that B = B, C = C are isomorphisms which restricted to D = B

2) If there is another biadic algebra (A,é,é) with the same proper
ties, then the isomorphisms B = B, C = C obtained through the isomor
phisms of B, C with B and C, have a unique common extension to an i-

somorphism A = A.

Proof: By identifying the isomorphic algebras D, D' through the gi-
ven isomorphism we can , without loss of generality, consider only
the case that B and C are extensions of the same algebra D. So
we have the monadic algebras (B,D,v!) and (C,D,v2).

A filter F c B corresponds in X = S(B) with the set XF of ultrafil-
ters of B that contains F, this is a closed subset that represents

with the relative topology the quotient algebra B/F (c.f. {5}). 1In
F = S(B/F), and in‘such a way that if b is the clopen
set that represents b ¢ B, then b n XF is the clopen set that repre
sents the class in B/F containing b. Given an ultrafilter U in D,

let us denote with (U) the filter generated in B by U. Then (X(U)}
is a partition of X. In fact, if m ¢ X corresponds to the ultrafil

other words, X

ter M and U =Mn D, thenm ¢ X(U); if me X(U) n X(U,), then Mn D
> U, U', which implies U = U'.

Moreover, the monadic operator v! corresponds with saturation with
respect to thf partition {X(U)} ; i.e. if a € B, JTa = sat a =
=U(X(U) 3oa 0 Xy # 4},

We include the proof of this well-known fact (c.f. {2}) for the sake
of completeness. .If d e D, then d ¢ U iff X(U)c d , and it is equi-
Yalent to X(U) n d # g6, as it is easy to see. In consequﬁpce,

# 4 iff viasXx

anX , which is also equivalent to vla e U. 1In

v) (u) ~
fact, v'a ¢ U implies a n X(U) # 4, since otherwise X(U)c Ca = (a,
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(a € (U), then for some d ¢ U, d < (a, and hence d n vla = 0,
which contradicts the fact that U is a proper filter of D.

Let us observe that given a set X, a partition I of X and a algebra

B of subsets of X stable under the sat operation with respect to I,
if D is the algebra of saturated sets of B, we have a monadic algebra
(B,D,sat.)

Let us suppose now that an extension A of the algebras B, C exists,

such that (A,B,C) is a biadic algebra; it is easy to verify that the
V operatorsdefined by B, C on A coincide on B, C with the previously
given. We call v = vlv2 = v2yl to the monadic operator defined by D.

Since B @ C applies homomorphically onto A, preserving the identity
mappings on B and C, A = B®C/F for a filter F in B ® C. Then the Sto
ne space of A is a closed subset T of S(B®C) = X x Y.

Calling {Y(U)} the partition of Y associated to the ultrafilters u
of D we have, after elimination of superfluous parentheses:

*) T = ZUXU x YU

In fact, if M ¢ T corresponds to an ultrafilter M of A, and M = (M',M")
M' € X, M" ¢ Y), considering the homomorphism mentioned above it fol-
lows that M' = B.M, M" = C.M. Therefore, M'.D = M".D = U is an ultra
filter of D. Therefore, M ¢ XU x YU. Conversely, if (M',M")eXUxY
M'.D = M'"D = U. To see that (M',M") ¢ T it suffices to see that there
is an ultrafilter M of A which is a simultaneous extension of M'

and M". It is enough to verify that if b ¢ M', c ¢ M" then bac # 0.

. But Vb ~ Vc = V(bac) € U and therefore is not zero, which implies
bac # 0 .

Let us consider now the foliowing partitions of T:
1) (Tx} y X € X, Tx = ({x} x Y)n T 2) {Ty} s, YeY,

y " X x {yDDnT - 3) Ty} , U ultrafilter of D, Ty = Xy x Yy
They define the sat operators corresponding to v!, v2, y of the bia-
dic algebra (A,B,C). This is immediate for v!, v2, For V we observe
that the monadic algebra (A,D) is represented by T and the partition
associated with the ultrafilters U of D, which is precisely {XUxYU}
as it was shown in the proof of (*).

