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SUBGROUPS OF THE GALILEO GROUP 

AND MEASURABLE FAMILIES OF CURVES 

A. BERENICE GUERRERO G. 

Universidad Nacional de Colombia 

ABSTRACT. The one and two-parameter subgroups of the Galileo group of actions on 
space-time of spaces dimension one are fully determined. Then, the measurable families 
of curves having the Galileo group or one of its subgroups as maximal invariance group 
are found. 

1. INTRODUCTION** 
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The search for the Lie subgroups of a Lie group was initiated by Sophus Lie when 
he determined all subgroups of the projective group Pn . We intend in this work to 
obtain all the subgroups of the Galileo group of transformations of space-time of spaec 
dimension one. The one, two and three parameters families of measurable suhmanifolds 
(curves) of space-time will be also determined. The following result ([5]) will be used 
throughout: 

Theorem 1.1. Let Y1 , •.. ,Yr be vectors fields on a llianifold IVI, such that 

r 

fYi, ljj = L G;~ Yk ; i, j = 1, ... ,1 (1.1 ) 
k=l 

where the G;~. are constants. Then, tJlere is a Lie group G whose Lie algebra has the 

G;kj as structure constants for some basis Xl, ... ,X T', and a local action ¢ of G on 
M such that X iM = Yi, i = 1, ... " 

We also mention ([4]) that 

Theorem 1.2. Let G be a Lie group. If H is a Lie subgroup of G then the Lie 
algebra !HI of H is a subalgebra of G, the Lie algebra o( G. Each subalgebra of G 
is the Lie algebra of exactly one connected Lie subgroup of G. 

1991 Mathematics Subject Classification. Primary 28D1.5. Secondary 28CIO. 
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2. THE GALILEO GROUP AND ITS SUBGROUPS 

2.1 The Galileo Group. 

As mentioned above, we restrict overselvesto the simplest case of the Galileo group G 
of actions on space-time of space dimension one. 
This group is determined by the equations 

{ 
r* = r + vt + c 

t* = t + s 
(2.1 ) 

Where v, c, s are the group parameters. Thus G is a Lie group of dimension three. 
Its infinitesimal transformations are 

8 
Xl =t-, 

8r 
8 

X 2 =-, 
8r 

with structure equations 

[XI,X1 ] = [XI ,X2] = [X2,X2] 

= [X2,X3] = [X3,X3] = 0, 

[XI,X3] = -X2 

2.2 Two-parameter subgroups of G. 

(2.2) 

(2.3) 

These are the subgroups determined by two linearly independent vector fields Yl , Y2 

in the linear span of Xl, X 2, X 3 such that their Lie bracket is a linear combination of 
Yl , Y2 . Thus, equations 

Yi = alX1 + a2 X 2 + a3 X 3 

Y2 = (31Xl + (32 X 2 + (33 X 3 

[Yl , Y2 ] = (a3(3l - al (33) X 2 

(2.4) 

with Xi, i- = 1,2,3 as in (2.2), fully determine the two-parameters subgroups of the 
Lie group G. The following possibilities arise: 

(i) al i= ° . We may assume al = 1, (31 = 0, to get 

Yl = Xl + a2 X 2 + a3X3 

Yz = (32 X 2 + (33 X 3 

[Yi, Y2] = -(33 X 2 = BYl + 4>Y2 

= BXl + (Ba2 + 4>(32)X2 + (Ba3 + 4>(33)X3 

which together with (2.4) ensures that 

B = 0, 

(2.5) 
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Now, condition ¢ (33 = 0 opens the alternative 

{ ¢T'=O 

¢ = 0 

This lead to (33 = (32 = 0 which is absurd 

Then (33 = 0 and (32 T'= 0 

So, we may assume (32 = 1, 02 = 0 Then 

a a 
= t 87. + 0'3 Ot 

(2.6) 

Now if Y = aYl + bl'2 is in the span of Yl y 1'2 its integral curvt's art' dctnlllilH'cl 
by 

{ 
~~ = aYir+bY2 T = at+b 

dt 
d =aYlt + bl'2t = (l°3 

TJ . 

(2.,) 

Integrating this system and determining the transformations scuding (r( 0). t( 0)) 

into (r(I), ttl)), we obtain (see [2]) t·he subgroup Hi given by thc systelll of 
equations 

and having 

{ 
r* = r + vt + c 

t* = t + kv k a constant 

a 
ar 

as infinitesimal trasformations 

(ii) 02 T'= 0 We may take 02 = 1, /32 = 01 = O. Thm: 

Yi = X2 + 03X3 

1'2 = (3I X l + !33X3 

[Yi, Y2 ] = 03fJI X 2 = 8Y1 + q>}:i 

= ¢/3I X l + 8X2 + (803 + ¢/i3 )X3 

which together with (2.4) and (2.5) yields 

¢ (31 = 0, 

so that 

Condition ¢(3l = 0 raises the alternative 

o 

{ 

¢ T'= 0 then (31 = (33 = 0, This is absurd 

{ 
03 T'= 0 and lit = 0 . 

¢ = 0, so that o~ (31 = O. Then or 

03 = 0 

(2.8) 

(2.9) 

(2.10) 
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. Assuming a3, (33 '" 0, (31 = 0 and letting, as we may, (33 = 1, produces the two 
fields 

. . ,0 0 
Y1 = X 2 + a3X3 = - + a3-

o 
Y2 = X3 = at 

Or at 

and if Y = all + bY2 its integral curves are determined by 

dr dt 
- = a, - = aa3 + b 

, d." d." 

