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SOME PROXIMITY RELATIONS IN A PROBABILISTIC METRIC SPACE( )

C. Alsina and E. Trilias

Dedicated to Professon Luis A. Santald

0. INTRODUCTION.

Proximities in a probabilistic metric space have been studied pre-
viously by R. Fritsche [3], Gh. Constantin and V. Radu [2] and A.Leon
te [4]. In this paper we introduce, using some results concerning or
der and weak convergences [1], a family of semi-proximities

{dw; ¢ €AY} analyzing when they are Efremovi¥-proximities and rela-

ting the induced closure operators {C5¢; ¢ € A"} to those of R. Tar-

diff [8] and B. Schweizer [7]. In the last section we exhibit a uni-
form topology where the neighborhood of a point p is precisely the
closure of {p} in the topology generated by C@wu

1. PRELIMINARIES.

Let A* be the set of all one-dimensional positive distribution func-
tions, i.e., let

A* = {F: R » [0,11; F(0) = 0, F is non-decreasing and left-continuous}.
A* has a partial order, namely, F > G iff F(x) > G(x), for every x.
(A+,<J is a complete lattice with minimum element e (x) = 0, for

every Xx, and maximum element the step function given by

0, forx <0,

go(x) = {
1, for x>0 . (1.1)

It is well known that weak convergence (w-1im Fn) -in AY is metriza-
n->ow

ble by the modified Lé&vy metric £ introduced by Sibley [6].

(*) Presented at the INTERNATIONAL CONGRESS OF MATHEMATICIANS, Hel-
sinki, Finland 1978.
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DEFINITION 1.1. A triangle function is a two-place function 1t from
A* x A* into A* such that, for all F, G and H in A™,

i) t(F,eq) = F,

ii) 1(F,G) = t(F,H) whenever G = H,
iii) t(F,t(G,H)) = t(t(F,G),H),

iv) t(F,G) = t(G,F).

A triangle function T is continuous if it is a continuous function
from A* x A* into A", where A* is indowed with the L-metric topology
and A* x AY with the product topology. For a complete study of the fun
damental topological semigroups (A*,t) see [6].

DEFINITION 1.2. A probabilistic metric space (briefly, a PM-space) is
an ordered pair (S,F), where S is a set, and F is a mapping from S xS
into A* such that for all p,q,r € S:

I) F(p,q) = g5 iff p=q,
I1) F(p,q) = F(q,p),
I11) t(F(p,q),F(q,r)) < F(p,r).

If F satisfies just (I) and (II) we say that (S,F) is a semi-PM space.
The function F(p,q) is denoted by qu, and qu(x), for x> 0, is in-

terpreted as the probability that the distance between p and q is less
than x.

We collect some definitions about proximities which will be used in the
sequel. For a complete survey of proximities see [5].

DEFINITION 1.3. Let X be a set and 6§ a binary relation on P(X), the
power set of X. 8§ is a semi-proximity if satisfies, for A, B and C
subsets of X, the following conditions:

1) 0 & A,

2) If ANB # @ then ASB,

3) A6B implies BSA,

4) AS (BUC), if and only if ASB or ASC.

A semi-proximity & is called an Efremovid proximity if verifies the ad
ditional axiom:

5) A#B implies there exists E C X such that E §B and (X-E) £ A.
A semi-proximity § is said to be separated if

6) adb implies a=b.

Ao e e e e e e e A e D A i e emmrem Tt " emer DIVY G tm w1 AN
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a) Cs(@) = 0,
b) C5(A) D A, for every A € P(X),
c) CS(ALJB) = Ca(A)lJCG(B) for all A,B € P(X),

i.e., Cg is a Cech closure operator which is a Kuratowski closure
(C6(C6(A)) = Cs(A) for every A € P(X)) whenever ¢ is an Efremovid
proximity. So 8 provides a topology on X called the topology induced
by 6. The topological spaces whose tcpologies can be derived in this
way from proximities are called proximizable. '

Finally, we summarize some definitions and theorems about order and
weak convergences (see [1]).

The supremums and infimums of two functions F,G € A+, in the lattice
(Atsg will be denoted, respectively, by FvG and FaG.

DEFINITION 1.4. (a) A non-decreasing (resp., non-increasing) sequence
(G,) in A% is order convergent to G € A%, if and only if

. ® % . + .
G = nxl G, (resp., G = n£1 G,). (b) A sequence (F,) in A" is order

convergent to F € AY (F = o-1im F,), if and only if there exist two
n->o
©

sequences (G ) and (H_) such that (G_) is non-decreasing with V G_ =
n n n 1 n
. n=

o
= F, (Hn) is non-increasing with Al H =F, and for all n € N is
n=

Gn < Fn < Hn. The order limit is unique.

THEOREM 1.1. Let (F,) be a sequence in A* and F € AY. Then we have:
i) F = o-lim F_ <ff lim F (x) = F(x), for all x € R* (pointwise con
n->o n-reo
vergence) ;
ii) If F = o-1im F, then F =w-1lim F, = £L-1im F,, but the reciprocal
n->o n->-oo n->oo
does not hold in general;
iii) If F =w-1im F_ and F <s continuous or (F_) is non-decreasing
n+e 1 n
then F = o-1lim F .
n->0
THEOREM 1.2. (Weak version of Everett diagonal condition in A%). Let
(FR)

quence in A and F e a*. If F has at most a finite set of disconti-

(n,k) € NXN be a collection of sequences in A+, let (Fn) be a se-

nuities, F = o-1lim F_, and for each n € N, F_ = o-lim Fz , then there
avew B n koo

exists a strictly increasing sequence of integers
k} <k < ... <k <...4nN, such that F = o-lim FL .

n->w n
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2. A FAMILY OF PROXIMITIES IN A PM-SPACE.

Let (S,F) be a semi-PM space. For each ¢ € At we define a binary re-
lation 8y on P(S) in the following way, for A,B € P(S),

"A Gw B iff there exists a sequence ((an,bn))nEN in A x B such that

Y= o0-1lim (¢ A Fa

) ",
n-o nbn

When A §, B we will say that A and B have a ¢-proximity.

THEOREM 2.1. 8y <8 a semi-proximity.

The €ech closure induced by 6¢ will be:

Csw(A) = {x € S; a(an) CA: o= o-1im (¢ A ann)}.

n->w

THEOREM 2.2. If T ©s continuous, T(v,¢) = ¢ and ¢ is continuous in R,

then C5¢ is a Kuratowski closure.

Proof. If x € C; (Cs (A)) there is (x_) € Cs (A) such that
8y~ Sy n Sy

o-1lim (¢ AF ) = ¢. For eachn € N, x_ € C5 (A), i.e., there exists

XX n
n-ro n ‘p

a sequence (ai)keN € A such that o—iim (¢ AFx aﬁ) = ¢. By Theorem 1.2
->00 n

there exists an increasing sequence of integers (kn)neN such that

o-1im (¢ AFxnaﬁ ) =¢. Let Hn = 1(¢ AFX

n->co

xn’w"Fx ol ), for every n € N.
n n%k,

Using the continuity of 7 and ¢, we have o-1lim Hn = 1(p,p) = ¢ , and
n->rowo
by the triangle inequality H < ann and Hn < 1(p,p) = ¢, we will ob
k
n

tain H. < ¢ AF_ 5 < ¢ which in turn implies o-1lim (¢ A F_ 5 ) = v,
n xak n->e xakn
n

i.e., x € C5¢(A).

The following example shows that the strong hypothesis ¢ = t(¢,p) as-
sumed above, is really necessary.

EXAMPLE 2.1. Consider the PM-space (R',e *) and » = U, . The con
=1
2’

volution * is continuous [6] and has no idempotents different from €

|x-y]|?

and €,. It is easy to see that

Cs (0) =1[0,1/2] & CGU (CGU (0)) because [0,1] € Cs (C6 (0)).

U, 1 1 U, U
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In order to analyse the special case ¢ = €, we recall the following
lemma.

LEMMA 2.1. Let I be any set of indices and let {F;; i € I} be in NS

The following statements are equivalent:

¥4 Fyo= g

ii) For any € € (0,1) there exists 1 € I such that F;(e) > 1-¢;
iii) For any € € (0,1) there exists i € I such that f(Fi,eo) < €3

iv) There is a countable subset J of I such that N_ F. = €.

ieJ i 0
Then the Efremovi& proximity 660 can be presented in the following
ways:

"A 8§, B iff . v = gq¢ iff for every e,A > 0 there is
0 4

F b
(a,b)eAxB &
(a,b) € AxB such that Fab(e) > 1-A"

and

Cs (A) = {x € S; Nx(e,x) NA#6@, e,x >0},
€0

where Nx(e,A) = {y € S; ny(e) > 1-1} are the neigborhood of the clas-

sical e,A-topology for these spaces, i.e., the e€,A-topology is proxi-
mizable by §_. .
Yy €0

THEOREM 2.3. Under the hypothesis of Theorem 2.2, the topological spa
ce (S’C6¢) is completely regular.

In a PM-space (S,F,t) and for a fixed ¢ € A+, Schweizer [7] has intro
duced the next relation in P(S):

"A I, B iff there exists (a,b) € A xB such that Fop = ¢'", and when
A 1, B, A and B are said to be indistinguishable (mod .¢) .

We note that I, is a semi-proximity weaker than 8> in the sense that
A 1, B implies A §, B, i.e., indistinguishability (mod.y) yields
p-proximity. The reciprocal does not hold, in general.

EXAMPLE 2.2. Consider the PM-space (R+,e,*), where € for

a  ©lp-q|

all p,q € R*. Let k > 0 and ¢ = Take A = [0,1) and B = (1+k,+w)..

€, .
k
Taking for each n € N, a = 1-1/n € A and bn = 1+k+1/n € B, we have

o-lim (e, pe ) = o-lim ¢ , = €

n->e Ian—bn| n-e k+; k?

i.e., A 6€k B but A . B because for all (a,b) € AxB we have
k

€la-b| < Ck-

Recently, Tardiff has introduced [8] for ¢ € A% a closure operator de
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fined by
Co(A) = {x €8; (Yhe (0,11)(3 a = a(h) € A) such that F._ > ¢} ,
being
o , if t<o,
FR_(t) = 1 min(F_ (t+h)+h,1), if t € (0,1/hl,
1 , if t>1/h.

The semi-proximity T, defined by
" - "
AT, B iff CW(A) N Cw(B) £ an,

is stronger than I, because if A 1, B then there is (a,b) € AxB such

h .
b ab > Fab >¢ , i.e., A Tw B. The re-

ciprocal does not hold, in general.

that Fa > ¢ and for all h > 0, F

EXAMPLE 2.3. Consider the PM-space of example 2.1, and the same v =€,

k >0. Let A =1[0,1). Then CI (A) =[0,1+k) c C_ (A). But 1+kECE(A)
€1 €k k

. h h
because, for any h € (0,1], taking 1-h € A we have €l4k-1+h = Fk+h

=

> ey, so {1+k} TEk A but {1+k} lek A

T =3

Finally we remark that for ¢ = ¢, € £ is the e€,A-proximity and

for any ¢ and p € S: Cs ({p}) = C; (Up}H) = Cw({p}) = {q € S; qu;aw},
12 ¥

and this set is exactly the class of p in the partition of S induced
by the equivalence relation of indistinguishability (mod.y) introdu-
ced in [7].

3. A PROXIMITY INDUCED BY AN UNIFORMITY.

DEFINITION 3.1. A triangular function T is said to be radical if for
any F € A+—{eo} there exists G € A+—{eo} such that F < 7(G,G) < g4.

THEOREM 3.1. If © > * then 1 <s radical.

Proof. We need to show that for any F < o there is G < €9 such that

G*G > F. In effect, if F = g, for some k > 0 then taking G = we

Ex /a4

have G*G = ¢ > €y If F < €y for some k > 0 then the same G yields

k/2
the same conclusion. So we can suppose that there is an interval (0,k)
such that F(x) > 0 for x € (0,k). Let

0 , if x<0,
H(x) =

Yy TN 2 r N o me
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Obviously F(x) < +/F(x) < +/F(2x) for x > 0, and consequently F < H.
If F(x) = H(x) for all x > 0 then F(x) = /F(x) and F(x)(F(x)-1) = 0,
i.e., there would exist k' > 0 such that F(x) = €4, which is a con-
tradiction. So F < H and there is a t > 0 such that 0 < F(t) < H(t) <
< 1. Let

[ H(x) , if x < t,

G(x) =

1 1 , 1if x> t.
G > H and a straightforward computation shows that F < H*H. By the
strict isotony of *, F < H*H < G*G < ¢.

Let (S,F,7) be a PM-space. For any F € A+-{ao}, let
U(F) = {(p,q) € Sx8S; qu > F}.

THEOREM 3.2. If T is radical then the collection {U(F); F € A+-{€0}}
i8 a basis for a diagonal separated uniformity U on S.

Proof. Obviously Ag = {(p,p); p € S} C U(F) and U(F) = U(F)~}, for

any F < €g- If F,G < €g and being T radical there is G < €9 such that
F < 1(6,6) < gg. Then U(G) o U(G) < U(F) because if (p,r) € U(G) o U(G),
there is q € S such that (p,q) €'U(G) and (q,r) € U(G). By the trian-

gle inequality Fpr > T(qu,qu) > 1(G,G) > F, so (p,q) € U(F). Finally
note that U is separated because N U(F) = Ag.
Feat-{eq}

COROLLARY 3.1. The topology generated by U <s metrizable.

Proof. Consider the countable family {a t,t' € (0,1) N Q} C a*,

where

t,t';
0 , if x <0,

oL t.(x) = t', if 0<x<t,
1, if x> t.

If U € U, there is F < g3 such that U(F) c U. Being F < e there exists

t € (0,1) N Q such that F(t) < 1. Let t' € (F(t),1). Then F < I

and U(F) D U(at t.), i.e., {U(at t.); t,t' € (0,1) Nn Q} is a .countable
b E]

basis for U. We apply then Weyl theorem.

The topology generated by U can be described by the family N(U) =

= (N,(F); Fe A*-{eqg}, p € S}, where each neighborhood Np(F) is given

by

N,(F) = {q € 8; F, >F} = CIF({p}),

i.e., NP(F) is precisely the closure of {p} by CIF, CS or CF, in
F

other words, if q € NP(F) then q is indistinguishable (mod.F) of p.

The uniformity U induces a proximity §; defined on P(S) by:

"A g, B iff for some F < e NP(F) N B =@, for all p € A",

0’
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Applying a well known result of proximity theory we obtain that the
topology induced by &; is the uniform topology. We remark that this
topology is exactly the topology Ty obtained when considering the PM-
space as generalized metric space [9].
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PREFERENCIAS SUBDIFERENCIABLES

J.H.G. Olivera

Dedicado al Profeson Luis A. Santalé

SUMMARY. Under the assumption of monotone and convex preferences, com-
pensated demand correspondences are singled-valued on a dense, full
subset of the price domain, and the Slutsky equation holds for a dense,
full subset of price variations.

La presente nota, que dedico afectuosa y respetuosamente al profesor
doctor Luis A. Santald, se propone aclarar un aspecto de las corres-
pondencias de demanda que no ha sido dilucidado en la literatura so-
bre el tema. ’

Partimos de supuestos normales en la teoria econdémica del consumo:

HIPOTESIS. El conjunto de consumo es Ry. Las preferencias del consumi-
dor estdn representadas por un preorden completo y son continuas, con

vexas y estrictamente mondtonas. El ingreso del consumidor y los pre-

etos de los n bienes son positivos.

Procedemos del siguiente modo. Tomamos cualquier variedad de indiferen
cia
{(x € R} | U(x) = c}

donde c es un nGmero real. En virtud de la Hip6tesis expresada obtene-
mos una funcién explicita

x; = F(xz,...,xn) ,

que extendemos a todo Rn'l atribuyéndole el valor += en los demids pun-
tos.

Elegimos el bien 1 como numerario (p; = 1) y llamamos q al vector
(pz,...,pn), donde p; es el precio del bien i en unidades del bien 1.

Las propiedades de F, de su conjugada F* y de sus respectivos mapas
subdiferenciales 3F y 3F* se describen en la siguiente proposicién.

LEMA. (a) F es convexa propia y cerrada;
(b) -q € aF(xz,...,xn) st y solo st (xz,;..,xn) € 3F*(-q);

(c) (x2,...,xn) = 3F*(-q) si y solo si F* es diferenciable en -q.



Demostracidén. Resulta inmediatamente de los hechos postulados en la Hi
pbtesis por aplicacién de proposiciones de andlisis convexo (cf. Rocka
fellar, [ 5], Teorema 12.2, Corolario 23.5.1 y Teorema 25.1).

Pasamos ahora a las correspondencias de demanda. Agregamos los siguien
tes simbolos: I, ingreso del consumidor; ¢, correspondencia de demanda
individual no compensada; o, correspondencia de demanda individual com
pensada.

TEOREMA 1. Con X fija, los vectores de precios en los cuales o(p;X)
contiene un solo punto forman un subconjunto denso del conjunto de to-
dos los vectores de precios. ELl complemento de dicho subconjunto es de

medida nula.

Demostracibén. o(p;x) consta de un finico elemento si y solo si la res-
pectiva F* es diferenciable en -q, de acuerdo con el Lema anterior.

De este hecho se desprende lo afirmado por el Teorema, teniendo en
cuenta las propiedades generales de diferenciabilidad de funciones con
vexas propias (v. Rockafellar, [5], Teorema 25.5).

Una manera alternativa de probar el Teorema consiste en deducirlo de
la semicontinuidad superior del mapa subgradiente, propiedad estudiada
por Moreau [ 2].

TEOREMA 2. Los pares (p,p+Ap) que satisfacen la ecuacidén de Slutsky
constituyen un subconjunto denso del conjunto de todos los pares de
vectores de precios. ELl complemento de dicho subconjunto es de medida
nula (cf. [4]1).

Demostracidn. Dado el ingreso I y los precios iniciales p, sea un in-

cremento Ap. Introducimos un selector arbitrario
s: ¢(p,I) —— se(p,I) € v(p,I) ,
y consideramos la descomposicidn:
#(p +Ap,I) - ¢(p,I) = ¢(p +Ap,I) - o(p+ap,se(p,I)) +
+ o(p+ap,sp(p,I)) - ¢(p,I) ,

que equivale a la ecuacién de Slutsky en la forma de incrementos fini-
tos (Nikaido, [ 3], capitulo VI; Ellis, [1]).