If we start with another extension A' of B and C such that (A',B,C)
is a biadic algebra we get again the same set T representing S(A')
because the second member of (*) depends only on (B,D) and (C,D).
Then A = A' by a unique common extension of the identity isomorphisms
of B and C. This proves 2) (except for isomorphic identifications).
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The fact that the definitions of T, the partitions 1), 2), 3), and
the clopens corresponding to elements of B and C depend only on (B,D)
and (C,D) allow us to construct a biadic algebra of sets (A',B',C')
such that B = B' , C = C' and these isomorphisms when restricted to
D give an isomorphism D = B'Aa C' = D'. That will prove (except for
isomorphic identifications) the first part of the theorem.

Let us define A' as the algebra of sets of the form a' = ;r\T, where
a is a clopen in S(B) x S(C) = X x Y. The algebras B' = {(bxY)n T%cn’
c' = ((ch)r\T)ceC generate A'.

We define for a' ¢ A',vla' as the saturated set with respect to {Tx},
and v2a' that obtained from {T }. We must show that vla' ¢ B' to show
that (A',B') is monadic, the same for v2,and that v!, v2 commute. To

this end, let us prove:

(6) vle' = (Ve x Y)nT , forc' eC'.

vig' = vl (J* Xy * (thY )), where ¢ is the projection of c' on Y, and
the star means that the sum is extended to those U such that thY #4.
Therefore, Vlc' = Z*(V‘(XU x (cr\YU)) = [ Z*XU) x Y]r\T. Then, 51nce

-~ A ~
cnYy # # is equivalent to Vc::YU, i.e. to vc ¢ U, we get Z*XU = vc ,
which proves the formula.

To show that vla' e B', for every a' ¢ A', it suffices to see it for
a' =b'ac' , b eB'" ,ceC' ;V(bnc') = b'Aavic' =

[(an.c) x Y]nT e B'.

If b' = c', then from (6) b' = @ x )aT= (Xx d,) n T,which implies
d1 = d Therefore, D' = B'n C' is defined as those sets of A' such
that are saturated with respect to (T } and project on the same ele -
ment of D. Therefore, (6) means that vlc' ¢ D', which is equivalent

to the commutation of V! , vZ (c.f. {1} ).
6. AN APPROXIMATION PROCESS.

The generalized product measure Q, when jt exists, and in general the

finitely additive product measure Q, associated with a v-commutative

system S, can be obtained as a 1imit of simpler measures in the way

described in the next theorem. We need the following preliminary re
sult:

PROPOSITION 1. i) If F is a finite part of (A,D,V), a monadic alge
bra, and ap,.00580, the atoms of the Boolean subalgebra generated by

F, then O RRRL . va »va_ generate a subalgebra A which is the

1°
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the least one eontaining F and stable for Vv, (t.e., VAoc:Ao).

i1) Assume Ao 18 a finite subalgebra of the biadie algebra (A,;B,C,
v1,v2), stable for v = vlv2, D = BacC. If B, =BnaA, C = CnA,
then there exist operators Vé,vi s 8uch that (AO,BO,CO,Vé,Vg) is a
biadie algebra.

ti1) Suppose that {AX)A A 8 the family of all the finite subalge-
bras of A stable for V, ordered by inclusion, and generated by their
elements belonging to B or C. Then:

1) every (A,,B,=A, ~ B sC=A,n C, VA,VZ) i8¢ a biadiec algebra,

2) (AA)AeA is filtering, if ordered by inclusion,
3) UA =4 .

Proof: i) It is evident that every subalgebra containing F and sta
ble for Vv must contain the a; 's and the va, 's. Then, it suffices to
prove that A, 'is stable for V Every atom of A  is of the form a =
= a; N /\ Va where j runs on some indices 1,...,r. Therefore, va =

= Va. A /\.Va. € A .