(2.11) 

(2.12) 

Integrating this system and determining the transformations sending (r(O), t(O» into 
(r(l), t(l», we obtain the subgroup H? of equations 

{ 
r* = r + c 

(2.13) 
t* = t + s 

with infinitesimal transformation 
o 
or 

o 
at 

If a3 = 0 and (31 = 0 the group H? above is obtained. However, if (31 '" 0, 
assume as we may (31 = 1, the vectors fields are 

o 
Y1 = X 2 = -or 

o a 
Y2 = Xl + (33 X 3 = t Or + (33 at 

and the corresponding group is H~ 

(iii) a3 '" o. We take al = 0, a2 = 0, a3 = 1, (33 = 0, to get 

Y1 = X3 

Y2 = (31 X l + (32 X 2 

[Y1 , Y2 ] = (31 X 2 = 8Y1 + I/>Y2 

= 4>(31 XI + 1/>(32~2 + 8X3 

Comparing with (2.4) and (2.5), we get 

{ 
:~ ~ (31 

. . {(31 = (32 = 0 if I/> ",0 Absurd 
1/>(31 = 0, so that . . 

(31 = 0 If I/> = 0 
Thus 

and the group is H? 

We have proved that 

(2.14) 

and we 

(2.15) 

(2.16) 

(2.17) 
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Theorem 2.1. . The,.Galileo group G 'determined by the infinitesimal transformations 
(2.2) with structure equation (2.3) has the two two-parameter subgroups 

1 {a a 
H2 = t or + k Ot ' 

2 {a a}' 
H2 = or' Ot 

2.3 One-parameter subgroups. 

These are determined by the fields 

!} 
(2.18) 

where Xi, i = 1,2,3 are the infinitesimal transformations of the Galileo group and 
a], a2, a3 are constants. 
The different possibilities are: 

(i) al =I- O. Changing variables, if necessary, we may assume al 

i.e, with t instead of t + a2, 

a 
Y= t- + or 

a a 
(t + (2) -a + a3 at' , r 

Its integral curve is determined by 

{ 

dr 

dry 
dt 

dry 

aYr at 

aYt = aa3 

1, so that 

(2.19) 

(2.20) 

Upon integration of this system, the group is defined by the transformations sending 
(r(O), t(O)) into (r(l), t(l)) and thus we obtain the group Hf determined by 

{. 
r* 

t* 

or by infinitesimal transformation 

r + vt + v2 k 

t +2vk 

t~ + 2k~ or Ot 

(2.21 ) 

(2.22) 
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(ii) a2 i= O. We may assume a2 = 1 and a} = 0, so that 

a a 
Y = X2 + H3 X3 = - + a3 -aI' at 

with integral curve determined hy 

{ 

d.,. 

til, 
dt 

dl, 

which yields the group H; defined by 

aYr 

aYt 

{ T': = r + ca 
t = t + ck, 

or by infinitesimal transformatcion 

a, 

k: a constant 

(2.23) 

(2.24) 

(2.25) 

a a 
ar + J.~ at (2.26) 

(iii) a3 i= O. We may assume al = a2 = 0, so that 

Y = X3 = !, 
and its integral curve is determined hy 

r aYr = = 0, 
dry 
dt 

aYt 
dTl 

=a 

which upon integration yields the group Hl defined by 

or by infinitesimal transformation 

Hence 

{~: : : + c 

a 
at 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

Theorem 2.2 .. . The Galileo group G determined by the infinitesimal transformations 
(2.2) with structure equations (2.3) has the three one-parameter subgroups 

HI = {t~ + 2k~} } ar at 

2 {a a} HI = ar + k at (2.31 ) 

Hl = {!} 
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3. SOME BASIC NOTIONS 

3.1 Maximal Invariance Subgroup of a family of manifolds. 

Let G be a group acting on a manifold M and let F be a q-parameter family of p
dimensional submanif6lds of M. If G* is the subgroup of G leaving globally invariant 
the family F, (i.e. s E G* and v'E F, implies s( v) E F) and H* is the subgroup 
of G* fixing every submanifold in F, (i.e. s E H*, andv E F grants s( v) = v), 
the quotient group K = G* / H* is called the maximal invariance subgroup 
of F . The subgroups of K are called the invariance subgroups of F. The group K 
leaves invariant the family F and has no other transformations but the identity fixing 
all suhmanifolds in F. 

3.2 Associated Group. 

If to each s in an invariance group G of F we associate a transformation (J on 
the parameter of F, the set H of all such transformations is a group isomorphic to 
G which acts on the parameter space of F. The group H is called the associated 
group of G relative to F. 

In [6] it is shown that 

Teorem 3.1. Let G. and H, be isomorphic groups. il necessary and suiIicient condi
tion for the existence of a q-parameter family Fq of p-dimensional submanifolds Yp 
having G as an in variance subgroup is that the matrix 

(~~(x), ... ,G(x), TJUa), ... ,TJk(a)), h = 1, ... ,r (3.1 ) 

beofrange rl < n+q. Where x = (xI, ... ,x"), a = (a I , ... ,ag ), r::: 1 and 
, ~h(x), TJ~(a) are respectively the coefficients in the infinitesimal transformations of 
the groups G and H. 

Under the above circumstances, the family Fq is determined by the equations 

.A = 1, ... ,11, - p (3.2) 

where ¢i (x, a), k = 1, ... , n + q - 'rI, are the L.'1dependent integrals of the system 

o k = 1, ... , rl (3.3) 

and 
F~(" ) - ih~ ("If ) "n+ q-r1 ( )) x,a-'¥ <p~x,a, ... ,<p x,a 

Remark 3.1. For our purposes, .A = 1 andrI = 1,2 
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3.3 Integral invariants of a Lie group. 

Let G bean r-parameter group of transformations 4>{xl, ... ,xn, a 1 , .•. ,a1·) of ]Rn. 

A differentiable function 1/J.:]Rn -+]R is an integral invariant of G if 

1 01.( 1 n)d 1 d n 1 .1,( 1 , n)d 1 1, n 'f/ X , ••• , x x. .. x = If Y , ... , y y . .. cy 
4>( U) . U 

(3.4) 

for any transformation 4> of G where yk = 4>k(xt, ... ,xn;aI, ... ,a r ) and U IS 

any subset of ]Rn where the right hand integral exists. 