La descomposicién indicada es posible si y solo si o(p+Ap,s¢(p,I)) con
tiene un finico elemento. Basta entonces aplicar el Teorema 1 para con-
cluir la demostracidn.
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PROJECTORS ON CONVEX SETS IN REFLEXIVE BANACH SPACES
Eduardo H. Zarantonello

Dedicated to Professon Luis A. Santalé

Selfadjoint operators in Hilbert space can be synthetized out of orthogo
nal projectors by the process of forming the integrals of numerical
functions with respect to an increasing one-parameter family of projec
tors. To be viable such a mechanism - known as spectral synthesis - re
quires from projectors a certain number of algebraic properties. Not
long ago I have shown [7,8,9] that these properties subsist if the
class of linear projectors is enlarged so as to include projectors on
closed convex cones, conceived as nearest point mappings, and thus I
was able to synthetize a new class of operators, mostly nonlinear. But
then, having freed the spectral theory from its original confinement

I was faced with the question of how far one can go on extending it. For
instance, would it be valid in spaces other than Hilbert space?. It is
precisely to this question that I am addressing myself in this paper,
beginning with the study of projectors in reflexive Banach spaces. A
first basic question is to decide what projectors on convex sets
should be. Nearest point mappings certainly do not qualify, as they
form an unruly class devoid of any algebraic structure, nor does any
class of operators mapping the space into itself, since for these ma-
ny of the required properties do not even make sense. This realized,
one is led to the view that projectors must be mappings, perhaps multi
valued, acting from the dual into the space, view which in Hilbert
space is thoroughly concealed by the standard identification of the
space with its dual. At this stage a choice offers itself in a most
natural way: The projector on a closed convex set K in a real reflexi
ve Banach space X is the mapping PK: X* — 2% assigning to each

x* € X* the set of points minimizing % Ix*12 + % Ixi? - (x*,x) over K.

A series of familiar looking results soon brings out the certainty of being on
the right track. So reassured, I have proceeded to investigate these

new mathematical objects, not so much on their own right but rather as
possible instruments for the spectral theory. My results are inconclu-

Sponsored by the United States Army under Contract No.DAAG29-75-C-0024.
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sive as they failed to prove or disprove a couple of essential points.
It is however apparent that the very existence of an increasing fami-
ly of projectors requires from the space a good deal of Hilbert space
structure, and therefore that there is not much occasion for the spec
tral theory to take place in a reflexive space chosen at random.

§1. PROJECTORS ON CONVEX SETS.

All throughout this article we shall be working in a real reflexive
Banach space X, whose dual we shall denote X*. As usual the double bar
indicates the norm in either space, and the angular brackets the bili-
near form effecting the pairing of X and X*. We shall let

J: X — 2%* denote the duality mapping:

Jx = {x* | (x*,x) = Ixi? = §x*1%}
of X onto X*, and Jhoxr - 2k,
I lex = {x | (x*,x) = IxI? = Ix*1%},

the duality mapping of X* onto X. Let us recall that Jx = 3% Hx"z, and

-1

J T x* = 3% Hx*ﬂz, and that the relation

Taxai? + Taxa? - (x*,x) = 0

is equivalent to x* € Jx and to x € J!

x*. Mappings, even when sin-
glevalued, are considered here in the context of multivalued mappings,
and so the inverses always exist. The conjugate of a proper lower semi

continuous function f: X — (-»,+»] is denoted f*. We shall often use
the letter Q for the function x — % Hxﬂz, and Q* for its adjoint
x* — % Hx*“z. If K is a closed convex set Vi denotes its indicator

function. The infraconvolution of convex functions is indicated by the
symbol O3,

To bring out the analogy with projectors in Hilbert space we shall fol
low closely our discussion of the Hilbert space theory expounded in
[9]; the reader is invited to compare the results step by step.

DEFINITION 1. The projector on a closed convex set K in X is the map-

ping Pp: X* — 2X assigning to each x* the set of points minimizing
the function
Tx*i? s 2 oaxa? - oxh,x0

over K, that is

1

1) PKx* = {x € X | ||x||2 - (x*,x) < % HyH2 - (x*,y), vy € K}

N

Since Ixi? - (x*,x) is 1l.s.c. convex function of x tending to +» with
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Ixl the infimum is always attained and PKx* is never empty. In Hilbert

space PK is simply the nearest point mapping on K. If K = X then Py =

Z )+ yA
>z fzf *

ter case we recognize PKX* as the ordinary projection of x* on a half-

R | . - * = * -
J™ ", whereas if K {tz}tZO then P x (x In the lat

line.

THEOREM 1.

-1

(2) Pex® = {x | (Qrodx + (Qeu)*x* = (x*,x)} = (J+3y ) 'x*,

Proof. From (1) we obtain

{x € Pox*} = Ux*,x) - (glxI? + y (x)) = sup [(x%,7) - Ty 12 (y)1}

= L@ () + (@Y I*0* = (x4, 0} = {x € 3(Qry)* = (J+2,) " 1x*)

" COROLLARY 1. PK is a subdifferential.

—_

COROLLARY 2. The function Ixi? - (x*,x) remains constant over PKx*.

2

This corollary justifies the notation (x*,PKx*) - % IIPKx*II2 for the

common value of (x*,x) - % ||x||2 on PKX*.

COROLLARY 3.

1 2 _
(3) (x*,P x*) - 2 [P x*I% = (Qry,)*x*,

Proof. The left hand side coincides with the supremum of

2
(x*,y) - (l¥}—-+ wK(y)), which is (Q+wK)*x*.

COROLLARY 4. P, satisfies the subdifferential equation
1 2
* = * - <
4) P.x al(x s Pex®) 2 HPKx*H 1.
COROLLARY 5.
(5) PKx* n PKy* C PK(tx* + (1-t)y*).

Proof. This is just another way of saying that P;lx = Jx + awKx is

convex. On the other hand convexity follows from the maximal monotoni-
city of J + Wy .

COROLLARY 6.

(6) {x € P.x*} « ({3 x* € Jx | (x*-x*,x-y) >0, v y € K}.

Proof. (x € Pex*) «= {x* € Jx + 3y, (x)} « {3 x* € Jx | x*-x* € AP x}
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Let us recall a few basic notions. A vector u* € X* is said to be nor
mal to a closed convex set K at a point x € K if

(u*,x-y) >0, y €K ;

such vectors are called normals. It is evident that awK(x) is the set
of all normals to K at x.

A hyperplane is said to support a convex set K if it bounds a minimal
halfspace containing K. If K is closed the intersections of a suppor-
ting hyperplane with K is called a face of K; if the face is not emp-
ty the hyperplane is said to support K at any point of this face,
otherwise it supports K at infinity. As intersections of closed con-
vex sets faces are closed convex sets. The equation of any hyperplane
supporting K at finite distance can be written in the form:

(u*,x) - r = 0, with u* normal to K, and r = 33{ (u*,y). It follows

that a K-face is the set of points having a common nonvanishing nor-
mal. To also include the case u* = 0, K itself is considered to be a
face, if only an improper one. In this context it is important to
bear in mind that Jx is the set of normals at x to the ball of radius
Ixl centered at the origin with norms all equal to [x|, and also the
face of the ball of radius lxI in X* having x as normal.

THEOREM 2. Any PKX* 18 the intersection of a K-face with a face of a

ball centered at the origin, and conversely. The K-face is proper <if
x* & JK.

Proof. For fixed u* and v¥* we have
{x | u* € Jx} N {x | v* € 3¢K(x)} C {x | u*+v* € Jx+3¢Kx} = PK(u*+v*L
Moreover, by definition of PK’

{x, € PK(u*+v*)} <> {u*+v* = u* + v* u* € Jx,, v¥ € BwK(xl)}

1 1? 1 1
and if x belongs to the intersection set on the left in the previous
equation,

1

{x1 € PK(u*+v*)} = {0 = (u*—u?,x-xl) + (v*—vT,x—xl)}

and by the monotonicity of J and awK ,
0 = (u*—uT,x-xl) = (v*-v*,x-xl)

1
But 0 (u*-u’l‘,x-xl) = (u¥*,x) + (u*,xl) - (u*,xl) - (u’l‘,x) =

3 husi? + Toxg 1% - qur,x] + (4 0x0? + 2 oune? - e,

[NTE

and since both terms on the right are nonnegative, they vanish, imply

ing that u* € Jxl, uT € Jx. Furthermore, from 0 = (v*-v?,x-xl) we de-

duce for any z € K,

(v*,xl-z) = (v¥*,x-z) + (v*,xl—x) = (v¥,x-z) + (v*,xl—x) + (v*-v*,x-xl)

(v¥*,x-z) + (VT,X -x)y>0.

1
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whence v* € awK(xl). In conclusion,

{x1 € PK(u*+V*)} = {u* e Jxy, v* € awK(xl)},
and therefore

PK(u*+v*) ={x | u*edx} n{x | v*te BwK(x)}.

Of these two last sets the former is the face of the ball through x
having u* as normal and the latter the K-face perpendicular to v¥*.
This concludes the proof because any x* can be written in the form
x* = u*+vy* with v* normal to K at a point x, and u* normal at x to
the ball through x. It is clear that if x* € JK then u* # 0, and the
corresponding K-face is proper.

COROLLARY 1. If J1 s single valued so is PK for any K.

This corollary can also be stated by saying that if the unit ball in
X* is smooth then P is singlevalued.

COROLLARY 2. The functions % Ix12 and (x*,x) take constant values
*
for x € PKX .

We can now use the notation HPKx*Hz, (x*,PKx*) without any ambi-

N —

guity, because the results do not depend on the representative point
in PKx*«used to calculate them.

COROLLARY 3. PKx* is a bounded closed convex set for every x* € X¥*.

1

THEOREM 3. x* € JK <if and only if P.x* = J 'x* N K.

Proof. It is obvious that if PKx* = g1

x* N K then x* € JK. Converse-
ly, if x € K and x* € Jx, then for each y € PKx* there is a y* € Jy
and a u* € awK(y) such that x* = y*+u*, and so

(x*-y* ,x-y) + (u*,y-x) = 0.

The two terms on the left are nonnegative, the first by monotonicity,
and the second because u* is normal to K at y. Hence both vanish.
From (x*-y* x-y) = 0 it follows that y € J'lx*, and hence, since this

holds for every y in PKx*, that PKx* c J-lx* n K. The opposite inclu-

sion being obvious, the theorem is proved.
COROLLARY 1. R(P.) = K.

Proof. From the definition of projector R(PK) C K, and from the above

theorem PK(JK) D K, so R(PK) = K.

COROLLARY 2.



COROLLARY 3.

9) PKx* C PK(tx* + (1-t) J PKx*) , 0<t<i1.
Proof. From Theorem 1, Corollary 5 and Corollary 2 above.

THEOREM 4. A subdifferential operator P: X* — 2% 46 a projector if

and only if it satisfies
(10) Px* = a[(x*,Px*) - + IPx*17],
where the notation is construed to mean that (X*,x) - % Hx"z takes

a constant value for X € Px*, and that the resulting function, assu-
med equal to +» when Px* {g empty, is a proper l.s.c. convex function
of x*,

Proof. Necessity is the content of Theorem 1, Corollary 4. As for suf
ficiency start out by remarking that D(P) is convex because by hypo-
thesis it coincides with the domain of a l.s.c. convex function. We
claim that P is locally bounded about each point in space. Indeed, if it were

not there would be a point x*and a sequence {x;}f C D(P) such that

1 2 . .
x; — x*, HPX;“T +o  and then (x:,Px;) - 7~HPX:H — -, implying, by

lower semicontinuity, that (x*,Px*) - %—"PX*"Z = -, which is impos-

sible. Then, local boundedness coupled with demicontinuity (itself a
consequence of maximal monotonicity) require that 0(P) be closed. Now,
if u is normal to D(P) at x* then, by maximal monotonicity again,

Px* + tu € Px*, t >0, and u = 0, since Px* is a bounded set. Having
no nonvanishing normal D(P) is the whole space. (The foregoing argu-
ment is a particular case of the theorem that says that a maximal mo-
notone operator is surjective if and only if its inverse is locally
bounded [4]).

Next we observe that (10) amounts to

[t Px*) - 2 Ipx*1%] - [(y*,Py*) - 2 apy*1?] s (x*-y*,y) ,

vy x*,y* € X*, y y € Py*, that is, to

(x*,Px*) - 2 IPx*IZ > (x*,y) - T Uyl?, ¥ x*,y% € X* , v y e Py*.

Hence, since for y € Px* the right hand member of this inequality
coincides with the one on the left,

(xx,Pxry - Lexti? = sup text,yy - 1oy?y,
yER(P)
As the closure of the range of a maximal monotone operator R(P) is
convex [cf.5], and the supremum above is (Q + in?s)*(x*) =

IP=< x*I2. Finally,

= (x*,Po75y x*) - Q)

1
**R(P) Z

= 1 2 1 2 -
Px* = 3[(x*,pPx*) - 7»“Px*ﬂ 1= 3[(X*,PE7§3 x*) - E'HPETFS x*°] =

= Pizﬁs x*. . Q.E.D.
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n
THEOREM 6. z PK 18 a projector if and only <If
1 i
3 2 T 2
* - ® =
an I oIP, x*| 1] Py x*I const.
1 i 1 i
n
In such a case ) P =P,
1 i 2 K
i
1
n
Proof. If § P is a projector then the subdifferential of
1 i
n 1 n 2 n
(x*,(% PKi)x*) - 7"(% PKi)x*ﬂ , namely % PKix*, is contained in that

n
of § [(x*,PK x*) - %HPK x*HZ], and in consequence both convex func-
1 i i

tions coincide up to an additive constant, that is, (11) holds. Con-
versely, if (11) holds, then

b 1,5 2 _§ 1 2
<x*,(§ P )x*) - (] Py )x*|° = ] [¢x*,Pp x*) - 5P, x*|°] + const,
i 1 i 1 i i
and

£ (v * Ty ¥ %2 3 % % 1 wn21 _
aL¢x*, (J P Ix*y - 5I() Py Ix*I°] o ] al¢x*,Pp x*) - 5 | P x*|°] =
1 i 1 i 1 i i

n
= (3 PK )x*,
1 i

Since the subdifferential of a convex function is monotone, and

n
) P, maximal monotone [6], the above inclusion is in fact an equa-
1 i

n
lity, and } P
K.
1 i

Thus the first part of the theorem is proved. As to the last, note

is a projector because it satisfies relation (10).

n
first that if f,(x) = % Ixi? + g (x), i =1,2,...,n then | P, =
1 1 1 54

n
3f* = 3§ f} because the f¥'s are continuous [6]. Hence
1

1

n
= E ¥ =
n n n
R(} P ) = R(3 ) £%) = 0(3(] £5)* = D(a(£,0£,0...0¢£ )), and,as the
I % 1 1 ° n
domain of the subdifferential of a 1.s.c. convex function is dense
in the domain of the function [1],

D(a(flEleD...Elfn) p(£0£,0...0f ) = DED+D(£))+.. .40 (f) =

K1+K2+...+Kn.

n
Therefore, R(}] P_ ) =
1 K

n
is closed and § Ki = R(
1
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its range.

8§2. CONICAL PROJECTORS.

Projectors on closed convex cones with vertex at the origin are called
conical projectors. It is clear that a projector on a convex set is
positive homogeneous when the set is a cone with vertex at 0, and only
then, so that the class of conical projectors coincides with that of
positive homogeneous projectors. The letter C will be reserved to de-
signate the above type of cones, so that PC will always indicate a co-
nical projector.

The dual of a cone C C X in the cone in X*
(12) cl= {x* € Xx* | (x*,x) <0, x € C}.
Cl is nonempty, closed and convex. The operation of taking duals has

the following properties:

11 1 1 1 _ 1
(13) CT7=C, {6 CC} = {C{2C3}, (QC)" = couCy.

For linear spaces 1 coincides with the operation of taking anihila-
tors. The indicator functions of dual cones are conjugate of each
other. We leave to the reader the verification of these facts.

The original definition (1) acquires a special form in the case of
projectors on cones:

THEOREM 6.
(14) Pex* = {x € C | ¢x*,x) = IxI® = [ sup (x*,u)]?%}
ueC, uj <1

Proof. If x minimizes % Hy“2 - (x*,y) over C, then, for any x € C ,
% t2IIxII2 - t (x*,x) as a function of t attains its minimum on the po-
sitive real axis at t = 1, and hence Ixi? = (x*,x). Therefore
X € ch* if and only if Hx“2 = (x*,x) and

Ixl2 _ 1xl2

inf XUyl2 - (x*,y)} =
yeC

1
N’
i
N’
]
~
»
*
-
~
~
[}

= inf inf {3 t2Iy1% - wx*,y)) =

yeC t20
0, if (x*,y) <0 1 2
= inf 2 = - [ sup (x*,u)l”.
vec | -3 <x*, g, if (x%,y) >0 2" uec, lul<l Q.E.D.

It is worth remarking that any x # 0 in P,x* is of the form (x*,u)+u,
where u is a vector in C maximizing (x*,v)+, so that ch* is simply

obtained by looking for the directions in C making the smallest angle
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with x* and projecting on them in the ordinary sense. This geometri-
cal definition may very well be taken as the point of departure for
the theory of conical projectors. It is indeed the idea of 'least an-
gle mapping" what lies at the roots of projectors. J.P. Aubin has
used this idea to define projectors on linear spaces [1].

THEOREM 7.

(15) MPCx*II2 = (x*,PCx*) = [ sup (x*gu]z = Gzl(x*),
ueC, juj <l C

where § J_(X*) denotes the distance from x* to Cl.
C

Proof. Only the last equality requires a proof. By Theorem 1, Corol-
lary 3,

(x*,Px*y - 7 IPx*1? = (QHo)*(x*) = (Q*o¥d) (x*) = (Q* oy ) (x*) -
C

—_

inf 1 Ix*-yri? = 6% xem).
L c
y*eC

N —

- 1 2 . 2 1
* * - * * —_ * %
Since (x ,ch ) 2 HPCx I is equal to both HPCx I“ and > (X*,P.X ),

the theorem is proved.

COROLLARY 1. 7(P) = ct.

COROLLARY 2.

1 1

2 2
(16) ch* =3 ﬂch*ﬂ = Bf-dcl(x*).

]

Next theorem establishes a relation between projectors and nearest
point mappings.

THEOREM 8. (I*-JPC)x* n Cl is the set of points in Cl closest to X*.

(I* denotes the identity map in X*).

Proof. If z* € (I*-JPC)x* n Cl then x*-z%* € JPCx* and lIx*-z*| =
= HJPCx*H = ﬂPCx*H = ﬂ}(x*), which shows that z* minimizes the distan
ce from x* to points in C™.

Conversely, if z* € Cl realizes the distance from x* to Cl, then

1—62 (x*) = 1 nx*—z*uz. Since on the other hand 1—62 (y*) < 1 ny*—z*“2
2 Cl 2 2 Cl 2

for all y* € X*, and since a%—&zl(x*) = ch* (Corollary above),
C

2 2 2 2
Iy*-z*)" - ;— Ix*-z*| >%5Cl y*) - %Gcl (x*) > (y*-x*,Px*), y*EX¥,

TN

whence by definition of subgradient,

Px* € 3% Ix*-z*1? = 5T (xrez%)
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If we let T ,:X* — 2X° denote the nearest point mapping on C'L we can
Cl

give this theorem a form suggestive of Moreau's decomposition of a
vector in Hilbert space along orthogonal directions in dual cones [ 3].

COROLLARY. For any x* € X* there are vectors u and v* such that
1
a7 x* € Jutv*, u e C, v* € C°, (v*,u) = 0.

Moreover, if (17) holds then u € ch* and v* € T |x*.
C

Proof. The possibility of decomposition (17) follows from Theorem 1,
Corollary 6 and the theorem above. As to the last part notice that if

v* € Cl and {v*,u) = 0 then v* € awc(u), and apply Theorems 1 and 10.

Projectors and nearest point mappings are the same objects in Hilbert
space. If the identification of the space with its dual is made ex-
plicit this coincidence can be expressed by the equation

(18) m, = PJ.