To finish the proof it suffices to observe that every element of A
is a union of atoms and that Vv distributes over the union.

ii) V; exists because A is finite. a ¢ A implies va = v2yla <

< Vzvla < V,a = Va, where L denotes the operator relative to Dr\A .
Then VZVl = Vo and analogously, vivZ = Vo
iii) It follows from i) and ii) and the observation that every aeBv C

belongs to a finite subalgebra generated by a finite set FuG with
FcB, GcC,

Given the V-commutative system § = (2,A,B,C Pl’ 2) let M(S) = (AO,B,
C Pl,P ) be the associated Boolean measure structure. We apply pro-
position { to the biadic algebra (AO,B,C) to get the filtering fami
ly (A 2), described in iii). For each A we select a representative
Scl = (Q,A A >‘,C)‘, 1,P ) of (AA,BA,CA,PI,P ), that means: BA, CA are
finite subalgebras of B, C such that M(S ) = (AA’BA’CA’PI’P ), A, =
= B v C Here o = A » and we assume the a's ordered by 1nc1us1on
of the A' . Ussing theorem 5 we know that the measure Q, associated
to S is defined by

B. = ).P.(BD,) P, (CD.)/P(D.
Q, (B.C) = [P, (BD;) P, (CD;)/P(D,)
where the sum is on the atoms of DA (it defines a comarginal commu-

tative measure on Sa). Denote with Ga the conditional expectation
operator relative to vx and the probability Q, in the system S, -Then
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THEOREM 8. In a V-commutative system S, it holds:

i) For Be B, Ce C, GalB —_ G1B and Gu1C —_— Glc, when &1 s U=
niformely a.e. [P].

ii) Q(A) = lgm Qa(A) 5 for any A ¢ B v C.

Proof: ii) follows from i) and

Q, (B.C) = ] G 15-G 1 4P — J G1,.61, dP = Q(B.C)

i) For Be B, , a = A, , we have G 1, = Zj(Pl(BDj)/P(Dj)) 1Dj ,

where the sum is on the atoms of 7,, since Qu(BDj) = J Gu1B dp =
D3
= P(BDj)/P(Dj)~Qa(Dj) = Pl(BDj) (P, = Q, on B,).

Given G1B, let us divide the set of real numbers on intervals Ii =

= [mi’Mi) of length ¢ > 0. Only for a finite number of them D =
= (GIB)'I(Ii) # ¢ [P). Consider any finite system S_ such that

D, ¢ D, for all those D,. Call {Dij} the family of atoms of 0, con
tained in Di'

Since, miP(Dij) < J G 1B dP < Mip(Dij) ,

Dij
we obtain: miP(Dij) < Pl(BDij) < Mip(Dij)' Therefore on Dij:

16 15 - Py(BD;)/P(D )| < €, a.e (P) . Then

B
|zizj P, (BD, ) /P(Dy ) 1Dij -6 1, <« a.e [p] QED.

REMARK: If a comarginal probability P exists on A we, have Ga 1B =

= EP(1B|DA)‘ Using a result from martingale theory due to Helms {3},
we know that the G;s form a uniformly integrable martingale converg
ing in L! to G 1, which implies ii).

7. PRODUCT MEASURE

rFor special cases of v-commutative systems we can assert that a prod-
uct measure exists.

One of these cases, the discrete case, was considered in theorem 5.
Using remark 4) of §2 we have also:

THEOREM 9. If the V-commutative system S = (Q,A,B,C,PI,PZ) is such
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that there are semi-compact classes KB<:B, KCc:C with the property
of approximation and KB'KC = {K.L ; K ¢ KB , L e Kc}is also semi-cam
pact , then Q(B.C) = fGTB.G1CdP defines, when extended to A, a pro
bality, i.e. the product measure on S.