3.4 Families of measurable submanifolds. 

Definition 3.1. A Lie group of transformations of ]Rn is measurable if it has a unique 
integral invariant, except for constant multiples. 
A necessary condition for the measurability of a Lie group G is that G he transitive 
(see [6]). 
Let F be a q-parameter family of p-dimensional sub manifolds of ]Rn and let G he 
an invariance subgroup of F. Let H be the associated group of G relative to F. If 
H is measurable, F is said to be measurable relative to H (or G); aud if ~. 

is the essentially unique integral invariant of H. 

(3.3) 

is called the measure of the family F for H (or G). and the q-form 

is called the invariant density of F for H 

Deltheil [3] has shown that 

Theorem 3.2. The integral invariants of a Lie transfonnation KrouP are t 11(' solutions 
of tile system of partial differential equations 

t a~i [~~(x) 1/'(x)] 
i=1 

o. h = l. .... r (3.G) 

where the ~~ are the coeflicients in the infinitesimal transformations of the KrouP. 

A sufficient condition for the measurability of a family F of suhrnallifolds of ]R" IS 

the measurability of the associated group of the maximal invariance group of F. This 
condition is also n,ecessary ft)r one, two and three-parameter families. 
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4. MEASURABLE FAMIUES OF CURVES FOR THE GAULEO GROUP 

4.1 Families of one-parameter curves whicll are measurable for the action 
of the Galileo group or of one of its subgroups. 

Let F be a family of one-parameter curves determined in space-time ( r, t) by the 
equation 

'Ij;(r,t,o) = 0, (4.1 ) 

o a parameter. If G is the maximal invariance group of F, its associated group 
H acts on JR, and F is measurable if and only if His. 
As Lie proved, the groups acting on JR are the translation, the afin and the projective 
group, and only the first of these groups is measurable. Thus, H above is {o /00 }, 
the translation group, and G is one of the group HI, H?, Hl. We examine the three 
posibilities: 

(1) If the maximal invariance group G of F IS 

Hf = {t! + 2k!} and its associated group is H {!} 
then, in (3.6), 

e = t, e = 2k, 1]1 = 1 

I.e. 'Ij; must satisfy 
t o'lj; 2k o'lj; + o·ljJ 

or + ot 00'. 
o (4.2) 

whose solutions are of the form 

0, or, r ta - ko 2 + <1>( t - 2kn ) (4.3) 

(2) If G = H?, 

and H = {!}, 
then e = 1, e = k, 1]1 = 1 in (3.3), and 'Ij;( r, t, 0) must satisfy 

( 4.4) 

whose solutions have the form 

'Ij;( r - 0, t - ko) 0, or, r. = 0 + <1>( t - ko) (4.5) 
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(3) If G ~ Ht = { !} and H = { ! }, then e = 0 e = 1 TIl = 1 

so that 

whose solutions are of the form 

'ljJ(r, t-a) 0, or, r ¢(t - a) 

summing up, we have shown that 

Theorem 4.1. The one-parameter families of curves 

'ljJ(r-ta+ka 2 , t-2ka)=0, 

'ljJ(r-a, t-ka)=O, 

'ljJ(r, t-a)=O 

(4.6) 

(4.7) 

( 4.8) 

have, respectively, as their maximal invariance groups, the one-parameter subgroups 

of the Ga.lileo group in space-time of space of dimension one. 

4.2 Two- parameters families of curves which are measurable for the action 
of the Galileo group or one of its subgroups. 

Let F be the two-parameters family of curves 

'ljJ(r,t,a,j3) = 0 (4.9) 

where a, j3 are the parameters and (r, t) the space-time coordinates. 
Let G be the maximal invariance group of F and H its associated group. Since F 
is measurable, also H is measurable, and therefore transitive. Then dim H = dim 
G ~ 2 and G has to be one of the groups Hi, Hi, or the full three-parameters 
Galileo group. 

(1) If G = Hi = {Yl , Y2} where 

(4.10) 
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with structure determined by [YI , Y2 ] = 0, then H is a two parameters group with 
infinitesimal transformations 

(4.11) 

and structure equation [AI' A2J = O. Then, the corresponding coefficients for 
equation (3.6) are 

{ ~i = t, a = k, ~J = 1, ~i = 0 

1]~ = Q, r;i = 0, rl~ = 0, rl~ = ,8 

and F is determined by the equations 

{ 
, 81jJ , EN 8'tP 

(,z) t- + X:-, + Q-8r 8t 801 
.. ) 8'lj) ~ {)'ljJ 

(11 8r + p {)/3 = 0 

o 

The solution to (4.12), (i) is the family of curves implicitly given by 

I.e by ¢(r, t, 01, (3) = 0 where 

smce 1jJ(r,t,a) must verify (4.12), (ii), and 

we get 

and 

a'lj; 
-=1' ar ' 

'IN r, t, a, (3) = r - e 12k -In/1- i(a e- t / k ) = 0 

(4.12) 

( 4.13) 

( 4.14) 

( 4.15) 

(4.16) 

(4.17) 

is the measurable family of two-parameter curves having HJ as maximal invariance 
group. 

(2) If G = Hi 

Hi = {!, %t} then 
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is as before the associated group of G, and the corresponding coefficients for (3.6) are 

{a ~1, a=o, '17~ = a, '17~ =0 

e~ = 0, a = 1, '17~ = 0, '17~ = j3 

so that (3.3) becomes 

{
8'1j;+a 8'1j;=0 
8r 8a 
8'1j;. + j38'1j; = 0 
at 8j3 

whose solutions are implicitly given by 

o 

i.e, F is the family of curves determined by 

'Ij;(r,t,a,j3) =r-Ino-cp(t-Inj3) 

So far, we have proved that 

Theorem 4.2. The two parameters families of curves: 

r = t2 12k + Inj3 + cp(ae-t / k ) 

r=lno+ cp(t-Inj3) 

(4.18) 

(4.19) 

( 4.20) 

(4.21) 

have, repectiveiy as their maximal invariance groups, the two parameter subgroups 

( 4.22) 

of the Galileo group in space-time of space dimension one. 