Now, is this relation characteristic of Hilbert space? We don't know,
we only conjecture that it is. The following theorem gives some sup-
port to our contention.

THEOREM 9. Let X and X* be dual reflexive Banach spaces. Then if the

*
duality mapping J: X — 2X* e bijective, and

(19) I, = P.J for all straight lines and hyperplanes C C X,

(20) HC* = P‘::*J_1 for all straight lines and hyperplanes C* C X*,

X 28 a Hilbert space.

Proof. By Theorem 2, Corollary 1 all projectors are single valued,
and on use of Theorem 8, (19) and (20) can be written in the form

1

(1-37'p x = PoIx , (I*-J P)x* = P 7 'x*,
C C

If in the first of these equations P |x is replaced by its expression
Cc
derived from the last one obtains

- = 3-1¢3-
(1-P,9)x = J71(J-3p 2)x

that is,
J(x-Pch) = Jx - JPch.

In a similar manner
-1 . -1 = 7-1 . g1 -lox
J (x*-Pc*J x*) = J *x* J Pc*J x*,

Making in the above equations the following identifications
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C = {tu} C* = {tJu}

= * =
o<t <+ ? v, X Jv

cocp<tm ? X

where u and v are any two unit vectors, one gets

J(v -(Jv,u) u) = Jv -(Jv,u) Ju

J(v -(Ju,v) u) Jv -(Ju,v) Ju .
Set r = v-Bu, s = v-au, o = {(Ju,v), B = (Jv,u) , and on use of these

identities proceed to the following calculations:

ITh2 = (Jr,r) = (Jv-BJu,v-Bu) = 1+82-8%-Ba = 1-aB
I1s12 = (Js,s) = (Jv-aJu,v-ou) = 1+8%-ag-a® = 1-aB
(Jr,s) = (Jv-BJu,v-au) = 1+aB-aB-aBf = 1-aB.
Therefore, (Jr,s) = 13r12 = 1sl? and by definition of J, Jr = Js.

This implies r=s, which in turn yields a=g, that is, (Ju,v) = (Jv,u).
This equation, valid for unitary u and v, is at once extended to all
u's and v's in X by use of the homogeneity of J. But then J is a self
adjoint mapping of X onto X*, and as such linear. It follows that

2
Ixl = (Jx,x) is a quadratic form, and the theorem is proved.

Theorem 4 takes a simpler form in the case of conical projectors:

THEOREM 10. A positive homogeneous-subdifferential operator

P: X*— ZX 18 a conical projector <if and only if it satisfies

2
z1) Px* = 3%-HPX*H .

Proof. It follows from Theorem 4, and equation (15) that a conical
projector satisfies (21). Conversely, if a positive homogeneous sub-

differential P satisfies (21), then, since it also satisfies
Px* = 91 (x*,Px*) , [9], IPx*I? = (x*,Px*) (use the fact that PO*=0),
that is %-IIPx*II2 = (x*,Px*) - %—"PX*'. Hence, (10) holds for P, and

P is a projector.

COROLLARY. A positive homogeneous subdifferential operator

P: X* — 2% is a conical projector if and only if

(22) IPx*12 = (x*,Px*) , v x* € D(P).

Proof. Necessity is contained in Theorem 7. If, on the other hand, P
is a subdifferential operator satisfying (22), then Px* = 8%—(x*,Px*)=
= 8%-"Px*u2, and I is a projector by the above theorem.

Now we turn our attention to the important question of when a sum of pro
jectors is a projector.

n
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n 9 n 9
(23) IL Py x*[ = ] 1P, x*I”.
1 i 1 i
In such a case
n
§Pey " o
T c
;i

Proof. This is a particular case of Theorem 5. The constant in equa-

tion (11) is zero because all PC 's vanish at x* = 0.
i

It may be checked that if all C.'s are rays: {tu.} , fu. =1, (23)
1 1 £>0 1

n
simply says that IxI? is quadratic over the n-hedron {] tiui}
1 t;20

and that the u;'s are orthogonal with regard to the induced scalar product,

E

n
or more briefly, that {] Cisl 1Y is a 2"-tant of an n-dimensional
1

Hilbert space. Based on this remark the system of n cones satisfying
the Pythagorean relation (23) may be conceived as a generalization of
an orthogonal n-tuple of vectors where the vectors are replaced by co
nes. Accordingly we shall say that such cones form an orthogonal n-

tuple, and shall use the notation C;LC,L ...LC_ or P, 1 Pczl...lPC
1 n

to denote this fact. It is remarkable how much of the Hilbert space
structure is brought into the space by the requirement that a projec
tor should split into the sum of others.

C

THEOREM 12. C,1

1 gl ol C, if and only if

C
B 2 2
24 inf § IX; 0% = Ix1” , ¥ x €Cy +C, +...% C_.

n

Z xi=x,xieCi

In such a case the infimum <is always attainable.

Proof. Cll CZJ....l Cn is equivalent to

n
I3 0p, x*12 = Tup_ x*1?
1 i z Ci

1

which by taking conjugates and recalling that the conjugate of % IIPCx*II2
is % Htz 1 wc(x) (Theorem 1, Corollary 3, and (15)) becomes (24).

To see that the infimum is attained take n sequences {xik)}T C Ci ,

n

n
such that Hxik)nzt Ilel2 ) xik) = x. Since the sequences are
i=1 i=1

vbviously bounded they can be assumed to be weakly convergent to 1li-
mits x; in C; respectively. Then, the limit inferior of the norms

being larger than the norm of the weak limit, we must have
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n 2 2 n n 2 2 n
I oIxg0® < axt?, [ oxg o= x, that is ] Ixg0” = ax1t, ] ox; = x.
i=1 1 a i=1 N i=1
(Briefer but less direct: R(J P, ) = R(P ) =) C.).
1 71 B 1t

el
For the inversion of the statement: If Cll Czl oo d C,» then

n n
{x, € P, x*, i =1,2,...n} = {I} x.ﬂz =7 Hx.Hz} , we need a couple of
i Ci 11 1 1
lemmas.

LEMMA 1. Let Cll Czl ...L1C . Then
n

n n ‘ n 2 n 9 n 2 n 2
{J(§ x;) N J(§ x}) #6, u§ x1° = § hx; 1, u§ xi° = § Ixine,

x;,X} € C;, 1= 1,2,...,n} implies {in n Jx;} #@,i=1,2,...,n}.

n n n n2
Proof. From J(§ x.) n J(] x!) # @ it follows It(§ x.)+(1-t)(} x})I° =
1t 11 1 * 1t
= const., for 0 <t < 1. Then,
n n 2112 n2n 2
1t x )+ (-0 (§ x)D1? = 1] x 1%+ -0 ] <1 = § tixg?+0-0 P )>
1 1 1 1 1
0

1
n
> 71 txi+(1-t)xillz, <t<1
1

’

and by Theorem 12, since tx; + (1-t)xi € Cy,

n 2 n 2 n n 2
% Ttx +(1-t)x} 1% > I|§ (tx,+(1-£)x)) 17 = It % x;+(1-1) %x‘ill ,
SO

- ' = _ ' =
% ITtx;+(1-t)x} | It % x;+(1-1) § xt const.

Now, the sum of the squares of convex functions being constant if and
only if the individual terms are constant, we must have,
|Itxi+(1—t)x'ill2 = const., 0 <t < 1, from which it follows

Jx, NJx} #0,i=1,2,...,n Q.E.D.

LEMMA 2. 17 CIJ.CZL ol Cn’ then

1T k0% = F ux, 12, x, €C.} = (P, x* eI lix,, i=1,2 n
{% i g.: i ’ i i Ci— i? sty e ey ’
n
v x* e J( x.)}.
1 1
Proof. By Theorems 3 and 11,
* -lyx L L * ¥ x* 3
Pox* = J 'x* n (% Ci) = % Pcix , x* € J(% x;).
1.
1

i 3 3 % * * -
Hence, if xi,xé,...,x; are any n points in Pclx ,Pczx ,...,Pcnx res

n n
pectively, J x! € J'lx*, and x* € J(§ xi) n J(y xi).
1 1 1
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The lemma above then yields Jx;, N Jx} # @, that is, x} € J_lei,

i=1,2,...,n, and since x} is any point in P, x* | Pe x* C J"lei,
i i

i=1,2,...,n.

THEOREM 13, If Cll Czl Leal Cn, then
T2 % 2 :
(25) {H%xiﬂ = g Ix, 1%, x;, € C;, 1 =1,2,...,n} <
n
— {x, eP, x* i=1,2,...,n, ¥V x* € J(] x.,)}
i Ci i i
Proof. Assume that the proposition on the left holds. Then, by last

n
lemma, IP, x*I = lIx,l, x* € J(J x.), and so, since Ix.l = IP, x*I =
Ci i 11 i Ci

= sup (x*,ui), (x*,xi) - Hxill2 <0, i=1,2,...,n, and adding up
UiECi,Hui"SI

these inequalities,

n % 2 % n n 2 _ n 2 n 2 _
1 [(x X0 - dxgdl 1 = (x*,] X0 - ) Ix 4= = Iy x; " - Iy x; 1" =0
1 1 1 1 1
2 2 2
Therefore, (x*,x;) = Ix;I = IPc x*| = [ sup (x*,ui)] , and by (14)
1

uisci’ "ul"Sl
X; € P x*, proving the implication from left to right. The opposite
1

implication is but a quantification of (23).

COROLLARY .
a .
= E3 -1 *
(26) {§ P, =P} ={P . x*CP,JP x*CJ JP,x*ngC,,
1 z C 1 1 Z c 1
i J
1 1

i=1,2,...,n, vy x* € X*}.

Proof. Let X sXgsaue, X be points in PC x*,PC x*,...,PC
1 2 n

n
vely. Then by Lemma 2 and the theorem above X, € PC_J(Z xi) C

x* respecti-

1
c J_lei ncC,, i =1,2,...,n, whence (26) follows from the fact that
n
when the xi's range over the sets P, x*, 7 X; ranges over Pﬁ x*.

i 1
e
REMARK. By (8) J™'JP, x* n C, = P, JP, x*, so that the right member
i i i
of (26) can be written in the form P, x* c P, JP x* ¢ P, JP_ x*,
c; c;" n c;” ey
1 c.
1 3
Comparison with (8) prompts the conjecture that the last inclusion is
not proper, that is, that PC JPn = PC JPC . However, this is not
i z C i i
1 k

true in general. Consider the following example:

Let X and X* be the dual two dimensional Banach space with norms:
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1/2 1/2

(g2 + 15,102, g5, >0 GIRRED
Il = , Ix*| =

%
, EjEy >0

The second and fourth quadrants in X, wich we call C1 and C2 respecti-

vely, form an orthogonal couple, and Jol=p +Po .
1 2

X
C1+C2
= x%, where x; is the Euclidean projection of x* on the i-axis. Moreo-

c For any x* € X* in

the first quadrant and away from the axes JP * = x*, and JP, x* =
1

* % s . s
ver, PCIJ PC1+C X PC x* is a singleton X; on the 2-axis, whereas

2 1
Po JP, x* = J'lx* N C; is a straight line segment through x; across C;

1 1
parallel to the first quadrant bisector. Obviously Po J Pe e x* #

1 172

# P, J P, x*,

¢ a
All that has been said of conical projections from Theorem 11 on ap-
plies also to projections on general convex sets, the only difference

being the presence of an additive constant all throughout.
THEOREM 14. If CIJ-Czl...lCn then

(27) PC’(tI*+(1-t) J Pn ) = PC , 0<t< 1, i=1,2,...,n
i Z C. i

1 ]
J P x* set z*(t) = tx* + (1-t)y*,

C.
J

Proof. For x* € X* and y* €

s

0 <t< 1. Now

sup (z*(t),u;) < t sup (x*,u;) + (1-t) sup (y*,u;) =
uieCi,||ui||Sl uieCi, |ui||sl uiECi, ||ui|sl

* - *
tIPCix I+ (1 t)HPCiy I.

By (26) “PC y*I IP; x*I  so,
i i
sup (z*,ui) < 1P, x*I.

" 1
uieCi,IuiISI

Moreover, by hypothesis and choice of y* there are points x; € Pc_x*,
n 1

i=1,2,...,n such that y* € J | x;. Since (x*,x;)
1

Ix;1% by (14), and

2
(y*,x;) = Ix;0% by (25), we have (z*(t),x,) = IxI? = IP, x*I2 ,

1
t=1,2,...,n. In view of what has already been proved these equations

mean that the suprema of (z*(t),u;) , (x*,ui) » {y*,u;) over the u;'s
in C; with Ju;l < 1 are attained simultaneously and are equal to

HPC_x*ﬂ. Then,
1

% = * = * * = *
{vi € PC.Z ()} = {Hviﬂ sup (z*,u;) HPC.x I, ¢z (t),vi) Hgbx 13
1 u.eC,flu,ll<1 1 1
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e {|v;l = sup (x*,uj) = sup (y*,u;) = IPg x*I, (x*,v;) = lch,x*ll2 =
: . 1 1
uieci,nuinsl uieCi,Huiusl
2
= * = * *
{y ,vi) jviu } e {vi € Pc.x » V; € Pc_y }
1 1

and hence

PC (tx*+(1-t)y*) = Pc x* r\PC y*, 0<t<g1,1i=1,2,...,n.
i i i

Since y* is any point in J Pn x*,

C.
I ¢
* - *) = * *
Pci(t x* + (1-t)J Px ) Pcix n Pci J P x*
C. C.
{ s L

and an appeal to the previous theorem concludes the proof.

COROLLARY. For any conical projector,

(28) P (tI* + (1-t)J P) = P, , 0<t<1.

Proof. Set in (27) C1 =C,C,=C, = ... = Cn = {0}.

The geometrical meaning of the relation Cll CZJ....l C, is not suf-

ficiently clear from defining Pythagorean relation (23), nor from
(24). In Hilbert space each cone is the dual of the sum of the others
relatively to the total sum [9, Equation 2.10]. A similar result
holds in reflexive Banach spaces.

LEMMA 3.

(29) c,le,l...lc =»tic, c (I ¢t , j=1,2,...,nk
n 3j idj &

Proof. Let x. € C,, y* € Jx.. Then, since by (8) x. € P, y* C J_le.,
k| 3 k| k| 3 CjJ i

=]

2 2 2 2
Ix. + )} P, y*1° = ] IP. y*¥I° = Ix.0° + [ P, y#*l
h| i#j €73 e €73 b i4j €;73

and by definition of J,

2
%
'yjH-

1

2 2 2
T 0P, y*1° = Ix, + [ P, y*l“ - Ix,0° > 2%, J P, y®)=27]1IP
idj  Ci7d i i35 6473 i 37345 €373 idj ©

Hence, P, y* = 0, that is, y* c C., i#j, and J C, c N C% (] ¢
.73 3 i j Ly 1 25 -
i i#j i#j

THEOREM 15.

n
(30)  C e,k .idc =c, =3 M(Lcp T nCicy) ,i=1,2..,n
J i#j k=1
-1 1 . H
Proof. By Lemma 3, C. € J [ ( [ C;)7]1, and since C. C [ C,,
J i#j I 1

c.calicy ¢t nf ey
. iy 1 Ik
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This is half of (30). To prove the other half start with an x, in
J

n
37y €)Y (] ¢, and then observe that
i#; * 1
-1 1 1
x,eC +C_+ ... +C X, € J 'x* for some x* € C. = NnC:.
i 1 2 n’ 7j j’ i (igj 1) idj I
So

x* eJx, cJ(C_+C_+ ... +C)
j j 1 2 n

and by Theorem 3,

-l oa - . = *
X eJ x? a} (C1 +Cy *ouH Cn) P x¥ § PCk x3 P, x3 C Cj’
1 J
-1 1 n
and since x; was any point in J [ ( § Ci)] n(J C)>»
i#j 1

-1 o
JICY €l n(fc)cc,

if; * 1k i’
concluding the proof.

n
COROLLARY. In the relation PC =7 PC any n projectors determine the
1 k

remaining one.

We do not know if the arrow in (30) can be reversed. The most that we
can say is that this is the case in Hilbert spaces of dimension not
larger than three.

§3. CONCLUSION AND COMMENTS.

The material set forth in the preceeding pages is essentially all we
know about projectors in reflexive Banach spaces. No doubt the discus
sion can be carried further still, and we hope that it will be, for,
as it stands the extent of our knowledge is insufficient for the pro-
per development of a spectral theory. Let us point out here to some
of the most visible shortcomings.

In the first place it is not known if the relation PC1 > P defined

C ’

2

as meaning that Pc1 - PCZ is a projector, is a partial ordering for
projectors. Indeed, there is no proof of it being transitive.

Important as transitivity is, spectral theory requires something
stronger still, namely that any sub k-tuple of an orthogonal n-tuple
of cones be again orthogonal. This is necessary if the spectral measu
re built out of a spectral resolution is to be projector-valued. In

Hilbert space this is a consequence of Pc > PC being equivalent to
1 2
Pchpcl = PC . No such equivalence has been established in reflexive
) 2
Banach spaces, we only know that if gl s single valued P, > P, im
1 2

plies PC JPC = PC (Corollary, Theorem 13).
2 1 2
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the homogenity of orthogonality, is the following:

If CIJ.C2 l... lCn, and x; € Ci’ i=1,2,...,n, then
n n n n
2 _ 2 2 _ 2 2 >
(ng x|l § Ix 0 }={u§ a; x| %ai Ix;1°, a; >0},
The whole of functional calculus is based on it. Needless to say that
we have no evidence that it holds in reflexive Banach spaces.

These examples should suffice to show the need of further research.
Maybe some of the sought properties are not valid in general. If so,
we anticipate serious difficulties in bringing such facts to light,
for the construction of counterexamples is a hard task in this field.
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ELEMENTARY GEOMETRY OF THE UNSYMMETRIC MINKOWSKI PLANE
H. Guggenheimer

Dedicated to Luis A. Santalé

1.

Plane unsymmetric Minkowski geometry is given by a proper convex body
Z in the affine plane and a point O € int Z. Z is called the Zndica-

trix of the geometry; it defines a pseudonorm for any vector x: Write
x = 0X, then

x|l = inf A | X C AZ. (nm
Then x|l = 0, Ixl = 0 only if x =10,
lexll = allx|l if o =0 ,

flx + x'l < Wxip + lix'l .

The pseudonorm is a norm, [lax|| = |a| lIxll for all x and all a € R, if and
only if Z is symmetric of center O, Z = -Z. (All operations of vector
algebra will be taken for the origin at 0). The elementary geometry of
the symmetric Minkowski plane was studied in detail by C.M.Petty [9],
we are interested in the unsymmetric case. Although we are going to
use trigonometry and analytic geometry, no smoothness conditions will
be imposed on Z.

We shall parametrize the convex curve 3Z by t, two times its polar
area function in the sense of polar coordinates, relative to a fixed
polar axis. (For an arbitrary monotone and continuous parameter t on

T ~
9Z, t is a Stieltjes integral t = I det(z(o),dz(o)) ). Let Y be the

T

0

dual of Z [7]. The curve 3Y will be referred to s, two times the area
function in the sense of polar coordinates computed from the polar axis.
In a homothety of ratio c, the area of Z is multiplied by c? and that
of Y by c 2.
of Z, we may normalize the geometry by requiring

Since (1) is affine and the dual is an affine covariant

Area (Z) = Area (?) .