Another case in which we can assert the existence of product measire
is referred in theorem 6, the proof of which we give now:

Proof of theorem 6. We will suppose, like in the proof of theorenm
7, that D is identified to D' through the given isomorphism. By
theorem 7 we have an extension algebra A of B, C such that (A »B,0)
is biadic and BAC = D. Then we have in the Stone space T of A

the algebras of clopens A , B , c relative to A, B, C. We set B=
= t(B) ,C = 1(C) and A = T(A,) = t(B,0). We define in B , C the
measures P1 P2 given in B, C in the canonical way and extend them
to B, C.

Let us prove that S = (T,A,B,C, Pl’ 2) is a V-commutative system. If
b e Band c € C are such that b ¢=4g,i.e. bac =0 in A ; we have
0 = v2(bac) = v2bac = V29lbac'= Vbac. Then Vb.c = g , where Vbe

-

€Bn C contains b. Hence {Gl; > 0} c ﬁ% [P], and then

IG]Q.G1; dpP = JG]G.I; sz < Pz(Vb.c)

’

where G is defined on B(C)-measurable functions is the expectation
operator relative on D = B n C,

But B c B and C c C have the approximation property. Using remark
3 of §2 we can assert that Q(B.C) = IGIB.G1c dP is a finitely ad-
ditive comarginal measure on S, and from theorem 2, S is a V-com-
mutative system.

Q being finitely add1t1ve on BvC o A is a fortiori o-additive on
the algebra of clopens A and then can be extended uniquely to A =
= T(A ).

This proves 1) and 2) of the theorem (except for identifications)
3) follows immediately from theorem 7.

Finally we shall prove:

THEOREM 10. If S = (n,A,B,C,Pl,Pz) 18 a V-commutative system with
the property: :
(P) @ is the only set of B containing a set C ¢ C with PZ(C) > 0,

then Q(B.C) = PI(B)'PZ(C) can be extended to a probability on A.
((P) implies that S is simple).
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Proof: Let us define the 'section'" in x of a 'rectangle'" B.C by
(B.C)x = C if x ¢B and ¢ otherwise.

In order to prove the o-additivity of Q = Pl.P2 it is enough to
prove that ZaBa.Cu = Q implies ZuPl(Ba).Pza%) = 1. For each pair

o # 8 of indices the set N o = {x ; (B,C)) .(B,Cp), ¥ 8 (P,]1} is

contained in a set of B of P, -measure zero.In fact,from B C B,C.=¢

o a BB

we have either Pl(Ba'BB) = 0 or PZ(CQ.CB) = 0. In the first case,

aB

it follows from N c BuBB’ in the second one, since (Baca)x'(BBCB)x

c CQ.C8 for every x, we have Naﬁ =g

Then except for a set B of B of P,-measure zero (> U N

a#B “B)v

(1) o0 (B,.C)) = LBy ((B,Co)y) = [ P,(C) 1, (x) .

Let bx be the set of the partition of @ defined by the sets B, such
that bx a X

(8)

bx = La) (Bu'ca)x

In fact, let y € b, and suppose y ¢ B .C , then B o b, 3 x and this

implies (Ba.Cu)x =C

ot Since y ¢ C, we have y € gg (Ba.Cu)x. This

proves (8).

From B > b_ c lg (B

a'Cu)x e C , and the assumed property (P) we have

Pz(gg (Ba'ca)x) = 1 for every x.

Hence, by virtue of (7) we have yx ¢ BO: ZuPz(Ca)IBu(x) =1, i.e.

I pP,(C).1, =1, [P,]. By integration with respect to P
a’ 2% a By Q 1 1

ZaPZ(Cu).Pl(Bu) =1 QED.

Remark: Condition (P) is equivalent to: (P*) if C ¢ C contains B#g,
B e B, then C = 2 a.e. [P,].