M. Stoka [6) shows that the two-parameter family of measurable curves having as 
invariance group G the full Galileo group (2.1), are family of straight lines. He also 
proves that the measurable three-parameter family having G as maximal invariance 
group is given by 

'Ij;( t - Ir - j3, r - a) = 0 ( 4.23) 

Acknowledgements. 

The author thanks Professor J.A. Charris for his help in the preparation ofthe English 
version of the manuscript. 
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Pri'sentado por R. Panzone 

ABSTRACT. Let Go bea non compact real semisimple Lie group with finite center, 
and let U(g)K denote the centralizer in U(g) of a maximal compact subgroup Ko 
of Go. By the fundamental work of Harish-Chandra it is known that many deep 
questions concerning the infinite dimensional representation theory of Go reduce to 
questions about the structure and finite dimensional representation theory of the 
algebra U(g)!\, called the classifying ring of Go. To study the algebra U(g)](, B. 
Kostant suggested to consider the projection map P: U(g) -> U(t)<2>U(a), associated 
to an Iwasawa decomposition Go = KoAoNo of Go, adapted to Ko. When P is 
restricted to U(g)K P becomes an injective anti-homomorphism of algebras. In this 
paper we use the characterization of the image of U(g)](, when Go =SO(n,l) or 
SU(n,l) obtained in Tirao [11], to prove that U(g)]( ~ Z(g) <2> Z(£), where Z(g) and 
Z(t) denote respectively the centers of U(g) and of U(t). By a well known theorem 
of Harish-Chandra these two centers are polynomial rings in rank(g) and rank(t) 
indeterminates, respectively. Thus the algebraic structuTe of U{g)K is completely 
determined in this two cases. 

1. INTRODUCTION 

Let Go be a non compact real semisimple Lie group with finite center, and 
let J{o denote a maximal compact subgr.oup of Go. If l: C g denote the respective 
complexified Lie algebras, let U(g) be the universal enveloping algebra of g and let 
U(g)K denote the centralizer of J{o in U(g). 

By the fundamental work of Harish-Chandra it is known that many deep ques
tions concerning the infinite dimensional representation theory of Go reduce to 
questions about the structure and finite dimensional representaton theory of the 
algebra U (g)K, called the classifying ring of Go (cf. Cooper [2]). Briefly, the reason 
for .this is as follows: To any quasi-simple irreducible Banach space representation 
7r of Go there is associated an algebraically irreducible U (g )-module V which is 
locally finite for J{ 0 and which determines 7r up to infinitesimal equivalence. In fact 
one has a primary decomposition V = EB Vb, where the sum is taken over the set 
ko of ail equivalence classes {j of finite dimensional irreducible representations of 
J{o, and the multiplicity of {j is finite for any {j E k o . Then, in particular, any Vb 
is finite dimensional and hence, a finite dimensional U(g)K-module. The point is 
that V itself as a U(g)-module is completely determined by Vb as a U(g)K-module 
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for any fixed 8 when Va # 0. See Lepowsky and McCollum [10] and Lepowsky [9] 
for a nice exposition of this. See also Dixmier [3] an~ Wallach [12]. 

When Vb o # 0, where 80 is the class of the trivial representation of K 0, then 
7f is called spherical. The approach above has been quite successful in dealing with 
spherical irreducible representations of Go (see e.g. Kosiant [7]). Indeed, we may 
take 8 = 80 and thus we have only to consider a quotient U(g)K / I instead of 
U(g)K. Here I is the intersection of U(g)K with the left ideal in U(g) generated 
by ~. Now by a theorem of Harish-Chandra, U (g)K / I is not only commutative but 
also isomorphic to a polynomial ring in r variables, where r is the split ranll·of Go. 
More precisely one has an algebra exact sequence 

(1) 

where 0 is the complex abelian Lie algebra associated to an Iwasawa decomposition 

Go = KoAoNo of Go adapted to Ko, and U(o)W is the ring of W-invariants in 
U(o), W being the translated Weyl group. 

To investigate the general (not necessarily spherical) case along these lines one 
must look at U(g)K itself, not just U(g)K / I. It is known (see e.g. Kostant and 
Tirao [8]) that the map (1) may be replaced by an exact sequence 

where U(e)M denote the centralizer of Mo in U(~), Mo being the centralizer of Ao 
in [(0 and U(~)M ® U(o) is given the tensor product algebra structure. Moreover 
P is an antihomomorphism of algebras. In order to generalize (1) it is necessary 
t.o determine the image of P. Towards this end we introduced in Tirao [11] a 
sub algebra B of U(~)M ® U(o) defined by a set of equations derived from certain 

imbeddings among Verma modules and the sub algebra BW of all elements in B 
which commute with certain intertwining operators. Such operators are in a one to 
one correspondence with the elements of the Weyl group Wand are rather closely 

relatecl to the Kunze-Stein intertwining operators. In fact the relation of BW to B 
may be taken as the generalization of the relation of U(o)W to U(o). In Tirao [11} 

it is proved that the image of P lies always in BW, and that when Go =SO(n,l) or 

SU(n,l) we have p(U(g)K) = BW. 
In this paper we use this result to exhibit the structure of U (g)K in this two 

cases. In fact we shall prove that U(g)K ::::: Z(g) ® Z(~), where Z(g) and Z(~) 
denote respectively the centers of U(g) and of U(~). By a well known theorem 
of Harish-Chandra these two centers are polynomial rings in rank(g) and rank(~) 
indeterminates, respectively. Thus our work is finished. 