We shall assume from now on that we work with a normalized geometry

( ~an +that vra Theovsra AALCr2mAad 41T A 199t mrmmn o e +m owmealbea +h A Ave m el WA
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in general, where II denotes the area common to Z and Y [5] . For sym-
metric geometries, 2v/2Z < I < 7,

To any vector z(t) from O to 3Z there correspond all vectors y(s) from
0 to BY for which z(t).y(s) = 1. Therefore, if Y is the image of Y in

the rotation of angle —% and center O, the relation between the Zsope

rimetrixz Y [2] and the indicatrix is given by
det(y(s),z(t)) = 1. (2)

Since Y also is a proper convex body, it defines a norm |x|. The rela
tion (2) defines a map ¢ of the circle § = R/2Il onto arcs of S:

o(t) = {a(t) <s <b(t)}

by: -yle(t)] is the oriented direction of a support line of Z at z(t),

yle(t))

2L
z(t)

&
Fig. 1

where we denote by ¢(t) any s € ¢(t). The map ¢ satisfies
a) a(t) = b(t) if Z has a unique line of support at z(t)
b) inte(t,) n ine(t,) # @ implies o(t;) = e(t,)
c) U o(t)
tes
Since the dual of the dual is the original convex body, (2) defines
in the same way a map ¥(s) = {A(s) <t < B(s)}, with properties a)-c)
for s. Clearly, s € d o¥(s), t € ¥ o (t). For the endpoints of the

intervals we shall write a(t) = ¢_(t), b(t) = ¢, (t). Similarly, the
interval ¥(s) is written ¥_(s) < ¥(s) < V¥, (s).

We shall pair vectors in a frame

[Y(S)} [-Z(t)J
or
z(t) y(s)
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only if s = ¢(t), t = ¥(s). Since the frames are unimodular, so is

the matrix in

y(s)] [ cm (s,s.) st(t ,s)| [v(s,) -

z(t) L—sm(so,t) cmt(to,t) z(to)

whose elements are the trigonometric functione of the geometry. It
follows that the '"cosine'" function cm is '"even",

cms(s,so) = cmt(t,toj

and the "sine'" functions sm and st are odd:

sm(so,t) -sm(s,to)

st(to,s) -st(t,so)

As a consequence, we drop the indices of the cm-functions since the
arguments alone identify the functions. These functions have been studied
in detail in [5] for smooth indicatrices; here we note only that

s,s, € &(t) implies cm(s,so) =1, sm(so,t) = sm(s,t) = 0

t,t, € ¥(s) implies cm(to,t) =1, st(t,s) = st(to,s) 0.

Let t*,s* be the values of t and s, respectively, for which z(t*) has
the direction of -z(t), y(s*) the direction of -y(s). Then

v(t) or s,

¥(s) or t,

e (t*)

¥Y(s*)

sm(so,t) 0 implies s,

st(to,s) 0 implies t,

All triangles will be oriented. For a triangle ABC, the leg a is the
vector a = BC. All notations allow for cyclic permutations. We write
a = Ma"Z(ta) = IaIY(sa); this defines the angle variables. We have to

distinguish several notions of orthogonality (really, transversa-
lity in the sense of the Calculus of Variations).

A vector v is orthogonal to a vector x = [ x|Z(t) if v = QvlY(s),

s = ¢(t). The orthogonal direction is unique only if ¢(t) is a single
point. A vector v is orthogonal from x = IxkY(s) if v = lvllZ(t),

t = ¥(s). An altitude ha is a vector orthogonal from A to a. The
height is Ihal. The area A of the triangle is

A = ¥ det(h_,a) = ¥ llalih] det(Y(sy ),2(t,)) = 7 lalthd . (8

This is the Minkowski form of the area formula; it allows for cyclic



273

= llclllh II holds. only if Z and Y are homothetic, i.e., if they are
c
Radon curves; this is a theorem of Tamdssy [10].

From a+b+c = 0 we get the cosine theorem

flall + lbllem(t_,t,) + Hchm(ta,tc) =0 (5)

for the components in the direction of Z(t,) and the sine theorem

Il bll - Il cll _ Il all (6)
sm(w(tc),ta) sm(w(ta),tb) sm(w(tb),EZT

for the transversal components. The sm-function was first defined by
Busemann [2] who also found the sine theorem (for symmetric metric)
from the area formula

N = =

A = T det(a,b) Nallbl det(z(t_),Z(t,)) =
lallllbll sm(¢(ta),tb)
In the norm of Y, the formula A = %Alallbl st(¥(s,),s,) which yields

1al - bl - Icl %
st(¥(s,),s.) st(¥(s_ ),s,) st(¥(s,),sy)

We say that ABC is a right triangle if b = h_. Thén

-c = lallz(t,) + IbBY (v (t,))
=ll-clilem(t_,t*)Z(t,) - sm(p(t,),t¥)Y(v(t ))]
or llall = ll-cliem(t_,t*) = HcHIcm(tc,t:)lcm(ta,tz)
Ivl = H-c"lsm(¢(ta),tz)l = HcH[cm(tc,t:) sm(¢(sa),t:)| .

Since the determinant of the matrix in (3) is 1,

2
I-cll® = II—cllcm(ta,t:)ll-cllcm(t:,ta) + [l-cl sm(«p(ta),t:)ll-cllst(t:,cp(ta)) ;

we obtain the generalization of the theorem of Pythagoras

m(t*,t ) st(t ,w(t*)
Ih-cl? = fan? Tlera’ Nk ~a—°) . (8)
Cm(ta’t:) Sm(‘P(ta)’t:)

This leads to a characterization of euclidean geometry. We start with

LEMMA 1. If cm(to,t) = cm(t,to) for all t,t, then the geometry is
euclidean.

Denote the matrix in (3) by M(t,to;s,so). From the composition formu-
la M(tl,t;sl,s)M(t,to;s,so) = M(tl,to;sl,so) and the fact that the diago

nal elements in M are equal it follows that M is of the form

a b
M= .
qb a
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1

A coordinate transformation of matrix diag(1,|q|2) then transforms

all M into the form [+§ b]. Since Z is convex, Z is in the halfpla-
+ a

ne of the line of direction y(so) through z(to) that contains O, the-
refore

cm(to,t) < 1 for all t .t . 9)

(The inequality in absolute value holds only in symmetric geometries).
For t sufficiently close to t, the diagonal elements in M are posi-

tive and < 1 in absolute value. Since detM= 1 = a2$ b2 and a2

<1,
it follows that q is negative and M is a rotation matrix. Since q is
the same for all M, all M are rotation matrices and both Z and Y are

the unit circle.
If cm(tz,ta) = Acm(ta,t:) for all directions a and c with A indepen-

dent of a and c, it follows by a change of names that A = 1 and the
geometry is euclidean by the lemma.

If St(ta,¢(t§)) = psm(w(ta),t:) for all directions with constant nit
follows that the linear dependence of Y(¢(to)) and Y(¢(t)) implies
the linear dependence of Z(to) and Z(t): to = Vo w(to), t =VYoup(t).

Therefore ¢ (and ¥) are point-valued functions, Z and Y are rotund
ovals. Also, the map by oppositely oriented parallel lines of support
is the map which commutes with ¢ (and ¥). Hence, both Z and Y are sym
metric ovals. From the composition formula of the matrices M we get
the addition formulas

sm(so,tz) = sm(sl,tz)cm(sl,s°)+cm(t1,t2)sm(so,tl)

(10)
st(to,sz) = cm(sz,sl)st(to,51)+st(tl,sz)cm(to,tl).

Under our hypothesis, we either have u = 0 which is impossible or si-
multaneously

st(to,sz) = st(tl,sz)cm(tl,to)+cm(tl,tz)st(to,sl)

st(to,szj st(tl,sz)cm(to,tl)+cm(t2,t1)st(to,sl)

i.e., st(tl,tz)[qm(tl,to)—cm(to,tl)] = st(to,sl)[cm(tz,tl)-cmﬁﬁ,tzﬂ.

Since the directions t,»t;,t, are arbitrary, they can be chosen so

2
that st(to,sl) =0, st(tl,sz) # 0. Therefore, the cm-function is sym-

metric and the geometry is euclidean by Lemma 1. We have proved:

PROPOSITION 1. If there exists a constant XA or a constant U such that

Mall? + £(a,b)ibl?
g(a,b)llal? + wibp?

eitther "-c"z

2
or I-cll

holds for all right triangles, then the geometry is euclidean.
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One of the definitions of an angle bisector in euclidean geometry is
the set of centers of the circles that touch both legs of an angle.
For the isoperimetric inequality, the Minkowski analog of a euclidean
circle is the isoperimetrix [3,5] and its homothetic images. The cen-
ter of the circle is the image of O in the homothety. The radius of
the circle is the ratio of homothety, or the I l-norm of any vector from
the center to the circumference.

DEFINITION. A Y-bisector of ABC is the set of centers of the circles
that touch two of the lines that carry the legs of the triangle in one
fixed angle domain. An Znterior bisector is a bisector that contains
interior points of the triangle and a vertex as endpoint. A bisector
that is not interior is exterior. All bisectors are continua that
have a vertex as only relative boundary point.

Since all circles that touch two concurrent rays are homothetic ima-
ges of one another in homotheties centered at the vertex, each bisec-
tor is a straight ray through that vertex. Two concurrent straight 1i
nes define four concurrent-bisectors, they form two straight lines on
ly in symmetric geometry. By construction, the intersection of two Y-
bisectors of a triangle is the center of a tritangent circle

PROPOSITION 2. The interior Y-bisectore of a triangle are concurrent.
There are three triples consisting of two exterior and one interior
T-bisector each.

The existence of the points of intersection is an easy consequence of
Pasch's axiom.

The point of concurrence of the three interior bisectors is the center
I of the <neircle, the homothetic image of Y tangent to the three si-
des of the triangle. The contact is oriented if both ABC and 3Y are

positively oriented. Let I, be a point of contact of the incircle and

a. Then a is orthogonal to IIa and the area of IBC is %Iﬂlaﬂ. There-
fore, for p = 3 [lal + Ibll + licl], we have

A = pr an
just as in euclidean geometry.
Another definition of the bisector of an angle is as axis of symmetry

or as line making equal but opposite angles with the legs:

DEFINITION. An sm-bisector of a and b at C is a line of direction pa-
rameter t directed towards C for which sm(w(ta),t) = sm(w(tb),t).

PROPOSITION 3. The sm-bisectors are the Y-bisectors.
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If 3Y is not strictly convex then the incircle and a will have a seg-
ment in common and for some ¢(ta) and some ¢(tb) the condition is sa-

tisfied. Let Ia be the point on 3YNa for which s(IIa) = ¢(ta). Then

1110, = det(I1_,2(t,)) = det(IC,Z(t.)) = IICHdet(Z(t),Z(t,)) =

-l IChsm(e(t,),t)

Therefore, there exists Ib such that IIa = II. and I is the center of

b
a circle of radius IIa which touches both legs (and this holds for

every point on the bisector, not just the incenter).

A similar theory holds for Z - and st-bisectors.

by,

DEFINITION. The perpendicular L-bisector of a segment AB is the set
of all points P for which [IPAIl = IPBIl. The perpendicular Y-bisector
is defined by IPAl = IPBl. A Z-(Y-) midpoint of AB is a point of the
intersection of AB and its Z-(Y-) perpendicular bisector.

The Z-bisector of a segment may have nonzero twodimensional measure.
For example, in the normalized geometry for which Z is the square of

23/4

side length parallel the axes with center at O, let AB be a seg-

ment parallel the y-axis of length 2a < 23/% . From the endpoints A,B

we draw the lines parallel the diagonals of Z and get the diamond
ACBD. Then for any P in one of the exterior vertical angles at C and
D (the shaded domains in fig.2), [IPAl = [IPBll. All bisectors are zero-
dimensional if Z and Y are rotund.
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PROPOSITION 4. The Z-(or Y-) midpoint of any segment is unique.

For P € AB, the ratio of division A = |[PA|l / IPB|] is strictly monotone
increasing and continuous, by the first and third properties of the
pseudonorm. It increases from 0 to « , therefore it is = 1 at exactly
one point.

In unsymmetric geometry there is no direct connection between the bi-
sector sets in the two halfplanes defined by the line AB. For example,
in the geometry defined by a triangle Z and a point O € int Z, the Z-bi
sectors p,p' of the segment PB, P = BONb, are the rays complementary
to the segments OC,0A. For any other segment PQ;, P; € b, Q, € a,

0 € P1Q1’ the bisector P, in the halfplane opposite C is p but the
bisector p; in the halfplane of C is the union of a segment 0S on OC

and a ray parallel p'.

P=P;

Fig. 3

A point R on that ray can be found as follows: Since HRQlu = HRPlu B
RQlP1 is homothetic to a triangle OQ*P*; there is a one-to-one corres
pondence between Q* € BA and R. The center X of the homothety is

bn QIQ*; R is the intersection of XO and the line through Q1 parallel

Q*0. The locus of R is a conic as intersection of two projectively re
lated pencils of lines (through O and Q]). The line OQ1 corresponds

to itself in the projectivity. Hence, the projectivity is a perspecti-
vity and the conic is a double line. Since Q* - A implies X = A, AO is
an asymptote, i.e. SR AO. S is found by'QISIIBO.

Busemann [3] has shown that in any symmetric G-space the perpendicular
bisectors are flat only if the geometry is Klein. The bisector of a
symmetric Minkowski geometry are flat only if the geometry is euclidean.
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The theorem can be extended to unsymmetric Minkowski geometry using
an argument of Blaschke.

PROPOSITION 5. A geometry in which all Z-(or Y-) perpendicular bisec
tors are straight lines is euclidean. The same conclusion holds if

every L- (or Y-) perpendicular bisector is the union of two straight
rays and if, in addition, the I- (Y-) perpendicular bisectors of two
segments AB, CD intersecting at their common midpoint have only that

midpoint in common.

Let M be the midpoint of AB. (We use only Z, the argument for Y is

identical). We prove first that the bisectors are straight lines if
for any other segment CD with midpoint M the bisectors of AB and CD
have only M in common. We may assume without loss of generality that

M=0, IIOAIl = OBl = 1. Let r;,r, be the two rays that form the bisector

For P € r,, let OA'B' be the homothetic image of PAB in the map that

brings P onto O and A',B' € 3Z. Clearly, A'B' | AB. |IPOl — « implies

[A'B'l — 0. Therefore, the line T, defined by T, intersects 3Z at a

1
point P" where a support line is parallel AB. The other point on 3Z
with support line parallel AB is FZ N 3Z by the same argument. By hy-

pothesis, the couples of points of parallel support are in 1-1 order
preserving correspondence with the directions through O: no point of
9Z has more than one support line and no line more than one support
point; 3Z is rotund (strictly convex and smooth). For AB fixed,

A' — B' defines an affine relation of axis r, in the terminology of

1
Veblen and Young [11] in one halfplane of AB. If ?é # T, then at least

one of A or B would admit two distinct support lines, since the sup-
port line at A cannot be the image of the support line at B in two

elations with different axes. Hence, r; and r, are collinear.
Now let OB be the affine extension of the map A'— B'. The O, genera-

te a group of affine maps that admit O as fixed point and Z as inva-
riant convex body. Therefore, the group is linear and bounded, it is
conjugate to an orthogonal group ([7], prop.14-10), Z is an ellipse
and the geometry is euclidean.

The Z-midpoint Ma of a = BC is defined by HMaBH =||MaCH. Since

* = * 1
IM_BIZ(t?) IM_Clicm(t_,t*)Z(t,), we have

|M_B|

= |em(t_,t¥)]| . (12)
IMC a a

a
The Z-medians of ABC are the lines AMa,BMb,CMc. Then we have from

Ceva's theorem [6]: The Z-medians of a triangle are concurrent if and
only if

cmlt +t8Yem(t +8Yem(+ +%) = -1 (13%)
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The Z-medians are concurrent for all triangles if (13) holds for all
triples of directions. For a degenerate triangle we have, for example,
ty, — t,, t, — t: and therefore cm(t:,ta) = -1 for all directions

t,. That means for s* € ¢(t*), s € ¢(t) that

Y(s*) -1 st(t,s*)][Y(s)

Z(t*) -sm(s,t¥*) -1 Z(t)
Since the determinant is 1, either st(t,s*) = 0 or sm(s,t*) = 0. It
follows from the convexity of Z that st and sm are continuous func-
tions of s and t. Therefore, 0 < s,t < 2II is the union of a countable
set of intervals on which either Z(t*) = -Z(t) or Y(s*) = -Y(s). The
construction of the dual can be given a local version: If 3Z is
r = v(0) in euclidean polar coordinates and n(6) = cos6i + sin6 j
then the local dual is the envelope of the lines n(8).y = 1/r, [7].

Therefore, the local symmetry of 3Z implies that of 3Y, sm(s,t*) =
= st(t,s*) = 0:

PROPOSITION 6. The Z-medians of a geometry are concurrent for all
triangles if and only <f the geometry is symmetric. In that case, the

L-medians are the affine medians and the Y-medians.

5.

In euclidean geometry, the altitudes are concurrent at the orthocen-
ter. A definition of the orthocenter derived from the euclidean theo-
ry of circles was studied by Asplund and Grinbaum [1], their results
are valid for unsymmetric metrics and lead to a characterization of
the geometries defined by strictly convex, symmetric ovals. Golab and
Tamdssy [4] proved that the altitudes are concurrent in Radon geome-
tries. The only symmetric Radon curve is the circle, this is a charac
terization of euclidean geometry.

A triangle is Zsosceles in the Z-norm if llall = lIbll, it is equilateral
if llall = Ibll = licll. By the sine theorem, a triangle is isosceles if
and only if sm(¢(tc),ta) = sm(w(tb),tc). It is not obvious that equi-

lateral triangles exist for all directions of the legs. Without loss
of generality, we assume llall = bl = llcll = 1. For a = OA, an equila-
teral exists if A € 2Z* = -2Z. For a symmetric metric, Z = -Z and the
condition is always satisfied:

PROPOSITION 7. In symmetric metric, equilateral triangles exist for
every direction of the leg a.

The proposition does not hold for all unsymmetric metrics. Since
ZN-Z # @, we can only say that equilateral triangles exist for a

set of directions with positive linear measure. An example is the geo
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metry given by Z the triangle (0,1) , (¥1,-3), O at the origin. The
admissible directions OA are those for which the y-coordinate of A

. 1
15>‘7.

Fig.4

The theory of equilateral triangles can be expected to be simple only
for symmetric metrics. A few sample theorems:

PROPOSITION 8. In symmetric metric, an exterior Y-bisector of the
equal legs of a l-isosceles triangle is parallel to the bastis.
lall = lI-bll implies sm(w(ta),tc) = sm(w(t;),tc); the direction of the

bisector is that of c. By a similar argument, we get:

PROPOSITION 9. In symmetric metric, an interior L-bisector of the
equal legs of a Y-isosceles triangle is the altitude from base to
vertex.