{2}
{3}

{4}
{5}
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SOBRE 0 POSTO DE UM MODULO (1)

Jorge Aragona e Artibano Micali

0 objetivo desta nota & o de generalizar um resultado sobre formas
lineares que se encontra em {2} . No que segue, todo anel & supos
to comutativo e com elemento unidade.

1. PRELIMINARES.

Sejam A um anel e M um A-mddulo. Designaremos por M* o dual de M
e, se A for un anel de integridade, por t(M) o sub-A-médulo de tor
gio de M. E conhecido que t(M) & o nficleo da aplicagdo natural

M — M@, K, onde K & o corpo de fragdes de A.

Seja A — K um homomorfismo de anéis de A num corpo K que trans-_
forma elemento unidade em elemento unidade.Ent3o K pode ser mmido,
de uma maneira evidente, de uma estrutura de A-médulo. Para todo
A-mbédulo M, o K-pdsto de M & definido como sendo a dimensdo do K-
espago vectorial M ®, K e notaremos rK(M) = [M e, K: K] . Se A
for um anel de integridade en K o corpo de fragcoes de A, falaremos
simplesmente do pdsto de M e indicaremos com r(M) = [M 8, K : K]
LEMA 1. Sejam A um anel e 0 — M' — M — M" — 0 uma sequ2n
eta exata de A-modulos. Temos Ty (M) < rK(M') + T (M) e se

A
Torl(M",K) = 0, entdo rK(M) = rK(M') + rK(M").

Com efeito, & suficiente ver que se tem a sequdncia exata de K-es-
pagos vectoriais

veves — Torp (M",K) —> M' @, K —> M®e, K— M"®, K— 0

COROLARIO. Se A for um anel de integridade e 0 — M' — M —
-+ M' — 0 uma sequéncia exata de A-mddulos, entao r(M) = r(M') +
+ MM,

Isto resulta do fato de que K, corpo de fragoes de A, & um A-mddulo
plano.

Observemos finalmente que se A é um anel de integridade e a # 0 um
ideal de A, entao r(a) = 1. Com efeito, & claro que r(a) 1. Su-
pondo que r(a) = 0, deduziriamos que a ®, K = 0, onde K € o corpo

A

(1) Trabalho realizado com auxilio de FAPESP Proc. Matematica
66/038.
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de fragdes de A, e como a estd contido em @ OA K, seguiria que a=0.
2. MODULOS DE POSTO n.

TEOREMA. Sejam A um anel de integridade, M um A-médulo e n > 1 um
inteiro. As seguintes condigoes sao equivalentes:

z) existe uma familia livre (x, )1<J<n de elementos de M tal que
Ann(MAkl,...,x JA) # 0;
it1) existe uma familia (fi)lsisn de formas linares sdbre M e uma

familia (xi)lsiSn de elementos de M tais que

fi(xl) = ... = fn(xn) #0, fi(xj) =0sei#je

£,(x)y = Z;.'slfj(y)xj para todo y ¢e M e para i = 1,...,n ;
iii) T(M) =
iv) existe uma familia (f, )1< de formas linares sobre M, duas

a duas distintas, tais que: t(M) = [ﬂ\n_lker (f ) e, para todo
o te g en, [\ Ker(£) # t00)

(i) = (ii). Como Ann(MA?l,...,xn)A) # 0, existe um elemento acA,

a # 0 tal que aM < (x »+++»X JA. Logo, para todo y ¢ M, se tem
1 g
ay = Z:_l i (y)x; onde f.(y) ¢ A para todo i e como a familia ) gien

é livre, fi € uma aplicagdo linear de M em A para todo i.Com efeito,
(@ - £, (x))x; - Lo4sf,

todo i e fj(xi) = 0 para i # j. Temos assim f (x )y = 2

£.(x; )x = 0 implica que f (x;) = a # 0 para

j=1 J(y)x

para todo y em M.