Nowadays there are several proofs that U(g)K is a polynomial ring (Cooper 
[2], Benabdallah [1], Knop [6]), nevertheless our approach should prove to be useful 
to attack the general case, or at least the case when Go is any real rank one group. 

2. THE ALGEBRA B 

Let to be a Cartan suhalgebra of the Lie algebra mo of Mo. Set ~o = to if) 0 0 

and let ~ == t EEl 0 be the corresponding complexification. Then ~o and ~ are Cartan 
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subalgebras of go arid g, respectively. Now we choose a Borel subalgebra t EEl m+ 
of the complexification m of mo and take b = b EEl m+ EEl n as a Borel sub algebra 
of g. Let ~+ be the corresponding set of positive roots, put g+ = m+ EEl n and 
g- = L:O'E~+ g-O'. Also put p = ~ L:O'E~+ a. Set (,) denotes the Killing form of 
9 and (p,a) = 2(p,a)/(a,a). For a E ~+ let HO' E b be the unique element such 
that (p,a) = p(HO') for all p E b*. Also set HO' = yO' + ZO' where yO' E t and 
ZO' E o. Let p+ = {a E ~ + : ZO' -# O}. 

Let 9 = ~ EEl P be the complexified Cart an decomposition, associated to Ko, 
and let () denote the corresponding Cartan involution. Also let M~ den.ote the 
normalizer of Ao in ](0' Let a E p+ be a simple root such that yO' -# O. Set 
EO' = X-O' + (}X_O' where X_O'is a non zero root vector corrresponding to -a. 

When Go == SO(n, l)e (n -# 3) there is only one simple root a1 E p+ (ifn = 3 
there-are two simple roots al,a2E P+). When Go == SU(n, 1) (n ~ 2) there-are 
exactly two simple roots al, an in P+. Set El = EO'l (n -# 3) and El = Eetl , E0'2 
when n = 3 in the first case, and E2 = E 0I1 , Es = EO'n in the second case. We 
shall also use E to designate anyone of the vectors E l , E2 orEs and a for al, 
(al or (2), al or an, respectively. Moreover Yo' -# 0 if Go = SO(n, l)e n ~ 3 or 
Go = SU(n, 1) n ~ 2. From now on we shall take for granted that we are in one of 
these cases. 

From (8) and (9) of Tirao [11] we know that the algebra B is the set of all 
b E U(~)M ® U(o) such that for all n E N 

(2) 

holds for (E,a) = (El,at} and (E,a) = (E2, at},(Es, an), respectively. Also 

(3) B W = {b E B: Ow *b(.-\ - p) = b(w(.-\) - p) *ow for all w E M~,.-\ E o*}. 

The algebraic structure of U(g)K when- Go =SO(n,l) or SU(n,l) n ~ 2 will be 
determined by induction on n. The case SO(2,1) is quite simple and will be con
sidered later. Thus we shall take up now the case Go = SU(2, 1). If u is any Lie 
algebra z(u) will denote the center of u and Z(u) will denote the center of U(u). 

Lemma 1. If Go = SU(2, 1) set Y = YO'l = - Y0'2' Also let 0 -# D E z(~) and let 
( denote the Casimir element of[~,~]. Then {(iDjyk};,j,k~O is a basis ofU(~)M. 
Moreover the canonical homomorphism p : Z(~) ® Z(m) -+ U(~)M is a surjective 
isomorphism. 

Proof The set {E2' Es,D, Y} is a basis of~. Therefore the monomials E~E~Djyk 
form a basis of U(~). Now m is one-dimensional and Y E m. From Lemma 29 
of Tirao [11] it follows that [Y, E2] = -(3/2)E2 and [Y, Es] = (3/2)Es. Hence 
{E~E~Djyk};,j,k~O is a basis of U(~)M. Now (= aE2Es + by2 + CD2 + dYD + 
eY + JD, a,b,c,d,e,! E C, a -# O. Thus {(iDjykh,j,k~O is a basis of U(~)M. 

Since {(i Djh,j~o is a basis of Z(~) and {ykh~o is a basis of U(m) = Z(m) 
the first assertion of the lemma implies the second. 

Proposition 2. For j = 2, 31et 

Bj = {b E U(~)M ® U(o) : EJb(t - (-l)iy - 1) = b( -t - (-l)iy - l)EJ, tEN}. 
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Then Bi, as an algebra over C, is generated by the algebraically independent 
elements(01,D01,(Y01+(-1)i 0Z+(-1)i)2,Y01-3(-1)j 0Z and 1. 

Proof If b E U(~)M 0 U(a) then by Lemma 1 b can be written uniquely as b = 
"\' i'k I .,] 3· 
L..J ai,j,k,l( DJY 0 Z , ai,i,k,1 E C. Smce [( -I)JY, Ej = -2Ej () = 2,3) from 
Lemma 18 (vi) of Tirao [11] we get 

Ejb(t - (-I)jy - 1) = L: ai,j,k,l(i DiBjyk(t - (-I)jy - 1)1 
i,j,k,1 

i,j,k,l 

Thus b E Bj if and only if for all i, j, tEN we have 

'"""' '3 k t . I '"""' k . I L..,.a;,j,k,I(Y + (-I)32t) (-2 - (-l)Jy -1) = L..,.ai,j,k,IY (-t - (-l)3Y -1) . 
k,l k,1 

Hence the problem of characterizing all b E Bj is equivalent to determine all f E 
C[XI,X2] such that 

(4) f(y+ (-I)j ~t, -~ - (-I)jy - 1) = fey, -t - (-I)jy - 1) 

for all t, Y E C. 
For j = 2,3 let fj E C[XI, X2] be defined by 

(5) f(XI,X2) = fj(XI + (-I)i(x2 + I),XI - 3(-I)i(x2 + 1)). 