The interior Z-bisector is the st-bisector and satisfies st(W(sa),s)=
= st(W(sg),s). For an isosceles triangle,

st(W(sb),sc) = st(W(sc),sa) = -st(W(sa),sc) = -st(W(sg),sc)

Hence, s, = s and W(s;) is the direction of the normal from the basis.

In this way, many theorems of elementary geometry become valid in an

annronriate intfernlav of +the +wo norme:* for +heoreme of d3ifFffFerential
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and integral geometry see [8].
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THE NUMBER OF DIAMETERS THROUGH A POINT INSIDE AN OVAL

G. D. Chakerian

Dedicated with greatest admiration and nespect to Professon L. A. Santalé

1. INTRODUCTION.

In [6], Professor Santald raised the question of determining bounds
on the expected number of normals that can be drawn from a random
point inside a convex body to its boundary. If the body has constant
width this is equivalent to determining bounds on the expected number
of diameters passing through a random point inside the body, since in
this case the expected number of normals is just twice the expected
number of diameters.

Let K be a plane convex body. Then a diameter is a chord of K whose
endpoints lie on parallel supporting lines of K. For each (x,y) € K,
let n(x,y) be the number of diameters of K passing through (x,y) (no-
te that n(x,y) might take the value +»). We are interested in the func
tional I(KX) given by

I(K) = JJ n(x,y) dx dy .
K
If we denote by n(X) the expected number of diameters passing through
a random point of K, then we have
n(K) = I(K)/A(K) ,

where A(K) is the area of K.

Let DK = K + (-K) be the difference body of K. 1In case the bounda-
ry of K is sufficiently regular, we shall prove that

(1.1 1- A(DK) < I(K) < ‘7 A(DK)

For any plane convex body K, the difference body satisfies the inequa-
lities (see Bonnesen and Fenchel [1])
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(1.2) 4A(K) < A(DK) < 6A(K)

Combining this with (1.1) gives

A(K) < I(K) < 3A(K)

As a consequence we have

(1.3) 1<n(X) <3 .

The lower bound is not surprising, since a theorem of Hammer [3] gua-

rantees that n(x,y) > 1 for all (x,y) € K.

In Section 3 we shall prove (1.1), which leads to (1.3). We shall

also show that the given bounds are sharp, in that n(X) = 1 iff K is
centrally symmetric, and there exist K satisfying the regularity con
ditions we shall impose for which n(K) is as close to 3 as we please.

Our proofs will depend on transforming I(X) to an integral involving
the length of a variable diameter and the instantaneous radius of ro
tation of that diameter. Indeed, let D(6) be the length of a diameter
making angle 6 with the horizontal and p(6) the distance from the ins

tantaneous center of rotation to one endpoint. Then we shall show in
Section 2 that

1 (27 2 1.2 -
(1.4) I(K) = 7J [p"(8)-p(8)D(O) + » D7 (6)]1dE .
0
It will follow from this that

21
(1.5) I(K) = ‘7 JO 02(0)de

The latter expression is geometrically plausible when we think of K as
covered by the infinitesimal sectors of area swept out by diameters

rotating through an angle d6 about their instantaneous centers of ro
tation (see Fig. 2).

Let R(y) be the radius of curvature at a boundary point of K where
the supporting line makes angle ¢ with the horizontal, and let w(y)
be the widtZ of K in direction ¢, that is, the distance between the
parallel supporting lines making angle v with the horizontal. In sec
tion 4 we shall derive from (1.5) the expression

2 Rewle) g,

1
€1.6 =
(-6 Ho =7 Jo R(p) + R(p+m)

In case K has constant width w(y¢) = b we have in addition
R(p) + R(p+m) = b, so (1.6) gives

27
1.7 I(K) = %Jo R? (p) dp
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This latter expression also follows from (1.5), since for sets of

constant width we have p(8) = R(¢) and d6 = dy (where 6 and ¢ are as
“in Fig. 1).

Since K has constant width b iff DK is a circular disk of radius b,

we obtain from (1.1)

2

b2 < 1(K) < T p?

b

[N

(1.8)

IS

The area of a plane set K of constant width b satisfies

(1.9) “;2'/5b2 < A(K) <

b2,

ENE

with equality on the lefthand side for a Reuleaux triangle and on the
righthand side for a circular disk. Using this in (1.8) yields

(1.10) 1 <n(K) < -2 ,

m-vV3

for plane sets of constant width. The upper bound corresponds to that
given in [6] for the expected number of normals that can be drawn to
the boundary from a random point inside a set of constant width. The
lower bound is achieved precisely when K is a circular disk, and the
upper bound when K is a Reuleaux triangle. Our methods give (1.10)
only for sets of constant width satisfying our regularity assumptions,
and among such K there are those (approximating Reuleaux triangles)
for which n(K) is arbitrarily close to the upper bound in (1.10).

Section 5 contains a discussion of how (1.6) may be viewed as the ana
logue of (1.7) for a plane convex set K of constant relative width 1
in the relative geometrv whose unit disk is DK.

We introduce in Section 2 the background necessary for our development
and proceed to the proofs of the formulas (1.4) and (1.5).

2. PROOFS OF (1.4) AND (1.5).

We shall restrict our considerations to plane convex bodies having a
certain degree of regularity. In the following, K will be a plane con-
vex body whose boundary, to be denoted C, is a convex curve of class

¢ with nowhere vanishing curvature. We shall refer to such a K as an
oval. In this case C admits the parametric representation

(z.1n x=x(¢) , y=yl) , 0<¢<2m,

where ¢ is the angle the tangent line at P(¥) = (x(v),y(v)) makes with
the x-axis (Fig.1).
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Figure 1

The chord P(¢)P(v+m) is a diameter of K making angle 6 = 0(¢) with
the x-axis (as indicated in Fig. 1). Since K is an oval, it is easy
to see that 6 is a strictly monotonic function of ¢, so it is also in
fact possible to express ¢ =‘¢(e) as a smooth function of 6.

Let D(¢) denote the length of the diameter P(¢)P(v+m). Then any point
(x,y) on this diameter has coordinates of the form

X x(¢) + X cos 8(y) _
(2.2) 0 <X <D(v).

y = ylp) + X sin 6(y)

If S is the region in the (¢,A)-plane defined by S = {(y,A):
0<A<D(), 0<¢ < 2r}, then the equations (2.2) define a smooth
mapping of S into K. The theorem of Hammer [3] mentioned in the intro
duction tells us that in fact this mapping sends S onto K. Since
(¢,2) and (p+m,D(p)-A) always have the same image under this mapping,
we see that each (x,y) € K is the image of 2n(x,y) points of S, where
n(x,y) is the number of diameters through (x,y). Thus, if J = J(¢,2)
is the Jacobian determinant of the mapping, we have (see Federer |2,
p. 243}])

(2.3) 2I1(K) = ZJIK n(x,y)dxdy = JJS|J(¢,A)|d¢dk .

Direct calculation from (2.2) gives
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(2.4) J(p,A) = x'(¢)sin 6 - y'(¢)cos 6 - A6' ,

where 6 = 8(¢), and the prime represents differentiation with respect
to ¢. But

(2.5) x'(¢) = R(p)cos ¢ , y'(¢) = R(p)sing , 0 <¢ <27 ,

where R(¢) is the radius of curvature of C at P(¢). Denoting by
Y = P(¢) the angle between the tangent line ard the diameter, as in
Fig. 1, we obtain by substitution of (2.5) into (2.4),

(2.6) J = R sin(6-¢) - 28' = R sin ¢ - A6’
Let p(¢) be the instantaneous radius of rotation of the diameter
P(¢)P(p+m), that is, the distance from the instantaneous center of ro

tation to the point P(¢). Let ds be the element of arclength of C at
P(¢). Then we have (see Fig. 2)

2.7 p(v)de = sin y ds = R(pYysin ¢ dvy

Y

Figure 2

These relations can be derived from the results given in Hammer and
Smith [4]. We have from (2.7) that R(¢)sin ¥ = p(¢)8'. Substitution
of this into (2.6) gives

(2.8) J(p,2) = (p(¥)-2)0" ()

Iteration of the rightmost integral in (2.3) then gives
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1 (27 (D(®) _
(2.9) I(K) = 5 Jo {Io [P (e)-A[dr}e’ (v)de .

We let p(6) = p(v(8)) and D(6) = D(v(8)). Changing variables from ¢
to 6 in (2.9) leads to

1 (2T (D(8)
(2.10) 1K) = Jo {JO |o(8)-A]dr}de .

Since any two diameters of an oval K intersect inside K, the centers
of rotation all belong to K. Consequently p(8) < D(6), and the inner
integral in (2.10) takes the form

D(®

D(6) p(8) )
(2.11) Jo [p(8)-A]dA = Io (p(8)-A)dar + J )(A—p(e))d)\ .

p(6

Evaluation of these integrals then gives, with (2.10), the required
formula (1.4). :

To obtain (1.5), we rewrite (1.4) in the form

27
(2.12) I(K) = % JO [92(9) + (D(G)-p(e))zlde .

Since p(6) + p(6+m) = D(6), this becomes

27
(2.13) 1K) = 5 IO [02(8) + p2(o+m)lde ,

from which (1.5) follows by the periodicity of p.

3. THE BOUNDS ON 1(K).

Write equation (1.4) in the form

1 27 2 1 2w
(3.1) CER S SOLEE S IOIORIGIS
0
Applying to (3.1) the fact that 0 < p(D-p) < D2/4, we obtain

1 2

2 ™
(3.2) § JoﬂDz(e)de <I(K) < } J pZ(e)de .

0

The boundary of the difference body DK has the polar coordinate repre
sentation r = D(8), 0 < 6 < 2w, so

2
(3.3) A(DK) = ¥ IO“DZ(e)de )

The required bounds in (1.1) now follow from (3.2) and (3.3).
Equality holds on the lefthand side of (3.2), and so of (1./1), iff
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p(6)(D(B)-p(0)) = Dz(e)/4, which happens precisely when p(6) = D(8)/2.
In this case each diameter of K is an area bisector, and it follows
that K is centrally symmetric (see Hammer and Smith [4]). As a fur-
ther consequence, since A(DK) = 4A(K) iff K is centrally symmetric,
we see that n(K) = 1 iff K is centrally symmetric.

The theorems of Hammer and Sobczyk [5] imply that when K is not cen-
trally symmetric there exist three diameters surrounding a triangle A
such that n(x,y) = 3 for (x,y) € A. In this case, since n(x,y) > 1
for all (x,y) € K, one must have that n(K) > 1. This shows in another
way that n(X) = 1 only if K is centrally symmetric.

Equality can hold on the righthand side of (3.2) and (1.1) iff
p(06)(D(6)-p(8)) = 0. This is not possible for our class of ovals; ho-
wever we can find ovals K for which I(K) is arbitrary close to
A(DK)/2. For example, appropriate approximations of triangles will
have this property, and we can find such K with n(X) as close to 3 as
we please. In that sense the bounds in (1.3) are sharp.

L. PROOF OF (1.6).

If w(¢) is the width of K, then we have w(y¢) = D(0)sin ¢ (see Fig.1).
Thus from (2.7) we obtain

(4.1) 0(8)de = sin y ds = () R(p)dy .
D(6)

Since w{(¢+n) = w(¢) and D(6+w) = D(8), we also have

(4.2) o(8+1)de = Y R(p+r)de
D(0)

Comparison of (4.1) and (4.2) yields

p(8+m) _ R(p+m)
p(6) R(v)

from which it follows that

D(6) _ p(8)+p(6+m) _ R(p)+R{p+m)

p(0) p(9) R(y)
Thus we have
(4.3) 0(8) = _D(8)R(»)_
R(9)+R(w+m)

Then (4.1) and (4.3) yield

2
(4.4 02(8)de = p(8)p(0)de = R (LIW(L) 4,
R(p)+R(p+m)
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5. INTERPRETATION OF (1.6) IN RELATIVE GEOMETRY.

In relative differential geometry in the plane (see, for example,
Bonnesen and Fenchel [1]), one replaces the ordinary Euclidean unit
disk by an arbitrary centrally symmetric convex body E centered at
the origin. The relative width of a convex set K is the Euclidean
width divided by half the width of E in the same direction. Then K
has constant relative width b iff DK = K + (-K) = bE.

Given an oval K, we take E = DK as our unit disk for a relative geo-
metry. Then K has contant relative width 1, relative to E. Let ds(y)
be the Euclidean element of arclength of K at P(v), and dS(v) the
Euclidean element of arclength of E at the boundary point with out-
ward normal parallel to the outward normal of K at P(v¢). The relative
radius of curvature of K at P(¢), denoted by ﬁ(w), is

Reo) = ds (v)
ds(y)

But we have ds(¢) = R(¢)dy and, since E = DK, dS(¢) = (R(¢)+R(p+7m))dy.
Hence

(5.1 Rp) = — R,
R(p)+R(p+m)

The relative arclength element of E, at a boundary point where the
supporting line makes angle v with the horizontal, is

dg(w) = h(E,p)dS(¢), where h(E,¢) is the supporting function of E.
Since E = DK we have h(E,¢) = w(y¢) = the width of K. This gives

(5.2) dS(e) = w(p)dS(e) = w(¥) (R(¥)+R(p+m))dy

From (5.1) and (5.2) we obtain then for (1.6) the form,

(5.3) 1(K) = 17[ R? a5
where the integration is over the boundary of E = DK with respect to
the relative arclength induced by E. Thus (1.6) may be viewed as the

generalization of (1.7) to sets of constant relative width.
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1. INTRODUCTION.

Let M be a (connected) surface in a Euclidean m-space E®. For any
point p in M and any unit vector t at p tangent to M, the vector t
and and the normal space TlM of M at p determine an (m-1)-dimensio-
nal vector subspace E(p,t) of E™ through p. The intersection of M and
E(p,t) gives rise a curve y in a neighborhood of p which is called
the normal section of M at p in the direction t. The surface M is
said to have planar normal sections if normal sections of M are pla-
nar curves. In this case, for any normal section y, we have
Y'Ay"Ay" =0 identically. A surface M is said to have pointwise
planar normal sections if, for each point p in M, normal sections at
p satisfy y'Ay"Ay" =0 at p (i.e., normal sections at p have 'zerc
torsion" at p ). It is clear that if a surface M lies in a linear 3-sut

3

space E° of E™, then M has planar normal sections and has pointwise

planar normal sections.
We shall now define the Veronese surface. Let (x,y,z) be the natural
coordinate system in E> and (ul,uz,us,ul',u5 ) the natural coordinate

system in E>. We consider the mapping defined by

1 2 1 3 1
u = —yz u® = — zx , u’ = —xy ,
/3 ’ /3 /3
4 1 2 2 5 1 2 2 2
u = — (x° - y9) , u =z (x° + y" - 2z27).
3 6

This defines an isometric immersion of Sz(ff) into the unit hyper-
qmeres4(1) of E°. Two points (x,y,z) and (-x,-y,~z) of Sz(/g) are

mapped into the same point of 54(1), and this mapping defines an im-
bedding of the real projective plane into 84(1). This real projective

plane imbedded in E5 is called the Veronese surface (see, for instan-
ce, [4].)

In [2], we have proved the following.
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THEOREM A. Let M be a surface in ET. If M has pointwise planar normal
sections, then, locally, M lies in a linear 5S5-subspace E5 of E™.

The classification of surfaces in E™ with planar normal sections was
obtained in [3].

THEOREM B. Let M be a surface in E™. If M has planar normal sections,
then, either, locally, M lies in a linear 3-subspace E3 or, up to si-
milarity transformations of Em, M <s an open portion of the Veronese
surface in a E5.

In view of Theorems A and B, it is an interesting problem to classify
surfaces in E° with pointwise planar normal sections. As we already
mentioned, every surface in E> has pointwise planar normal sections.
A surface M in E™ is said to lie essentially inm ET if, locally, M
does not lie in any hyperplane "L of E™. According to Theorem A,

the classification problem of surfaces in E™ with pointwise planar
normal sections remains open only for surfaces which lie essentially
either in E° or in E4.

In this paper, we will solve this problem completely for surfaces
which lie essentially in E5. Furthermore, we will obtain three clas-

sification theorems for surfaces in E4. As biproducts some new geome-
tric characterizations of the Veronese surface and standard flat tori
are then obtained.

2. PRELIMINARIES.

Let M be a surface in E™. We choose a local field of orthonormal fra-

me {el,...,em} in E™ such that, restricted to M, the vectors €€,

are tangent to M and e -.,e are normal to M. We denote by

32°
{ml,...,mm} the field of dual frames. The structure equations of E5
are given by

A A B A B

(2.1) de® = -} wp AW ,  wp twy = 0,
A A C

(2.2) dwy = -1 we AL

A,B,C,... = 1,2,...,m.

Restricting these forms on M, we have wt = 0, rys,t,... = 3,...,m.
Since



293

Cartan's Lemma implies
r _ r j r _ T
(2.4) w; = ) hij ® s h. = hi.

From these formulas we obtain

(2.5) dot = -3 miA Wl

(2.6) m? + wi =0,

2.7) dm? = -] wia w? + Q? , a? =71 R;kl oA,
(2.8) R;kl = Z(hikh§z ) h§2h§k) )

(2.9) dmz = -3 w: Aw: + Q: , Qg = % ) Rzij wiawd
(2.10) Rzij = E (hiih;j - hﬁjh;i)

The Riemannian connection of M is defined by (w?). The form (w:) defi
nes a connection D in the normal bundle of M. We call h = J hzjmiwjer
the second fundamental form of the surface M. We call H = %—trh the
mean curvature vector of M. We take exterior differentiation of (2.4)
. r

and define hijk by

r k _ r r £ _ r 4 s T
(2.11) ) hijkw = dhij Z hile ) hzjwi + 3 hijws

Then we have the following equation of Codazzi,

r _ T

(2.12) hijk = hikj

If we denote by V and V the covariant derivatives of M and E", respec
tively, then, for any two vector fields X, Y tangent to M and any vec
tor field & normal to M, we have

(2.13) VXY

VXY + h(X,Y) ,

(2.14) VgE = -AX + DiE

where AE denotes the Weingarten map with respect to £. If <, > deno-
tes the inner product of E™, then

(2.15) <AEX,Y> = <h(X,Y),&> .

If we define Vh by

(2.16)  (Vgh) (Y,Z) = Dy(h(Y,2)) - h(v,Y,Z) - h(Y,v,2) ,



294

then equation (2.12) of Codazzi becomes
(2.17) (Vxh)(Y,Z) = (V&h)(X,Z)

It is well-known that Vh is a normal-bundle-valued tensor of type
(0,3).

We need the following theorems for the proof of Theorem 1.

THEOREM C. (Chen [1]1). 4 surface M of E™ has pointwise planar normal
gsections <f and only Zf (Vth)(t,t)A h(t,t) = 0 for any t € TM.

THEOREM D. (Chen [2]). Let M be a surface in E™ with pointwise planar

normal sections. Then Imh Zs parallel.

3. CLASSIFICATION OF SURFACES 1IN ES.

In this section we shall prove the following.

THEOREM 1. Let M be a surface which lies essentially in E°. Then, up
to similarities of ES, M Zs an open portion of the Veronese surface

in E° if and only if M has pointwise planar normal sections.