De outro lado, tomando Y, €y, em M, se tem 2_1 1(y1 - yz)xi =
= = = yn
- fi (xi)()’l + Yz) = fi (xi))'l + fi (xi)yz Zl=1 l(yl)x +

+ X1-l 1 (rp)xy, logo £.(y; + y,) = £,(y;) + £,(y,) para todo i. A
nalogamente, se c ¢ A e y ¢ M, deduzimos que fi(cy) = c.fi(y) para

todo i.

(ii) => (i) Seja X?=iajxj = 0 onde os a, estdo em A. Resulta, da
igualdade precedente, que 0 = fi(zg_lajxj) = aifi(xi) e como
fi(xi) # 0 e A € um anel de integridade, entao a; = 0 para todo 1i.

Supondo que Ann(M/(xl,...,xn)A) = 0 e reduzindo a relagio fi(xi)y=
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3-1 J(y)x para todo y ¢ M, médulo (xl,...,x )JA, deduziriamos

fi(xi) € Ann(M/(xl,...,xn)A) de onde, fi(xi) = 0 para todo i.
(i) = (iii). Como A & um anel de integridade é a familia (x)

lgig¢n
& livre, a sequencia exata de A-mbédulos 0 — (xl,...,xn)A — M —

— M/(xl,...,xn)A — 0 nos di r(M)=r((xl,...,xn)A)+r(M/(xl,...,xn)A)=
n + r(M/(xl,...,xn)A). Além disso como Ann(M/(xl,...,xn)A) #0 ,

entao (M/(xl,...,xn)A) 8, kK= t(M/(xl*""xn)A) e, K=0. Logo,
rM) =

(iii) = (i). Se r(M) = n, & claro que o K-espago vectorial M @A K

tem sempre uma base do tipo (xi e 1) e isto implica que a fami-

l<i<n

lia (xi) € livre. De outro lado, para todo y ¢ M, y # 0, pode

l<ign
mos escrever y @ 1 = Zgal(ai/bi)(xi @ 1) onde os ai/bi estdo em K.

Pondo b = JTT®_.b. ec, = a_ T

. b., a relagao precedente & equiva -
i=1"1 i i i’ $3 P a

i#j 3

lente a relagao (by - )7

i-lcixi) ® 1 = 0. Isto implica (cf. {1},

n

cap 2, prop. 4) que by - i=1

C Xy nao & livre em M, logo que existe

"N

1=1c X. ) = 0. Logo ,

um elemento ¢ ¢ A , ¢ # 0 tal que c(by -
cb ¢ Ann(M/(xl,...,xn)A) e cb # 0, uma vez que A & um anel de inte-

gridade.

(iv) = (iii). Com efeito, para todo j, 1 < j < n, existe um ele-
mento x5 € /ﬂ\l#JKer(f ) - t(M) tal que x; ¢ Ker(fJ) As hipbteses
feitas 1mp11cam que a familia (x! )1<J<n é livre. Pondo X, =

= fl(xi) ..... f (x ) I fn(xn)xi para todo i, segue-se que a fami -
lia (xi)lsiSn é livre, que fj(xi) =0sei# je que fl(xl) = fz(xz)...
= £ (x,) # 0. Seja f: M ——*énglfi(M) a aplicagéo A-linear definida
por £(x) = (f;(x)); ; , Para todox emMe J = Im(f). A sequéncia

exata de A-mddulos 0 — t(M) —» M —» J — 0 nos d4d r(M) = r(J).
Consideremos a familia (e.),_. de elementos de J definida por e, =
i’lgign J
(fi(xj))lsisn' Mostremos que a familia (e.)1<i<n € livre maximal
Com efeito, a relagao 0 = 22=1 ;€= (e £, (x)), ;. » onde os c. es-
tao em A, implica que Cifi(xi) = 0, logo que c; = 0 para todo i. De
outro lado, se y € J existe un elemento x € M tal que y=(fi(x))1<i<n

Se tomarmos c = -fl(xl) = -f (x,) = ..u.. = -fn(xn) # 0, temos a re
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lagao ndo trivial cy + Z:_lfi(x)ei = 0 entre os e, e y. Isto nos

mostra que a familia (ei)lsisn & livre maximal, logo que r(J) = n.