Then f satisfies (4) if and only if h((-I)jt,4y + 3(-I)jt) = fj(-(-I)jt,4y + 
3( -I)jt) for all t, y E C. Equivalently if and only if 

'"""' . 2k . 1 (6) f= L..,. ak,l(xl + (-1)3 (X2 + 1)) (Xl - 3(-I)J(x2 + 1)) . 
k,l 

From this it follows that Bj is generated by (0I,D 0I,(Y 01 + (-I)j 0 Z + 
(_1)i)2, Y 0 1 - 3( -I)i 0 Z and L Clearly these elements are algebraically inde
pendent. 

Now we want to determine the algebra B = B2 n B3 . Given f E C[XI, X2] 
let a(f) E C[Xl,X2] be defined by a(f)(xI,X2) = f(V3xI,X2 - 1). Also let Tj 
(j = 2,3) be the automorphism of C[XI,X2] induced by the linear map: 1j(xt} = 

I 'f<) l'f<») -2(Xl + (-I)J y 3x2)' Tj (X2) = -2((-I)J y 3xl - X2 . 

Lemma 3. An element f E C[XI, X2] satisfies (4) if and only if Tj (a(f)) = a(f) 
(j = 2,3). 

Proof First of all for j = 2,3 we compute 1j(V3XI +( -I)i X2) = -(V3XI +( -I)j X2) 
and Tj (V3XI - 3(-I)j X2) = V3XI - 3(-1)j X2. If we use the notation introduced 
in (5) we get 

a(f)(XI, X2) = fj(V3xI + (-I)j X2, V3Xl - 3( -I)j X2), 

1j(a(f))(xl' X2) = fj( -(V3Xl + (-I)j X2), V3XI - 3( -I)i X2)' 

Therefore 1j (a(f)) = a(f) if and only if fj is even in the first variable. This is the 
same as saying that f has the form stated in (6), which was shown to be equivalent 
to (4). 
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Proposition 4. Let W denote the group of automorphisms of C[X1, X2] generated 
by T2 , T3 . Then: 
(i) W is isomorphic to the Weyl group of5u(2, 1). 
(ii) The algebra C [Xl, X2]W of all W -invariants is generated by the algebraically 
independent polynomials xi + x~, xl(xi - 3x~) and 1. 

Proof. Let us consider on RXI EB RX2 the inner product defined by requiring that 
Xl, x2 be an orthonormal basis. Then the restriction of 1j to RXI EB RX2 is the 
reflection on the line generated by ~(Xl- (-1)jV3x2) (j = 2,3). Moreover, if we 
identify ~it with RXI EB RX2 by the linear map t: ~it --+ RXI E& RX2 defined by 
teal) = ~(V3Xl +X2), l-(a2) = ~(-V3Xl +X2), then the simple reflections S"" and 
Sa, correspond respectively to T2 and T3 . This establishes (i). 

To prove (ii) we just need to recall how one ~ets the Weyl~roup invariants 
on-OR :r:et el; e-2, eabe -the- can~~ic~ basi~ ~f R 3 and let H be the orthogonal 
complement of R(e1 + e2 + e3)' Then the inclusion map j: ~it --+ R3 defined by 
j(aI) = e1 - e2, j(a2) = e2 - e3 identifies hit with H. Also the action of the Weyl 
group on fJit corresponds to the restriction to H of the action of the symmetric 
group 53 on R3 defined by (T(ei) = ea(i), 0" E 53; i = ],2,:3. If Yl,Y2,Y3 denote 
the coordinate functions on R3 then it is well known that the 53 -invariants on 
R3 are generated by the elementary symmetric polynomials P1 = Yl + Y2 + Y3, 
P2 = yi + y~ + Y5, P3 = yr + y~ + yg and 1. Moreover the restrictions of P2 and ])3 to 
H together with 1 generates all 53-invariants on H. Since j(xI) = (el -2e2+e3)/V3 
and j(X2) = el - e3 we get 

But W is contained in the orthogonal group of RXI EB RJ:2 therefore xi + ;d, 
Xl (xi - 3x~) and 1 generate C[a::l> X2PV . 

Theorem 5. If Go = SU(2, 1) tilen the algebra B is generated by the aJg;ebraically 
independent elements (01, D 01, y2 01 + 3 0 (Z + 1)2, y3 @ 1- 9Y 0 (Z + 1)2 

and 1. Moreover B W = B. 

Proof From Proposition 2 and Lemma 3 we know that all elements b of Bare 
precisely of the form b = Li,j ((i Dj 01)J;,j (Y 0 1,1 0Z) where a (ji ,j ) E C[Xl, X2]W . 
Now Proposition 4 tells us that a(xi+3(x2+1)2) = 3(xi+x~), a(Xr-9Xl(X2+1?) = 
3V3xl (xi - 3x~) and 1 generates C[ Xl, X2]W, The first 'assertion is proved. 

It is well known that there is an element w in the center of Ko such that 
Ad(w)la = -1. Then (3) implies that BW = {b E B : b(,\ - p) = b( -). -
p) for all), E a*}. Using Lemma 29 of Tirao [11] we obtain: al(Za,) = Cq(H",,)
al(Y",,) = 2-3/2 = 1/2, thusp(Z) = 2a1(Za.) = 1. Ifb = Lbj 0Zj E U(e)@U(a) 
let b = L bj 0 (Z - l)j. Then b(). - p) = b( -). - p) if and only if b()') = b( -).) 

(>. E a*). Now B = B W is a direct consequence of the first assertion. The theorem 
is proved. 