Proof. Let M be a surface in E> with pointwise planar normal sections.
We choose a local field of orthonormal frame {el,ez,eB,eA,es} such

that, restricted to M, e; is in the direction of the mean curvature

vector H, e;, e, are the principal directions of Ay = A, . Then ey
3

2

is perpendicular to h(el,ez). We further choose e; SO that e is in

the direction of h(el,ez). Then, with respect to {el,ez,e3,e4,e5] R
we have

Thus, we have

(3.1) h(el,elj = ae, + Ye, * neg , h(el,ez) = fe,. ,
h(ez,ez) = Be3 - Ye, - neg .

It is easy to see that dim Imh = 3 if and only if

h(el,el)A h(el,eZ)A h(ez,ez) # 0. Therefore, dim Imh 3 if and on-

ly if (at+B)YyS # 0. We put

(3.2) My = {peM| dimInh = 3}
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that M does not lie essentially in E5. From now on, we assume that M
lies essentially in E°. Then M3 is not empty. We denote by N a compo-
nent of M;. On N, we have

(3.3) (a+B)YS # 0

From (2.16) and (3.1) we find

(3.4) (Velh)(el,el) [e;(a) + sz(el) + nmg(el)]e3 *
+ [amg(el) + el(Y) + nwé(el)le4 +
+ [amg(el) + YmZ(el) + el(n) - Zéwi(el)]es ’
(3.5) (T, W(eyre;) = Ley@) + yugley) + nugle)ley +

+ [amg(ez) + eZ(Y) + nmg(ez)]e4 +

+ [amg(ez) + YwZ(ez) +e,(n) - Zéwf(ez)]es >
(3.6) (7, W lepsey) = [sul(e)) + (a-B)ui(e)le, +

+ Lowile)) + 2vuice)dle, +

+[e,(8) + 2nwi(e e, ,
(3.7) (V;Ih)(ez,ez) = [el(B) - sztel) - nmg(el)]e3 +

+ [Bmg(el) - e (y) - nwg(e1)1e4 +

+ [Bw3(e,) - yui(e;) - e (n) - 260)(e;)les ,
(3:8) (T, W)(ep,ep) [sul(e,) + (a-B)ul(e,)le, +

+ [émg(ez) + 2ymi(e2)]e4 +

+ Le,(8) + 2n0i(ey)les ,
(3.9) (V;Zh)(ez,ez) =le,(B) - sz(ez) - nmg(e2)1e3 +

+ [ng(ez) - ey(y) - nwg(ez)le[, +

+ [Bwj(e,) - yu,(e;) - e,(n) - 28uy(e,)ley .
Because M has pointwise planar normal sections, Theorem C implies

(3.10) (T, W(epseq) = Ahlep,ep) (T, W) (eyney) = Aphlepiey)

for some local functions A;,A,. Combining (3.1), (3.4), (3.9) with
(3.10) we obtain
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(3.11) e (@) = ar; + yusle;) + nujle;)

(3.12) e (¥) = YA, - awjle)) + nwple)

(3.13) e (n) = nA, - awi(e,) - yu,(e) + 28ui(e))
(3.14) e,(8) = BA, - Yus(e,) - nuj(e,)

(3.15) e,(y) = vi, + ng(ez) + nwz(ez) ,

(3.16) e, (n) = mh, * Buj(e,) - Y, (e,) + 2807 (e,)

Moreover, from (3.5), (3.6), (3.7), (3.8) and equation (2.17) of Coda-
zzi, we also have

(3.17) e,(a) = yuli(e,) - swle;) + nui(e,) + (a-Bloile))
(3.18) e, (8) = -ywile;) - swl(e,) - nwyle)) + (a-Blujle,)
(3.19) e, (8) = mh, + (a+Blwlle,) - Znw(e,)

(3.20) e,(8) = -mA, + (a+Bloj(e)) - 2nui(e,)

(3.21) Ay - (erBludle)) - sud(ey) + 2yei(e) = 0

(3.22) A,y + (a+Bluj(e,) + up(e) - 2ywi(e) = 0 .

Let t = e, + ke

1 9 Then, from Theorem C, we have

(3.23) v

e1+kezh)(e1+ke2,e1+kez)/\ h(e1+ke2,e1+ke2) =0

for any k. Because e;ne€, , €34 € and e,n 5 are linearly independent,

5
(3.1), (3.3), (3.4) - (3.10), and (3.23) imply

(3.24) yewd(e,) + asw)(e;) - (a+Blyul(e) = 0

(3.25) (a+B) YA, + Svswg(ez) - 3a6w2(e2) + 3(a+B)wa(e2) =0 ,
(3.26) (a+B)YA, + 3ySwy(e;) + 388w, (e;) - 3(a+B)ywi(e)) = 0 ,
(3.27) you3(e,) + B6w;(e,) - (a+B)ywl(e,) = 0

(3.28) 2y8A, - 3ymi, - 3(a+B)Yw§(e2) - 36nw2(e1) +6anf(ep =0,
(3.29) -3ynA, - 2Y8X, *+ 3(a+B)yw;(e;) *+ 38nw, (e,) - bynui(e,) = 0 .

Tammen (7 "SryY P | £ 7 "3y _ .. f~* 1
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(3.30) YA, - 38u)(e,) + 6ywi(e,) = 0 .
From (3.24) and (3.26) we find

(3.31) YA, + 38u;(e;) - 6ywi(e))

n
o

Similarly, from (3.21), (3.22), (3.28) and (3.29), we also have

(3.32) 2y61, + 3(a+B)nui(e,) - 3(a+B)ywy(e,) = 0
(3.33) -2y8h, - 3(a+B)nut(e;) + 3(a*B)yw)(e;) = 0 .

From (3.22) and (3.24) we find

(3.38) -avd, - aa+Bloj(e,) - v8ui(e,) + (a-B)ywl(e)) = O
Similarly, from (3.21) and (3.27) we get

(3.35) BYA, - BlatBlud(e)) + voul(e)) - (a-Blywl(e,) = 0 .

From (3.21), (3.30) and (3.22) and (3.31), we obtain, respectively,
(3.36) (a*+Blut(e,) - 26w)(e,) + 4ywi(e,) = 0

* 371 472 172 ’
(3.37) (a+B)uj(e,) - 28w, (e;) + 4ywli(e)) = 0 .
From (3.21) and (3.36), we obtain
(3.38) -2yA, + 3(a+Blujle,) = 0
Similarly, from (3.22) and (3.37), we obtain
(3.39) 2vA, + 3(a*B)uj(e,) = O .
Combining (3.21) and (3.38) we have

5 2 _

(3.40) Yll - 36w4(e2) + 6ym1(e2) 0 .
Equations (3.22) and (3.39) imply
(3.41) YA, + 380, (e;) - 6ywi(e,) =0 .
From (3.34) and (3.39) we find
(3.42) ar, *+ 36w3(e;) - 3(a-Blui(e;) = 0 .

Similarly, we have
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(3.43) B, + 38w3(e,) - 3(a-B)ui(e,) = 0 .

From (3.32) and (3.39) we find

5 -
(3.44) 286X, - 2ni, - 3(a+Bluz(e,) =0
Similarly, we also have

5
(3.45) anl + 26A2 - 3(a+B)m3(e1) =0

Now, we want to claim that N is pseudo-umbilical in E5, i.e., a =B on
N. Assume that a # B at a point p € N. Then there is an open neigh-
borhood U of p in N such that o # B everywhere on U. From (3.38) -

(3.45), we obtain the following expression of m% and m: on U,

2
28nx, + [a(a+B) + 2671
(3.46) w? = { 1 2} wl o+

1 3((”2_82)

{[B(a+8) + 2821, - zsnxz} )
+ w”,

3(a?-8?)
2YA 2y
(3.47) mg S R ml Y mz
3(a+B) 3(a+B)
2nA, + 268 28X, - 2nA
(3.48) mg = {___1_______1} Wl & (2201 7 MMl ,
3(a+B) 3(a+B)

2 2
Ayénr, + y[(a+B + 4871
(3.49) > { 1 * vl(e+s) 2} ol 4

36 (a?-82)

YI(+8)? + 46%1%, - 4ysm, )
+ 7 3 W o,
38§ (a”-B7)

Now, we shall make a careful study of the integrability condition to
obtain a contradiction. In order to do so, we need to compute the ex-

terior derivatives of (mi).

From (3.47) we have
4 _ 2 1 2. 2 1 2
(3.50) duy = d(gTE%ET)A (Ao - A0 + (3TE}ET)d(A1m - A,0%)

Thus, by applying (3.11) - (3.18), (3.46) and a direct long computa-
tion, we may find
AL A
4 2 ,
(3.51) duy = -griley {ez(xl) ve (hy) - 2w
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38 (02-82)

+ (Af+x§)} wlA wz .

Similarly, we may also obtain

(3.52) dwd = —1 _ {6(a®-8%)6%le, (r,)-e,(A,)]
3 98(a+8)2(a-8) b e

- 6(a?-82)8nle,(A,)*e; (A,)] -

- 20062y [(a+B) 2ed8%1 26707 (A 2AD)
+ 262 [8(a+B)+26%127426 [ (a+B) +28712, +
+ 26(a?-8%InA 2, wha w?

(3.53)  dw, = ———— {3(a’-8%)y [(a+8) +467] [e; (1)) e, (3,)]
98§ (a"-B7)

S

- 12vsn(a’-8%) [e, () +e; (A,)]
- [ (a+8) 2 (a2+aprB?)y +
+ 2y8? (sa?+5p?ean?eas®) (A2ad) +
+ yl(a+p)?+a8%) (8%23+a"20)
2

+ 4ysn(a®-82)a 2, wlaw

On the other hand, by using (2.10) and (3.1), we have

4
(3.54) Ri, =0
(3.55) Ry, = (B-a)8
50
(3.56) Ry, = -278

Therefore, by equation (2.9) of Ricci, equations (3.47) - (3.49) and
(3.54) - (3.56), we also have

(3.57) dw} = -(§§%§¥§T)(A§+A§) wla w?
(3.58) do? = — 1 (2v2 (0+8) 2+46%] (32422 -
3 98(a?-8%) (a+B) b2

- QGZ(GZ—BZ)Z} wla wz

’

-2Y8
9(a+p)?

(3.59) dw 2

{2(A§+A§)+9(a+8)2} wla

Comparing (3.51) with (3.57), we find
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: 1 2ns 2.2
(3.60) e(Apd*e; (Ay) = 3 420y - 5 5 (A*4y)
3(a"-87)

Comparing (3.52) with (3.58), we find

(3.61) Sle;(A))-e,(A)1-nle, (A )+e; (A,)] =
= — 2 {la(a+B)+26%+2n2 122+ [B(a+B) +262+2n%122)
3(a”-87)

1 3,2 .2
-3 T])\IAZ - 7(“ -8 )6 .

Combining (3.53) with (3.59), we get

(3.62) [ (a+8)?+48%11e (A )-e,(A,)]-46nle, (A ) +e; (A,)] =

= —— 1 {(a+8) (a?+ap+p?) +
3(a”-8%)

+ 262(3a2+4ae+332+4n2+462)1(x§+x§) -
1 2 2 2.2, 2.2
- ————— {[(a+B)"+48°] (B“A7+a"A))} -
3(a®-8%) L

4 2,2 .2
-z 8nA;2,-68 (a®-B%)

Substituting (3.60) into (3.61), we obtain

o1 2,.2
(3.63) el(Al)-ez(Az) = EE;ETEE; {[a(a+B)+28 ]Al +

+ [8(a+8)+26%122}-3(a?-87)

Substituting (3.60) and (3.63) into (3.62), we may obtain
(3.64) a” - B =0 .

This contradicts to (3.3) because we assume that a # B.
Therefore, we have proved that o = B identically on N, i.e., N is

pseudo-umbilical in E5. Because a = B, (3.42), (3.43), (3.44) and
(3.45) reduce to

(3.65) ar, + 36wl(e;) = 0,
. 5 i
(3.66) B, + 38wl(e,) = 0,
(3.67) (a+B)BA, = -26%A, + 28m, ,
2

(T AR (v+RYy)l = -28n) - 282
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From (3.67) and (3.68) we obtain
(3.69) A, = A, =0 .
Thus, from (3.30) and (3.31), we have

(3.70) sw) = 2yl .

From (3.38), (3.39), (3.42) and (3.43), we find

(3.71) wr=wd=0.

Substituting (3.69) and (3.71) into (3.11),
we find

(3.14),

(3.72) a = B = constant on N .

From (3.12), (3.15), (3.69) and (3.71), we obtain

(3.73) dy = n}

From (2.9), (2.10), (3.1) and (3.71), we find

(3.74) dmZ = -2v8 wla w?

(3.17) and (3.18),

Using (3.13), (3.16), (3.69), (3.70) and (3.71), we have

2 2
_ 87 - v 5
(3.75) dn = (1) o .

Taking exterior differentiation of (3.73) and applying (2.9), (2.10),

and (3.74), we obtain

(3.76) 0 = d%y = -2ysn wlaw
From (3.76) we get
(3.77) n=20.

Since (3.74) shows that mZ # 0, (3.75) and (3.77) give 62 = Y°.

2

Without loss of generality, we may assume that

(3.78) 8§ = -y .
From (3.70) and (3.78), we find

(3.79) W = -me

2
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From (3.73) and (3.77), we see that § = -y is a nonzero constant on N.
Thus, by the definition of N and continuity, we conclude that N is the
whole surface M.

From (2.7), (2.9), (3.1), (3.74), (3.78) and (3.79) we find

(3.80) a? = 3y2

Consequently, we may assume that a = -/3 y. Therefore, by combining
(3.71), (3.77), (3.79) and (3.80), we conclude that the connection

form (mi), restricted to N, is given by

0 mi V3 le —le yw?)
mé 0 V3 sz sz le
-/3 ywl -/3 yw? 0 0 0
le —sz 0 0 Zmi
“yw —ywl 0 20} 0

This shows that, up to similarity transformations of ES, M coincides
locally with the Veronese surface [4].

Conversely, if, up to similarity transformations of ES, M is an open
portion of the Veronese surface, then M has parallel second fundamen-
tal form, i.e., Vh = 0. Thus, by Theorem C of Chen [1], we conclude
that M has pointwise planar normal sections. This completes the proof
of Theorem 1.

4. SURFACES IN El' WITH CONSTANT MEAN CURVATURE.

In this and the next two sections, we will study surfaces in E4. Assu
me that M is a surface in E* with pointwise planar normal sections.
We choose a local field of orthonormal frame {el,ez,e3,e4} so that,

restricted to M, e, is in the direction of H, e,, e, are the princi-

3
pal directions of A3. Then e

2

3 is perpendicular to h(el,ez). With res-

pect to {el,ez,eg,eA}, we have

Thus we have

4.1 h(e,,e,) = ae,*ne, , h(e,,e,) = 8e, , h(e,,e,) = Be,-ne,.
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It is easy to find that the mean curvature, the normal curvature and
the Gauss curvature of M in E* are given respectively by

N 2 2

| = Fla+| , X" = 2(a-8)%6% and K = aB - n’ - 8

Since M has pointwise planar normal sections, Theorem C implies
(4.2) (Velh)(el,el) = A h(ey,e,) ,
(Vezh)(ez,ez) = Azh(ez,ez)

for some local functions A;» A,. Using the same method as before, we
have the following

(4.3) el(a) =.ax1 + nwg(el) ,
(4.4) e, (B) = -nwi(e;) - swi(e,) + (a-Blul(e,)

* 1 3tv1 3+*2 1 2 ’
(4.5) el(n) = nll - amg(el) + Zsmf(el) ,
(4.6) e (8) = ma, + (a+B)uj(e,) - 2nwi(e))
4.7 e. (@) = -8w¥(e) *+ nwe,) + (a-Blwl(e,)

* 2 3471 3vv2 1 1 ’
(4.8) e,(B) = BA, - nwjle,)
(4.9) e,(n) = A, + Bujle,) + 26wi(e,)
(4.10) e,(8) = -mA, + (a*Bluile,) - 2nwi(e,)
4.11) Zudll - Sanxz - 3n6mg(e1) - 3a(a+8)mg(e2) +

+ 3(a-B)nwiCe) = 0

(4.12) (2a-B)nh, - 3(a’+aB+26)ud(e,) - 3nswi(e,) +
+ 6(a-B)8ul(e;) + 3(a-BInui(e,) = 0
(4.13) (a-28)nA, + 3ndwi(e) - 3(ap+BZ+26%)0(e,)
* 2 371 3+v2
- 3(a-@)nwile,) + 6(a-B)dwi(e,) = 0
(4.14) 380A, + 286, - 3(a+B)Buj(e,) + 3néwi(e,) -

- 3(a-B)nwi(e2) =0

THEOREM 2. Let M be a surface which lies essentially in EA. Then M <s
an open portion of the product surface of two planar circles if and
only ©2f M has pointwise planar normal sections and constant mean cur-

vature.
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Proof. If M is an open portion of the product surface of two planar
circles, then it is easy to check that M has constant mean curvature
and pointwise planar normal sections.

Now, let M be a surface which lies essentially in E*. Assume that M
has constant mean curvature and pointwise planar normal sections.
Then, by using Theorem 4 of [2], we see that o+B8 # 0. We want to claim
that (a-8)8 = 0. Assume that (a-B)8 # 0. If n # 0, then by elimina-

ting m%(el) , w%(ez) from (4.12) and (4.13) with the help of (4.11),
(4.14), we have

(4.15) 2[(a+B)n® - 2a61A, + 2(3a+BInér, -

- 3(a+8)? nuj(e,) + 6ala+B)éwy(e,) = 0

(4.16) -2(a+38)n6A, + 2[(a+B)n® - 28871, +
4 24 B
+ 6(a+B)BSwy(e;) + 3(a+B) nwy(e,) = 0 .

Combining (4.15) and (4.16), we have

2.2 2 4 -
(4.17) [ (a+B)“n“ + 4aBS ][Zn).1 + 281, - 3(a+8)m3(e1)] =0 .
If (a+B)%n? + 40ps% # 0. We have from (4.11) - (4.17)

2n6x, + (a’+ap+28%),

2 1
(4.18) w, = w o+
1 3(2-89)
(ag+g®+26%)a, - 282,
+ 7 ) w ’
3(a"-87)
2(nx,+81,) 2(8A,-nA,)
(4.19) wi = 1727 by L 727 2
3(a+B) 3(a+B)

If (a+B)2n2 + 4a862 = 0, differentiating this relation, we have, with
the help of (4.3) - (4.10),

(4.20) [a(a*B)n? - 20B8%1A, + 4apnéd, -
- Laa+e)? + 2(a-p)6%Inwg(e ) +
+ [4aB(a+8) - (a+B)n? - 2a6%]80%(e,)+2 (a-g) nsui(e)) +
+ (a-B)[ (a+BIn® + 2a6%1wl(e,) = 0 .

(4.21) -40BnéA | + [8(a+B)n? - ZaBGZ]AZ +

T Ao faany - ferarnl  ope27 b N,
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+ [8(a+8)? - 2(a-p)6°Inuj(e,) +
+ (a-B)[ (a+p)n’ + 286%Twl(e)) +

+ Z(a-s)zncmf(ez) =0 .