(ii) = (iv). Trivial.

OBSERVAGOES.

(1) Sejam A vm anel de integridade, M um A-m6édulo e n > 1 um intei
ro. Se uma qualquer das condigdes equivalentes do teorema preceden
te foér verificada, entdo M ndo pode ser um mddulo de torgcdo. Com e
feito, se M = t(M), entdo r(M) = 0, o que & absurdo, uma vez que
rM) = n> 1.

(2) Nocason =1, f1 = f, em (iv) => (iii) se tem a sequéncia exa
ta de A-mbédulos 0 — t(M) — M —> f(M) —> 0 e portanto, as con-
digdes t(M) # M e £ # 0 sdo equivalentes.

3. A x-CONDIGAO

1. Em seguida, vamos mostrar como o tebrema acima se relaciona com
a nogao de x-condigdo introduzida em {2}. Sejam A um anel de inte-
gridade, M um A-mbédulo e f uma forma linear sdbre M. Se existir um
x em M tal que £(x) # 0 e £f(x)y = £(y)x para todo y ¢ M, diremos

~

que a forma linear f obedece a x-condigao.

EXEMPLOS.

1) Se f & uma forma linear injectiva s®bre M, entdo f obedece 3 x-
condigdo, com x ¢ M - {0} , x qualquer. Reciprocamente a x-condigdo
ndo implica que f seja injectiva, mas somente que Ker(y) = 0:f(x)A.
Vemos assin que se 0:f(x)A = 0 as duas nogdes coincidem.

2) Daremos aqui um exemplo de forma linear que obedece a x-condigio
mas que ndo & injectiva. Para isto, sejam A = Z o anel dos inteiros
racionais, M = Z x Z/(2) (produto direto) e f a forma linear sdbre

M definida por f(m,n) = 2m para todo (m,n) e M. ﬁ claro que f & u-

ma linear sdbre M e se consideramos o elemento x = (1,0) e M,f(x)#0.
De outro lado, para todo y = (m,n) ¢ M se tem f(x)y = 2(m,n) =

= (2m,0) e £(y)x = 2m(1,0) = (2m,0). Assim f obedece a (1,0)-condi
¢ao. O nicleo de f é o sub-A-médulo de M formado pelos pareS'(O,ﬁ)

e (0,1).

3) Consideremos o anel A = Z, o A-mddulo M = Z x Z (produto dire-
to) e a forma linear f sdbre M definida por f(m,n) = m + n, para to-
do (m,n) € M. Suponhamos que exista um x = (p,q) € M tal que x obe-
dega 2 x-condigéo. ‘Para todo y = (m,n) € M se deve ter (p+q)(m,n)=
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= (m+n) (p,q), isto & np = mq. Ora, uma tal relagdo & impossivel
para todo (m,n) € M, exceto se p = q = 0, o que daria x = 0 e por-
tanto f(x) = 0.

2. Indiquemos com M*(x) o sub-A-médulo de M* das formas lineares
que obedecem a x-condigdo. E 1l8gico que podemos excluir sempre o
caso x=0, uma vez que M*(0) =g . Obtem-se assim:

)

xeMM*(x) c M* , logo < k)

* *
xeMM (x)> < M

onde indicamos com <S> , se S & um sub-conjunto de M, o sub-A-mé-
dulo de M gerado por S. Veremos, no N° 4, que em geral:

< Ux EMM* (x) > % M*

isto &, nZFo & possivel "aproximar" toda forma linear por formas 1i
neares que obedecem a x-condigdes, x em M.