:3. THE STRUCTURE OF U(g)K 

Proposition 6. Ifu E Z(g) then P(11) E U(m)M 0 U(a). 
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Proof Let 9 = n E& m E& a E& n, where n = 2:::>.>og>. and n = 2:::>.>og->.. We 
enumerate 6.(g,a)+ as {Al, ... ,Ap }. Let Xj,l, ... ,Xj,m(j) (resp. Yj,l, ... ,Yj,m(j)) 
be a basis of g>.; (resp. g->.J. Then set Xf = (Xj,d k1 ... (Xj,m(j))kmU) and 
~I = (Yj,d' ... (Yj,m(j))im(j), where K = (k1, ... km(j)) and I = h, ... im(j)). 
Then the PoincarEf-Birkhoff-Witt Theorem implies that U E U(g) can be written in 
a umque way as 

(7) U = 2)Yi)!, ... (Yp)IpUj,k(XdK, ... (Xp)Kp, Uj,k E U(m E& a), 
j,k 

where J = (h, ... ,Ip) and k = (Kl, ... ,Kp). If U E Z(g) then Hu - uH = 0 
for all H E a, therefore the sum (51) is restricted to all pairs J, k such that 
2::: IIj IAj = 2::: IKj IAj, which clearly implies that P(u) = u66 E U(m E& a) or more 
precisely that P(u) E U(m)M ® U(a). The proposition is p~oved. 

Since m = m- E& t E& m+ we have 

U(m) = U(t) E& (m-U(m) E& U(m)m+). 

Let q denote the projection of U(m) onto U(t) corresponding to this direct sum 
decomposition and set Q = q ® id : U(m) ® U(a) ~ U(t) ® U(a). Since t E& a is 
abelian, we shall use U(t) ® U(a) and 5(t) ® 5(a) = 5(t E& a) interchangeably. 

Recall the following not.ation: if 0' E P+ is a simple root such that Y", i- 0 
(H", = Y", + Za, Y", E t, Za E a) set Ea = X-a + eX-a where X-a i- 0 in g-a' 
Also we put 

Ba = {b E U(t)M 159 U(a) : E~b(n - Ya - 1) == b( -n - Ya - 1)E~, n EN}. 

Let f,., er E (twa)* be defined by Vlt = O'lt, v(Z",) = -O'(Ya ) and erlt = 0, er(Z",) = 1. 

Lemma 7. All element bE U(m)M ® U(a) belongs to B", if and only if 

(8) Q(b)(t.er + p + ti) - er) = Q(b)( -ter + p - er) 

for all ji E (t EEl a)* such that p(Za) = -P(Yo:) and al1 tEN. 

Proof We enumerate 6.(m, t)+ = {,8I, ... ,,8q} and choose a basis X 1, ... , X q of 
m + with Xj E mpj . Also let Y1 , ... , Yq be a basis of m - with Yj E m_,6j' Moreover 
let H1"",Hz be a basis of t. If I,K E N6 then set XK = (Xdk1 .. ·(Xq)kq, 
yI = (Yd i , " . (yq)i q. If J E N~ then put H J = (HJ)it ... (H/)iI. Then the 
PoinearEf-Birkhoff-Witt Theorem implies that the elements yI H J XK 159 Z~ form a 
basis of U( m) 0 U(a). 

Now if bE U(m)M ® U(a), b = 2:::aI,J,K,8yIHJXK ® Z~ then aI,J,K,s i- 0 
and I I- 0 imply K i- O. Therefore b E B", if and only if for all tEN 

L aI,.J,K,8E~yI H J XK (t - Yo: - 1)8 == L aI,J,K,8yIHJ XK (-t - Y", - 1)" E~ 

which is equivalent to 
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because [m+,E",] = O. Using Lemma 18 (vi) of Tirao [11] repeately (9) can be 
written as 
(10) 

E~ L aO,J,o"HJ (t - Y", - I)' == E~ L aO,J,O,s 

x (Hl - ta(Hl ))i1 ... (HI - ta(HI))j, ( - t - Y", + ta(Y",) - 1)'. 

By Lemma 20 of Tirao [11] E; can be cancelled in both sides of (10) and then 
clearly the equivalence sign can be replaced by an equal sign. Thus 
(11) 

L aO,J,o"HJ (t - Y", - I)S = L aO,J,O,s (Hl - ta(Hl))i1 ... (HI - ta(HI))j, 

.. x ( ~~ -:X£Y± t~D':",l_-_I)' ."._ 

If we evaluate both sides of (11) at p, E t* we get 

(12) 
L aO,J,o,sH J (p,)(t - p,(Y",) - 1)' = L ao,J,o,sHJ (p, - ta) 

x ( - t - p,(Y",) + ta(Ya ) - 1)'. 

Let jj E (t EE! a)* be defined by jjlt = p, and jj(Z",) = -p,(Y",). Then t - p,(Ya) - 1 = 
(tIT + jj - IT)(Za) and -t - p,(Ya ) + ta(Y",) - 1 = (-tIT + jj - tv - IT)(Za). Therefore 
(12) is equivalent to 

If we change jj by jj + tv and since Q(b) = "L ao,J,o,sHJ 1/9 Z~ we get that bE Ba if 
and only if (8) holds for all jj E (tEE! a)* such that jj(Z",) = -jj(Y",). This completes 
the proof of the lemma. 

To make things more transparent we recall some basic facts about the structure 
of Go = SO(n,l)e or SU(n, 1). Let F denote either the reals R or the complexes 
C and let x 1-+ X be the standard involution. For x E F set IxI 2 = xx. 

Consider on F n +l the quadratic form q( Xl, ... , X n +1) = IXll2 + ... + IXn 12 -
IXn+112. Then Go is the connected component of the identity in the group of all 
F-linear transformations 9 of Fn+1 preserving q and such that det(g) = 1. Then 
Go = SO(n, l)e or SU(n, 1) according as F = R or C. If we set 

where I denotes the n x n identity matrix, we have 

Go = {A E GL(n + 1,F): tAQA = Q,det(A) = 1}o. 