From (4.11) - (4.14) and (4.20), (4.21), we still have (4.18), (4.19).
Because [H| is constant, differentiating the relation a+B = constant,

we have
(4.22) ad, - Swhle,) *+ (a-B)wl(e,) = 0
(4.23) B, - Swi(e;) + (a-B)w)(e;) = 0

Substituting (4.18), (4.19) into (4.22), (4.23), we get

n
[=]

(4.24) (3a+B)A1

(4.25) (38+a)}, =

[l
[=)

Thus we have (i) Ap = A, = 0, or (ii) 3a+p = 0, 3B+a = 0, or (iii)

2

3a+B = 0, A, =0, or (iv) 3B+a = 0, A, =0, If case (i) occurs, (4.18)

and (4.19) imply wi = w,y = 0. In particular, we have kN = o. Thus, by

applying Theorem 5 of Chen [2], we see that M is an open portion of
the product surface of two planar circles. In particular, we have

§ = 0. This is a contradiction. If case (ii) occurs, we have ¢ = B =
= 0. This contradicts to a+B # 0. For case (iii), differentiating
3a+B = 0, we have

.

(4.26) Sez(a) + ez(s) =0 .
Since A, =0, (4.7), (4.8), (4.18), (4.19), and (4.26) imply
(4.27) nskl =0 .

From this we may again obtain a contradiction. The last case is simi-
lar to case (iii). Consequently, we have n = 0.

If (a-B)6 # 0 and aB # 0, then from (4.3) - (4.14) we have d6+62 =0
and

A BA
2 _ % 12
(4.28) U1 % 3Ry Y e ¢
(4.29) 4 _ 25)2 1 2611 2

w3 = 3(a*g) ¢ * 3(avB) ¢

Differentiating o+f = constant, we have (4.22) and (4.23). By subs-
tituting (4.28) and (4.29) into (4.22) and (4.23), we obtain
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(4.30) (3a® + 208 + 8%~ 26%)a, = 0,
(4.31) (@ + 208 + 38% - 2672, = 0 .

= 0, or (ii) 3a® + 2aB + B2 - 28% = 0 and
2 2

Thus, (i) Al = Az
o + 208 + 382 - 28

=0, or (iii) 30’ + 2aB + g% - 26% = 0 and

A, = 0, or (iv) A, = 0 and o® + 2ag + 387 - 267 = 0.
Case (i) contradicts the assumption. Case (ii) implies az = BZ which
contradicts the assumption too. For case (iii), since af + §2 =0 ,

we obtain

2

(4.32) 302 + 4ag + B2 = 0

This implies 3a+B = 0. We know that this is impossible. The last case

is similar to case (iii).

If (a-B)S # 0 and aB = 0, then without loss of generality, we may
assume B = 0. From (4.3) - (4.14), we have

(4.33) e, (B) = —6wg(e2) + uwf(ez) =0,
(4.34) ey (n) = 28ui(ey) = 0
(4.35) 261, = 3aws(e,) = 0

These imply A; = 0 and since B = n = 0, we have h(ez,ez) = 0. Thus,
by (4.2), we may choose A, = 0. From these we obtain a contradiction.

Consequently, we obtain (a-B)8 = 0. Thus, K= 0, from which we ob-
tain Theorem 2 by applying Theorem 5 of Chen [2]. (Q.E.D.)

5. SURFACES IN Eh WITH CONSTANT NORMAL CURVATURE.

In this section, we give the following classification result.

THEOREM 3. Let M be a surface which lies essentially in EA. Then M
18 an open portion of the product surface of two planar circles if
and only if M has pointwise planar normal sections and constant nor-

mal curvature.

Proof. Let M be a surface which lies essentially in EA. Assume M has
constant normal curvature and pointwise planar normal sections. As
mentioned in the proof of Theorem 2 we may assume that a+f # 0. We
want to claim that (a-8)8 = 0. Assume that (a-8)8 # 0. Because,
(a-B)8 = constant, we have
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(5.1) Sles(@) - e (B)] + (a-Bey(8) = 0, i=1,2

Assume that n # 0. Using (4.3) - (4.10) and (4.18), (4.19), we obtain
from (5.1),

(5.2) G(Sa-SB)Al - n(a+B)A2 =0,

(5.3) -n(a+B)r; + §(3a-58)%, = 0

From these, we know that either A=A, = 0 or ki + k% =0 and
(5.4) §2(150% + 1582 - 34a8) = n?(a+8)?

The first case implies that wg = 0 which gives (a-8)8 = 0. In the se-

cond case, we differentiate (5.4) to obtain

(5.5) SA, = nA

1 niA, = -GAZ ,

2 ’ 1

where we have used (4.3) - (4.10) and (4.18), (4.19). From (5.5) we

find n2+62 = (0 which contradicts to the assumption. Consequently, we
have n = 0.
If aB # 0 and (a-B)8 #0, then, from (4.3)-(4.14), we have (4.28) and (4.29

and a8+62 = 0. Differentiating KN, we. find
(5.6) (Sa-B)Bei(aJ + (a—SB)aei(B) =0 , i=1,2

Using (4.3), (4.4), (4.7), (4.8), (4.28) and (4.29), we have from
(5.6),

(5.7) (5a-38)A, = (3a-58)}, = 0

Since a6+62 = 0, 5a-3B8 and 3a-58 are nonzero. Thus, Al = 12 = 0. This
will give a contradiction. If (a-8)S8 # 0 and oB = 0, then, by the sa-
me argument as given in section 4, we also have a contradiction. Thus,
we have (a-B)§ = 0, i.e., = o. Therefore, by Theorem 5 of Chen [2],
M is an open portion of the product surface of two planar circles.
The converse of this is clear. (Q.E.D.)

6. SURFACES IN EA WITH CONSTANT GAUSS CURVATURE.

THEOREM 4. Let M be a surface which lies essentially in B4, If M has
pointwise planar normal sectione and constant Gauss curvature, then

M has vanishing Gauss curvature.

Procf. Let M be a surface which lies essentially in E*. Assume that M



308

has constant Gauss curvature K and pointwise planar normal sections.
We may assume that o+B # 0 by Theorem 4 of [2]. If (a-B)nd # 0, then,
by differentiating K, we have

(6.1) Bei(a) + aei(B) - 2nei(n) - 26ei(6) =0, 1i=1,2.

Using (4.3) - (4.10), (4.18), (4.19) and (6.1) we find

2 2

(6.2) (aB - n? - sz)xl = (aB - n? - GZ)AZ =0 .

From this, we may conclude that K = aB - n2 - 82 = 0.

If (a-B)S # 0, aB # 0, but n 0, then we have (4.28), (4.29) and

aB+62 = 0. Differentiating K aB—GZ = constant, we have

(6.3) Be,(a) + ae,(B) - 28e.(8) =0, i=1,2.

From (4.3), (4.4), (4.6), (4.7), (4.8), (4.10), (4.28) and (4.29), we have
(6.4) (aB-6%)A, = (aB-8%)r, = 0 .

Thus, we have aB-82 = 0 which contradicts aB+8% = 0. If (a-8)8 # 0

but n = aB = 0, then by a similar argument as given in section 4, we
have a contradiction too.

When (a-B)8 =0, k¥ = 0. In this case, Theorem 5 of [2] implies that
M is an open portion of a flat torus. Thus, K = 0. (Q.E.D.)
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SECTIONAL VORONOI TESSELLATIONS

R.E. Miles

Dedicated to L.A. Santall, by way of whose delightful 'In-
troduction to Integral Geometny' [16] 1 was §irnst exposed in
1959 to the beauties of geometry and randomness combined.

ABSTRACT. Formulae for the expected mean s-content of s-facet per po-

lytope in the Voronoi random polytopal tessellation V of Rd, with res
pect to a homogeneous Poisson point process basis, are derived.
s-flat sectionsof V yield a new class of random s-dimensional polyto-
pal tessellations, whose properties are explored for s = 1,2,3.

1. INTRODUCTION & SUMMARY.

The area of random tessellations is an important one in stochastic
geometry, and some of the earliest work is due to L.A. Santalé [12,
14,15]. An s-flat section of an ergodic homogeneous and isotropic ran

d .
dom polytopal tessellation of R is a similar such tessellation in
the s-flat as containing space (1 < s < d-1). The main interest in
this paper is in exploring properties ,of such sectional tessellations.

In section 2, Santald's basic formula for the expected mean projec-
tions of the isotropic uniform random section of a domain, in terms of the
mean projections of the domain itself, finds useful application; in
particular to sectional tessellations. The most rewarding specific
random tessellations as regards sectioning are the Voronoi tessella-
tions V considered in Section 3. An explicit formula for the mean s-
content E{LS} of s-facet per polytope of V is derived; the case s=0

gives the mean number of vertices. Sectional Voronoi tessellations
aré examined in Section 4, with exact mean sectional values being ob-
tained for s = 1,2 and asymptotic ones as d » « for s=3. In fact, an
s-section of homogeneous V is stochastically equivalent to an s-sec-
tion of a corresponding inhemogeneous (s+1)-dimensional structure. In
Section 5, this aspect is explored in some detail in the line section
case s=1, with an integral expression being given for the interval
length distribution. Finally, in Section 6, generalized Voronoi tesse
llations Vn, involving the nearest n particles to a point, rather



311

analogous formula for E{Ls} to that obtained for V in Section 3, and

an integral expression for the volume moments in s-sections, are de-
rived.

Some of the results have been stated elsewhere [8,9], but without
proofs.

PRELIMINARIES. Qd(x,r) represents the closed ball with centre x, ra-
dius r, in euclidean d-space Rd, with boundary sphere an(x,r).
|...|m is used for appropriate measure, of dimension m, e.g.

|Qd(x,r)|d = udrd where v, = nd/Z/r(%-+1) , and I'an(x,r)Id_1 =

= 0.19"! where o, = an/Z/r(%).

d d

2. FLAT SECTIONS OF RANDOM TESSELLATIONS.

The following result is essentially due to Santald [17; Section 5],
but the form we present here is that given in [4; Relation (2.31T)].

Suppose X is a compact subset of Nﬂ and that Mi{X} denotes its mean i-
projection, i.e. the mean i-dimensional Lebesgue measure of its or-

thogonal projection onto an isotropic i-subspace in R¢ (i = 0,...,d;
with M0 =1, Md = |X|d). For smooth convex bodies, the mean projec-

tions equal, apart from constant factors, the quermassintegrals of
integral geometry [4; Relation (2.27T)]. Let F_ be an isotropic uni-

form random (IUR) s-flat hitting X, i.e. governed by restricted and
normalized invariant s-flat measure in Rd. Then X n'Fs is a random

s-dimensional compact subset, which has its own set of (random) mean
projections M;s) with respect to Fs as containing space, and we have

the striking result

(2.1) EMPXNE} =M {X}/M,__{X} 0<r<s<d

d-s+r
This extends to a corresponding result relating to a finite aggregate
of compact subsets {iX} (i=1,...,n) each CX, as follows. If the

scalar or vector Z is some domain characteristic, then the aggregate
mean value of Z is defined as

1

i

E{Z} = n~ z .

e~

1 i
The (random) sectional mean E{Mss)} for m independent IUR s-flat sec-

tions of X is also defined in the obvious way as the sum of the Mis)

values for each flat/subset intersection, divided by the total number
of such intersections; then, as m + «, almost surely
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(s)
(2.2) E{Mrs } — EM,_ ., }/EM_ )

d-s

[7; Sections 5,6].

Although this result holds for rather general X, in this paper we
shall only be concerned with the specific case where they form a (po-
lytopal) tessellation, i.e. each point of X .(apart from boundaries
9,X) lies in one and only one i X and, apart from edge effects on 3X,

the ;X are d-dimensional convex polytopes.

Since X is arbitrary, (2.2) may be extended as an almost sure identity

(s)y _
(2.3) E{M_*’} = E{M,;__, }/E{M,__}

s d-s

for an ergodic homogeneous and isotropic random polytopal tessellation
in R¢ [9; Section 3.4.6], where E{Mi} are ergodic mean polytope values
and E{Mis)} is the corresponding mean value for an arbitrary s-flat

section of the tessellation.

CONSISTENCY OF (2.3). These formulae are consistent in the following
sense. Write Td for the random tessellation in Rd, TS for the sectio-
nal random tessellation Td n FS and Tt for Ts n Ft, where t < s and

F,  CF.. Then the values E{Mét)} for T, may be obtained either by dou-

ble application of (2.3}, or alternatively by a single application of
(2.3) with s=t. Equating these, there results a set of consistency re-

lations between the E{Mit)}.

As an example, consider the random polytopal tessellation Pd(p) deter-
mined by isotropic Poisson hyperplanes of intensity p in Rd, Pp(d4,d)
([9; Section 3.4.6]; see also [3; Chapter 6]). Pp(d-1,d) is characte-
rized by the property that the number of hyperplanes hitting any com-
pact X C Rd has a Poisson (le{X}) distribution [9; Theorem 1]. For

Pyleg)

rden [r&h]"

2
r&E o0 1o,

- r
(2.4) E{Mr} =2

[9; Relation (62) with t=d, s=r]. Now
Palpg) NEF, =P (p.)
for which, by (2.3), (2.4) holds with d replaced by s, and

o, = r&hr/rérdie,
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MEAN CROSS-SECTION OF HIT AGGREGATE. Besides the sectional tessella-
tion Ts = Td N Fs, another quantity of interest is the union U of po-

lytopes of T4 hit by F . We now derive a formula for the mean (d-s)-
content, E{Vd_s}, of the intersection of U with orthogonal (d-s)-
flats Fd_s. Suppose the generic 'f' denotes ergodic densities of poly
topes of Td, in.which each polytope has equal weight. Now the 'chance'
F_ hits any specific polytope T of T‘th_s{T}, so that the aggregate

of cells hit by Fs has ergodic densities « Md_sf(M .). Hence the

d-s?

mean d-volume Vd of each is

(2.5) E'{V,} = E{M,__ V,}/E{M, }

d-s
For Ts , by (2.3) ,

(2.6) E{V_} = E{V,}/E{M,_ )

It follows from (2.5), (2.6) that

—
[}

E{d-content of U per unit s-content of Fs} =

E'{V,}/E{V_} = E{M,_ V,}/E{V,} ,

which is the expectation of My for a Vd-weighted random member of
Td.
THE POLYTOPAL CHARACTERISTICS ng). Actually, (2.3) applies to random

aggregates of quite general random ‘subsets of RY. When specializing
to tessellations, the facet structure of the polytope boundaries per-
mits (2.3) to be replaced by a larger system of such basic relations.

Writing T (i-= 1,...,Nt) for the N, t-facets of a convex polytope

t,i

T, we define

N
(k) (k)
Y. T} = . T .
j {T} izl MJ { k,1}
Defining Lr to be the sum of the r-contents of the Nr r-facets of T,

we have the special cases

Y(r) = L s Y(d) =M s Y(r) =N 0W<r<d
r r r r o r

(2.1) is replaced by the larger system
2.7) B YT Orar 3 =k 6,y mim{ T, (0<r<sw-d<s<a),

where

kg (s,u) = T(H T /rEdthyp &l

{7; Section 10]. As (2.1) becomes (2.3) for a random tessellation, so
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(2.7) must be replaced by the same relation having two expectations
on the right side. An important formula for convex polytopes is
1 N

5 S
(2.8) M_{T} = {r(s‘;‘)r(d'zﬂ)/nzr(d—?—)}_Zl L
i=

s,iws,i ’

where ws i is the normalized (so that the total angle at an s-facet,
’

in the orthogonal (d-s)-subspace, is 1) exterior angle at the s-facet
Ts i [4; Relation (2.18T)].

3. VORONOLl TESSELLATIONS.

In geometrical statistical applications, it is desirable to have a va-
riety of specific random tessellations, for modelling purposes. A na-
tural source of such models are three dimensional flat sections of
higher dimensional tessellations. As we have just seen, sectioning P
tessellations leads to nothing new. However, this is not the case for
the other basic class of specific tessellations, the Voronoi (someti-
mes Thiessen, or Dirichlet) tessellations. We now determine basic pro-
perties of Voronoi tessellations, before considering their flat sec-
tions in Section 4.

The basic building block for a Voronoi tessellation is an underlying
stochastic point process. For simplicity, we shall simply take the lat
ter as the homogeneous Poisson point process Pp(O,d) of intensity p

in Rd, for which the number of point partieles falling in any measura
ble set X has a Poisson (p|X|,) distribution, and realizations in dis
joint sets are mutually independent. Each point x € Rd has an (almost

surely well-defined) nearest particle of Pp(O,d). The set of all x

with the same nearest particle is (almost surely) the intersection of
a finite number of (open) halfspaces in mutual general position, and
so is a (simple convex) polytope TX [1;p.58]; x € Tx and may be regar

ded as its nucleus (particle). Being simple, every s-facet of TX lies
in the boundaries of (g:i) t-facets of Tx 0<ss<txd).

The aggregate of such polytopal cells constitutes a random tessella-
tion V = V(d)} of Rd, which is ergodic, homogeneous and isotropic. V(1)

is a sequence of random intervals in Rl. It is easily analysed, with
the interval distribution being I'(2,2p), i.e. the distribution of the
sum of two independent exponential (2p) random variables. For discus-
sions of V(2) and V(3), the reader may consult [2] and [8], respecti-
vely.

BASIC (ALMOST SURE) PROPERTIES OF V. As with all polytopal tessella-
tions. each (d-1)-facet bounds two cells./but in this case it is a por
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the two associated nuclei. More generally, each s-facet lies in the
boundaries of d-s+1 cells (s = 0,...,d-1): tessellations having this
property we call normal, because real-life tessellations for d =1,2,3
commonly possess this property. Moreover, for V, each s-facet is a
portion of the s-flat all of whose points are equidistant from the as-
sociated d-s+1 nuclei. In particular, each vertex (0-facet) is a ver-
tex of d+1 cells and is the circumcentre of the circumsphere through
the associated d+1 nuclei.

Now for some notation. For particles XgseeesX

in RS,

d-s in general position

Fs = {y:lyxoll = |Yxl|1 = e = |yxd_sl1}

is the equidistant s-flat (s = 0,...d-1). y € F_ lies in the common
s-facet of the cells with nuclei Xy seeesXg_ o iff the unique d-sphere

centre y through X seeesX

d-s contains no other particles of Pp(O,d).

THE VALUE OF E{LS} FOR v(d). If obvious interest are the ergodic dis-
tributions and momentsof characteristics of the members of V(d). Wri-

ting Vd = Léd), one obvious one is

(3.1) E(v,} = o7l

true whatever the underlying (ergodic) stochastic point process. We
shall now derive the values of the other E{Lg}, and apply them in in-
vestigating sectional Voronoi tessellations (Section 4).

The method relies heavily on a re-parametrization of XgsewesXg_o

- supposed to have general position in R - which lie in a unique
(d-s)-flat Fd—s‘ Write Vd—s for (d-s)! times the (d-s)-content of the

(d-s)-simplex with vertices X yeeesX , and suppose Qd_s(z,R) is the

d-s
unique (d-s)-sphere through XopeeesXy o Then we have, in polar coor-

dinates within Fd—s’

2. = R uld=s)
1 1

éd's); write doéd_s) for the volume element of a

for unit vectors u
unit sphere in Fd_s corresponding to ugd‘S) (i=20,...,d-s). Finally,
write FS(O) for the s-subspace orthogonal to Fd—s’ and parallel to

Fs = {z} + Fs(o).