3. Do teorema precedente, resulta uma caracterizagéo dos médulos
munidos de uma forma linear que satisfaz a uma x-condigéo.

COROLARIO. Sejam A um anel de integridade e M um A-mddulo. As eon
digoes seguintes sao equivalentes:

(1) existe um elemento X em M tal que Ann({x}) = 0 e Ann(M/Ax) # O.
(2) exziste uma forma linear f sdbre M que obedece & X-condigao.
(3) M) =1,

(4) M nao & um modulo de torgao e existe uma forma linear f sdbre
M tal que Ker(f) = t(M).

4. CONTRA-EXEMPLO A FORMULA <L-x)EMM*(X)> = M*

Suponhamos que a férmula acima seja verdadeira . Toda forma linear
f € M* se escreve f = zifi (soma finita), onde fi € M*(xi) para to
to i. Logo fi(xi)y

fi(y)xi para todo y ¢ M, Isto nos mostra que
fj(xi)y - fj(y)xi € Ker(fi) = t(M) (pelo corolirio) isto &, existe
un elemento c € A, ¢ # 0 tal que fj(cxi)y = fj(y)(cxi) para todo y.
Logo fj € M*(cxi) e portanto f ¢ M*(cxi). Mas, o exemplo 3) do N°3
nos mostra que, em geral, isto nao & possivel.

NOTA: La traduccidn de "pdsto" es "rango".
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COMENTARIOS BIBLIOGRAFICOS

PROCESE STOCHASTICE $I APLICATII IN BIOLOGIE SI MEDICINK, por Iosi
fescu, Marius y Petre Tdutu, Editura Academiei Republicii Socialisg

te Rom@nia, Bucuragti - 1968 pp. 345.

Este volumen constituye una excelente y apropiada exposicidn de las
aplicaciones de procesos estocidsticos a la biologia y la medicina .

La presentacidn de los temas se encuentra completamente al dia.

La organizacidn en general se divide en tres largos capitulos. Los
dos primeros trat@n la teoria de procesos estocdsticos de parametro
discreto y continuo respectivamente los cuales constituyen una in -
troduccidn al Gltimo capitulo dedicado a las aplicaciones, que son
muy variadas. Como dato ilustrativo cabe citar a modo de ejemplo

los estudios de los modelos de poblacidn, migraciones epidemia, mo-
delo de Karlin-McGregor en los procesos estocisticos de la evolu -

cidn, modelo estocidstico de la contraccidn muscular y hasta un muy

reciente modelo de la carie dentaria debida a Lu (1966).

En sintesis, es una obra muy completa y muy competente en el tema ,
tal vez una de las primeras en su tipo. El lector se enfrenta con
una larga bibliografia.

E. Marchi.

THEORY OF RANDOM FUNCTIONS,por A.Blanc-Lapierre y R.Fortet,Vol.I,Qg
don and Breach,New York-London-Paris,1967,454 pgs., 29,50 ddlares.

Este libro es una traduccién al inglés por J. Gani de la primera mi
tad del bien conocido texto "Théorie des fonctions al@atoires". A~
demds de un apéndice sobre las nociones matemiticas basicas necesa-
rias para desarrollar el material expuesto contiene: Cap. I. Intro
duccidn prdctica al estudio de las funciones aleatorias. Cap. II.
Axiomas, conceptos bdsicos y teoremas fundamentales de la teoria de
la probabilidad. Cap. III. Introduccidn general a las funciones a
leatorias. Cap. IV. Introduccidn general a los procesos estocdsti
cos: funciones aleatorias con incrementos independientes. Cap. V .
Funciones aleatorias derivadas de procesos de Poisson. Cap. VI.
Procesos de Markov. Cap. VII. Cadenas de Markov. Funcionales adi

tivas de un proceso de Markov.

La encuadernacidn y la impresidn son excelentes y el volumen II-que

completaria la traduccidn del original francés - es prometido.

R. Panzone.
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