Now the (d-s+1)-set X reeesrX is alternatively parametrized by

d-s

(d-s) (d-s)
z, R, Fs(o), u ERETL i

and we have the corresponding integral geometric density relationship
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. - pstl pd(d-s)-1
(3.2) dxo..;dxd_s Vd-s R dz dR dFs(O)

(d-s)
..dotdre)

do(d—s)
o

due to Blaschke § Petkantschin [9; Relation [74)]. Next, we express
points y in F_ in terms of polar coordinates (S,v(s)) within FS with
respect to z as origin, so that

ly xg, = ®% + sHY2 =1 (i=0,...d-5)

say, and

(3.3) Pr{y € associated s-facet of V|particles at X peeo }

’xd—s

Pr{int Qd(y,T) contains no particles}

exp(-p ude)

The probability element for particles of Pp(O,d) in dxo,...,dxd_s is
pd_s+1 Hg;i dxi, so that the probability element for a (d-s+1)-set of

doéd_s),...,do(d's) is

particles within limitations dz, dR, dF d
-8

s(0)?

pd-s+l s+l pd(d-s)-1 4, 4p aF d0ld-¢) . gold-®)

d-s (0) d-s
Now consider the contribution ls from given particles at Xoseno Xy o
to the total s-facet content. We may write
e, = JJ 1(s,v(®)ys%"1 gs qo(s)
where I(S,v(s)) indicates that (S,v(s)) lies in an s-facet of V.
Hence, by the complete independence of Poisson point processes,
(3.4) E{lslparticles at X ,...,x;_ .}
- IJ E{1(s,v(®))}s%" ! ds dao(®
=0, J exp(-pUde) ss~1 g5 .
It follows from (3.3) and (3.4) that
(3.5) E{l’_s from particle (d-s+1)-sets with circumcentre in dz} =

d-s+1 0 p00
-0 dz f dF (05 J J RA(4=9)-1 g5=1 oxp(-pv, T?)dR ds
(d-s+1)! Jolo .

J1 I

s+1 (d-s) (d-s)
J...I Vil 4O, e. d04TT

— ~

~
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= XS dz ,

say. The (d-s+1)! factor arises because with total integration every
particle (d-s+1)-set is counted this many times. By [6; Relation (12)]

(3.6) Jy = 04 s41 vt od/c1 cee O,
while
s d(d-s)yp s
5 ;) - rasrd  rEFEITG
d(p‘)d)d—s+(s/d) 2 I‘(d!d-zs“S)
As for JZ’ this is o:::+1 times the mean value of Vzt: for d-s+1
particles chosen independently and uniformly on the unit sphere in
rRY7S. 1ts value,
pdosdrstly (o d-s }ds Lose2y Ld
_TC—) [T Gz TR 4o
(3.8) J3 = d2 P ae1 1 d 1 Gd—S ’
- d+ -g-
r(&=% IS5 rip...r&5h

is derived in [6; Theorem 2], essentially by manipulation of the ba-
sic Blaschke-Petkantschin formula (3.2). Now XS in (3.5) is the ave-

rage s-content of s-facet per unit d-content of Rd. Hence, since each
s-facet is an .s-facet of d-s+1 distinct cells of V, we have

(3.9) E{L_} = (d-s+1) X  E(V,)

which, by (3.1) and (3.5) (3.8) ,

2
2d-s+1_"(d-s)/2r(d -sd+s+1)r(%_+])d-s+(s/d)r(d,s+3)

: 2 (0 <s <4d).
(@-s)t ard=59rs) rdghydss resply o34

Special cases are, for s=d, (3.1) and, for s=0, the mean number of
vertices

d-1
2 d
2d+1 ﬂ_f_ r(giil) P(% + 1)

2 2
T e

E{N,} =

No other ergodic distributions or moments of 'V are known. Obvious tar
gets are formulae for E{Ms} and E{N;}.

Each vertex of V is the circumcentre of a set of d+1 particles of
Pp(O,d), the convex hull of which is a simplex. It turns out that the

aggregate of such simplices is a random tessellation - the Delaunay

tessellation [11]. Its ergodic distribution and the valuesof E{Vg}
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are derived in [9; Relations (76),(77)].

L. SECTIONAL VORONOI TESSELLATIONS.

Our main concern in this paper is with the sectional Voronoi tessel-
lations

V(s,d) = V(d) N F,

for an arbitrary s-flat F,. Note that, in this notation, V = V(d) =

= V(d,d). Providing the intersections are nonvoid, F, intersectscells
of V in simple s-polytopes and t-facets in (s+t-d)-facets. As expec-

ted, each such (s+t-d)-facet lies in the boundaries of s-(s+t-d)+1 =
= d-t+1 cells of V(s,d). Thus, topologically, V(s,d) has the same

properties relative to FS as V has relative to Rd, and is a normal te
ssellation.

We now investigate the application of (2.3) to V(s,d).
s =1: Hence Fl intersects the polytope boundaries of V in an ergodic

stationary (= homogeneous) stochastic point process. V(1,d) comprises
the intervals so formed, and the obvious goal here is to determine
the (ergodic) interval length (L) distribution. (2.3) reduces to one
relation, viz.

4.1 E{L} = E{Vd}/E{M }

d-1

which, by [4; Relation (2.21)] ,
1

{anr(d+1

2

) /1)) BV /B, )

which, by (3.9) ,

ra-p rdgh’

@-1rren- (/D 1),1/e

Note that, as d — = ,

N =

E{L} — (Ze)- = 0.4289

This limiting process is examined in closer detail, and an integral
expression for the distribution of L is given, in the next section.

s =2: Here V(2,d) is a planar tessellation, and (2.3) yields the two
relations

(4.2) E{A} = E{V,}/E{M

d—2} ’

(4.3) ~~leeny = BfM V/EIM. Y
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(A = area, B = perimeter). Simple geometric considerations in a 2-
flat orthogonal to any (d-2)-facet show that the sum of the three ex
terior angles there is 1/2. It follows from (2.8) that, for V ,

E(M,_,} = E{L,_,}/6(d-1)

and so (4.2) , (4.3) become

3d d+1,3
3arcd-y rdty
(4.4) E{A} = Z Z ,
wr(dly @4y (/) rs-d) ,2/d

sa-n: rghrdt-n re-p

(4.5) E{B} .
ra-3 r et p 3y ps. 2y 174

Of course, because each vertex in V(2,d) is vertex of three polygons,
the mean number of vertices
E{N} = 6 .
As d — =, 1
E{A} — 3%/me = 0.2028
and 1
E{B} — (6/e)% = 1.486 .

The reader may check the consistency of (4.1) and (4.4), (4.5), by
considering a line section of V(2,d).

The dimensionless aggregate polygon rotundness measure
o = 4m E{A}/E{B}? ,

as a function of d, is of interest. As d increases from 2 to =, it
increases from 0.785 to 1.155, suggesting that the polygons become
more rotund on average as d increases (cf. [5; p.119]).

s = 3: Here application of (2.3) (and (2.7)) yields

(4.6) E{(V} = B{V,}/EM{%)}

4.7 E{5) = {zr(%o/n%r(é%l)}E{Léfi}/E{Méfﬁl

(4.8) (P} = B8 y/Em{d)y

4.9) E(L{P} = 12711 B 1/Lm{d)y

(4.10) E(ND) = {r(ggg)/n%r(ggl)}E{Léfg}/E{Méfg} ;

where S = surface area. Note that, by Euler's formula and the fact
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that each vertex lies in three faces, Nf3) = (3/2)Né3) and N§3)
= (N§3)) + 2. Unfortunately, there appears to be no geometrical iden-
tity governing the exterior angles at (d-3)-facets, allowing E{Méf;}

to be determined by means of (2.8). However, we know from (3.3) with
s = d-3 that the conditional orientation density of the four parti-

d-2
3

thogonal 3-sphere. As d — «, this distribution tends to degeneracy,

cles generating a (d-3)-facet of V is proportional to V on the or-

in which the four particles form an (isotropically oriented) equila-
teral tetrahedron. Consider now the consequences for the interior and
exterior angles at (d-3)-facets of V. The interior angles actually
correspond to the spherical Voronoi division of the 3-sphere genera-
ted by the particle orientations, and 'so each tends to 1/4. The ex-
terior angles are those of the dual regions on the 3-sphere [13;
p.708]; by this duality

A+ B* = A* + B =

N =
.

From this it follows that each exterior angle tends to

1 3 .-
Ve g sinTl()

so that, by (2.8), as d — « ,

—

EM{DI/EL{ — v -0ty v

Application of this and other formulae to (4.6) - (4.10) yields

E{V} — 1/16me3/?

" = 0.1012
E{S} — 1/23/%5¢ = 0.9437

M} = 1P 3/12 — 1/16(3e)2/2 y = 0.4989

BN — 2+ (1/29) = 13.39
BN Y — 3729 = 34.19
BN DY — 17y = 22.79

as d — o, Real-life observational and experimental models have indi-
cated the common ocurrence of random normal tessellations with values

of E{N§3)} between 13 and 15. Thus, assuming that E{NéB)} for V(3,d)

decreases monotonically from 15.54 to 13.39 as d increases from 3 to
©, the random tessellations {V(3,d)} (4 = 3,4,...) may be advanced as
natural stochastic models for these phenomena. For further details,
see [8; Section 6]. A

s > 4: The above cases s = 1,2,3 are those of obvious practical signi-
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carried out for general s, with its asymptotics involving an equilate-
ral (s+1)-simplex inscribed in an s-sphere.

5. REDUCED DIMENSION STOCHASTIC EQUIVALENCE.

The effect of any particle x in Pp(O,d) on V(s,d) is only by way of
its nearest point y of F_ and the distance |xy|,. Hence V(s,d) is sto

chastically equivalent to V(s,s+1) with respect to a new P(0,s+1) den
sity which is that of Pp(O,d) collapsed by rotation onto a half-Fs

r875-1 where r deno-

+1

with bounding s-flat Fs. This density is’p T4

tes orthogonal distance from FS; note that it is inhomogeneous. We il-

lustrate this stochastic equivalence in the case s=1 by considering,
in the first instance, the case in which the particles form an inhomo

geneous Poisson process in R2 of intensity p(y) (y > 0), with Fl =
= the x-axis.

We begin by exploring the joint distribution of two particles in R2,

given that they give rise, as the intersection of their perpendicular
bisector with Ox, to an endpoint H of the interval process V(1,2) on

Ox. The necessary and sufficient condition for this to occur is shown
in Fig.1.

Fig.1. Geometry of an interval end point H of V(1,d).

That is, there are two particles on the semicircle C with centre H,
radius r, and none within C. We suppose those particles have angular
coordinates ¢,P(-n/2 < ¢ < P < w/2) with respect to the orthogonal to
Ox at H, and are interested in the joint di§tribution of (r;¢,y) gi-
ven that the two particles give rise to H. The method is elementary,
and uses the alternative coordinates shown in Fig.1, i.e. particles at
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(u,a) and (u+v,b) (a,v,b > 0). We have

(5.1) Pr{particles in (du,da) and (du+v,db), and none in int C} =

= p(a) p(b) du da dv db.exp{-ZJ p(y)(rz—yz)llzdy}

r
0
Integrating this respect to u over an interval of unit length, we ob-
tain E{L}'lf(a,v,b) da dv db , where the joint density f(a,v,b) re-
lates to a random such configuration on F. (Here, and below, f(*)
means 'density of *'), Thus, transforming to the polar coordinates
(r,¢,¥) (Fig.1), we have the ergodic density

(5.2) f(r,9,¥) « p(r cos ¢)p(r cos y) r?(siny - sin ¢)

1/2

exp{—ZJ p{y) (rz_yz) dy}

r

0
We now specialise to V(1,d), for which p(y)=pod__1yd_2 . Substitution
of this in (5.2) shows that r and (¢,y) are independent, with norma-
lized marginal probability densities

2 12-+ 2
f(r) = d P“d/ d 2d-2 pﬂd/ rd

rez-p [résn —r(%+1)‘

£(¢,p) = ﬁ%}%z)ﬁ (cos ¢ cos ¥)4? (siny - sin ¢) (-F<ocpeD).

A swift integration gives

1
. r¢+nla

E{r} =
T(2 _é) p_"d/2

~ (d/21Te)1/2 as d — o ,

while the mean projected particle separation onto Ox is
E{r(siny - sin ¢)} = E{r}.E{siny - sin ¢} = E{L}

given in (4.1).

To investigate the limiting behaviour of the distributions of r,
(¢,9), we consider the new variables
d d-1 d+1

R {(Ze)? % /a?y el

G=d1/2¢ , S=d”2¢'-
Then it is easily shown that, as d — = ,

(1) the distribution of R + T'(2,p), so that r/E{r} - 1 in probability;

N PR . N L L P T
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1
£(a,8) > (217 (B-a)expl-T (@248D)} (-m<a<B<=) ,
with limiting marginal density
1
= 2 = 2
£@) = (219 e ™ - 2m2e™® 12{1-0()H (- <a <w).

For the marginal of B, aote that B and -a have the same distribution.
Note also that, as d + «, the projecti?n of the segment joining the
two particles onto F1 ~r[-¢) ~ (2ﬂe)? (B-a).

This approach may be extended to two adjacent semicircles, resulting
in an integral expression for the distribution of interval length L
in v(1,d).

Fig.2. Geometry of an interyal HH' of V(1,d).

Fig.2 shows the geometry. We have particles Pl’Pz’Ps at the points

(u,a), (u+v,b) and (u+v+w,c), respectively (a,b,c,v,w > 0). P, and P2

1

determine the semicircle C with centre H € F as above, and likewise

1’
P2 and P3 determine the semicircle C' with centre H' also € Fl‘ The

Voronoi geometry requires that there are no other particles within

U=CuUC', so that HH', of length L, is a typical interval of V(1,d).

Then, with Poisson intensity p(y), the analogue of (5.1) is
Pr{particles in (du,da), (du+v,db) and (dut+v+w,dc) ,

and none in int U}

= p(a)p(b)p(c) du da dv db dw dc exp{-

max(r,r')
| p(ILY) dy

where £(y) is the length of the intersection of a line parallel to,
and distant y from, F, with U, and r,r' are the radii of C,C'. Again

integration with respect to u over a unit interval gives
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E{L} ! f(a,b,c,v,w) da db dc dv dw. Next we switch from (a,b,c,v,w)
to (L,¢,¥,¢',9'), where

P1 has polar coordinates (r,¢) with respect to H
(r,%) with respect to H

P2 has polar coordinates
(r',¢') with respect to H'

P3 has polar coordinates (r',y') with respect to H'
(fig.2, cf. also Fig.1). The transformation relations are

a =1L cos¢cos ¢'/sin(Pp-¢')
b =1 cosypcos ¢'/sin(v-¢')
L cosycos ¢'/sin(y-¢')
v = L cos ¢'(sin ¢y - sin ¢)/sin(v-¢')

w=DLcosy (siny"' - sin ¢')/sin(y-¢")
with

3 (a,b,c,v,w) _ LA(COSU)COS ¢')2
3(L,6,¥,6",9')  sing¢ sin y' sin’ (y-¢')

{cos Yy cos(Y-¢') + sin ¢ sin(y-¢') - cos ¢'}{cos ¢' cos(y-¢') -
- sin ¢' sin(y-¢') - cos ¢ 1}.

Thus in principle we have the joint density

£(L,0,0,0",0') = E{L}}M&‘ o (a)p(b)p(c)
3(L,0,0,0 ,0")

max(r,r')
| o (L) dy}

exp{-
0
where
r =L cos ¢'/sin(y-¢') , r' =1L cosy/sin(y-¢')
Finally, the marginal density of L results on integrating
£(L,9,¥,¢',¥') over the (¢,¥,¢',¥")-set
[-n/2 < ¢ <9 <7/2] n[-7/2 <¢*' <YP' <7/2] n [¢' < Y]

-2

In the V(1,d) case, when p(y) = pod_lyd , E{L} is given by (4.1) and,

as may be anticipated from Fig.2, the integrations with respect to ¢
(from -m/2 to ¢) and y' (from ¢' to m/2) are elementary, being finite

series in closed form.

6. GENERALIZED VORONOI! TESSELLATIONS.
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to a single particle of the underlying point process. However, each

point of r¢ (almost surely) has a well-defined set of nearest n parti-
cles (n = 2,3,...). Similarly the set of points with the same nearest

n particles constitutes a simple convex polytope, and the aggregate of
such polytopal cells is a generalized Voronoi tessellation Vn of RY

(see [5,10] for discussions of the case d=2); thus V = Vl. Like V and

V(s,d), Vn is a normal random tessellation.
One piece of the previous theory extends effortlessly to v,. We have

(cf. Section 3 for notation): for particles x a point y € F,

02 -2 Xq ¢
lies in an associated s-facet of V_ iff int Qd(y,T) contains n-1 par-

ticles of Pp(O,d), an event of probability
(pude)n“1 exp(- ppde)/(n-1)!

With this modification, the theory of Section 3 carries over, to
yield (suffix n ~ Vn)

E {L? ) r(d+n-s-1+§) E{L_}
E, {V,} (n-1):r(d-s+§) E{V,}

d-s
—_— 2
gd-s+l 2 r(é_;ééiéil) r(d +1) r(d+n-s-1+3) 1-%
- 2 2 d o 9@

2
(n-1)t (d-s)t ar(d=5dtsy p(dilyd-s sty

8
d—S‘li

Unfortunately, En{Vd} is only known in two cases, viz.

En{Vl}

1/ ,

En{VZ}

1/(2n-1)p [5; Theorem 10.1]

Apart from this it is known that, because of the one-to-one correspon
dence between (d-1)-facets of V and cells of VZ ,

E,{Vy} = 2 BOV,}/E(N, )}

where of course the value of E{Nd—l} is also unknown.
We may also section Vn , and naturally write

v,(s,d) = v (d,d) n F
It is possible to write down an integral expression for the ergodic
moments of Vs for Vn(s,d) , as we now show. Select an arbitrary point
0 = X, as origin in Fs. It lies in a random polytope T0 of Vn(s,d)
whose distribution is that of a uniform random member of Vn(s,d)

weighted by V_ . Thus the kth order moment of V (T ) is
s ] o
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ky _ k+1
Ba,v, (Vo} = B OV.T/E V)
Now we may write
VS(TO) = JF I(x) dx

S
where I(x) indicates that x € To. Thus, in the usual way,

k
En,VS{VS}

= E J een [ I(x,)...I(x,) dx,...dx
F F 1 k 1 k

s s

= . E{I(x,)...I(x,)} dx,...dx
JF JF 1 k7 K

s s

J Pr{xl,...,xk all € To} dx,...dx

F
s s

k

Now

Pr{xl,...,xk all € To} = Pr{xo,...,x € some cell of Vn}

k

and the latter event occurs iff there are particles of Pp(O,d) at

Yiseees¥y and
k n

U = int igo jL:]. Qd(xi’lyj_xill)

contains no particles of Pp(O,d). Thus

ky _ [ -o|u]
E vy V)= J . J J . J e ddy,...dy dx_ ...dx, .
s F F d d
s s R R

Further progress seems unlikely, given the complex nature of the ball

union U.
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