Here the subindex "0" in the right hand side denotes the connected componet of 
the identity. We also have 

go = {X E glen + 1, F):t XQ + QX = 0, Tr(X) = O}. 
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The Lie algebra go has a Cartan decomposition go = to EB Po where 

to = { (~ ~): t X + X := 0, w + Th(X) = 0 } 

and 

In each case the Cartan involution () is given by (}(X) = _tX. 
Let Ei ,j E £I [( n + 1, F) denote the matrix with a one in the (i, j) entry and zero 

otherwise. Set Ho = E1,n+1 + En+1,1 and let 0 0 = {tHo: t E R} in both cases. 
As we know 0 0 is a maximal abelian subspace of Po. Let A be the complex linear 
functional on 0 defined by A(Ho) = 1. Then, we have A(g,o) = {±A} if F = R 
and A(g, ll) = {±A, ±2A} if F = e. In both cases we choose II = {A} as a set of 
simple roots. Now consider the following Cartan sub algebra of m: 
ifF = R 

(13) 

ifF= e 

p-1 

t = {T = L itj+1(E2j,2j+1 - E2j+1,2j) : tj E e}, 
j=1 

n 

(14) t = {T = t1(E1,1 + En+1,n+d + LtjEj,j : Th(T) = 0, tj E e}, 
j=2 

where p - 1 = [(n - 1)/2]. Then as we know ~ = t EB 0 is a Cartan subalgebra of g. 
Now according as F = R or e we define linear functionals Aj on ~ as follows, 

(15) Aj(H)={t, ~=1 
tj, J = 2, ... ,p 

respectively. Here H = T + tHo where T is as in (13) and (14). Now a positive 
root system of m with respect to t can be discribed as follows: 
ifF = R 

(16) A(m,t)+ = {{Ai±Aj ~2~~<~~P}U{Ai :2~i~p}, n=2p 
{Ai ± Aj . 2 ~ Z < J ~ p}, n = 2p - 1, 

ifF = e 
A(m,t)+ = {Ai - Aj : 2 ~ i < j ~ n}. 

If A(g, ~) denotes the root system of g with respect to ~, we define a positive root 
system A(g, ~)+ compatible with A(g,o)+ and A(m, t)+, as follows: we say that 
a E A(g,~) is positive if, whenever ada -# 0 then ala E A(g, 0)+ and if a is such 
that. ala = 0 then alt E A(m, t)+. A straightforward computation shows that: 
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ifF = R 

ifF = C 
~(g, ~)+ = {Ai - )..j : 1::; i < j :s: n + I}. 

The corresponding sets of simple roots are: 
ifF = R 

{
{ab ... ,ap }, n=2p,p~2 

II(m,t)= {a1, ... ,ap }, n=2p-1,p2:3 

0, n = 3; 

ifF = C 

n = 2p 

n = 2p-1, 

II(g,~)={a1, ... ,an}, ai=)..i-)..i+1(i=l, ... ,n), 

( ) { {a2, ... ,an-d, n2:3 
II m,t = 

0, n = 2. 

In ,vhat follovls Vle shall consider Q as a linear map from U(mJ Q9 U(a) onto 
S(~). Also if wE W(g,~) we set 

S(~)W = {pE S(~) : p(w(J-L) ~ p) = p(J-L - p), for all J-L E ~*}. 

Proposition 8. Let Go = SO(n, l)e or SU(n, 1). If a E P+ is a simple root then 
an element b E U(m)M ® U(u) belongs to Ba if and only ifQ(b) E S(~)s<>. 

Proof We shall consider three cases according to: (i) Go = SO(2p - 1,1), p 2: 2, 
(ii) Go = SO(2p, 1), p 2: 2 and (iii) Go = SU(n, 1) n ~ 2. 

(i) If p 2: 3 then a1 = ).1 - )..2 is the unique simple root in P+. When 
p = 2, a1 = )..1 - )..2 anda2 = )..1 + )..2 are both in P+. We shall only consider 
the case a = aI, leaving the other to the reader. A simple computation gives: 
Ha, = Ho - i(E2,3 - E3,2); hence Ya, = -i(E2,3 - E3,2) and Za, = Ho. Now 
ji E ~ * satisfies ji( Za,) = - ji(Ya,) if and only if ji = X().l + ).2) + X3).3 + ... + XpAp, 
X, X3, ... , xp E C. We have iJ = -).1 - ).2and cr = ).1 (see the definitions given 
right before Lemma 7). Also p = (p - 1) .. 1 + (p - 2) .. 2 + ... + )..p-1. 

We shall identify p E S(~) with the polynomial function on CP defined by 
p(X1"'" xp) = p(X1)..1 + ... + xp)..p). Then (see (8)) the following equation 

(17) 

for all ji E ~ * such that ji( Z a,) = - ji(Ya,) and all tEN, can be rewritten as 

(18) p(x - 1, x - t, X3, ... , xp) = p(x - t - 1, X, X3,"" xp) 
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for all X,X3, ... ,Xp E C and all tEN. For P E S(~) let p E S(~) be defined by 
p(/-!) = p(/-!- p), /-! E ~*. Then it can be easily seen that (18) is equivalent to 

(19) p(X,X +t,x3, ... ,xp) = p(x +t,X,X3, ... ,xp) 

for all x, X3, ... , xp E C and all t E Z. Let 8: CP ~ CP be the symmetry given 
by 8(Xl, X2, X3, ... , xp) = (X2, Xl, X3, ... , Xp). If P satisfies (19) then the zero set of 
p 0 8 - P contains an infinite number of parallel hyperplanes. Hence p satisfies (17) 
if and only if p08 = p. But 8"" (Ad = A2 and 8"" (Aj) = Aj for 3 ~ j ~ p. Therefore 
8 corresponds precisely to 8"" under the identification of ~* with CP defined above. 
Thus if p = Q(b), b E U(m)M ® U(o), then b E B"" if and only if (Lemma 7) 
p E S(~)8", as we wanted to prove. 

(ii) The cases Go = SO(2p, 1) p ~ 2, are completely similar to those considered 
in (i) and are left to the reader. 

(iii) Now we take Go = SU(n, 1) n ~ 2. In this case there are two simple roots 
al = Al-A2 and an = An-An+l in p+: H"" = ~(El,1+En+l,n+d-E2,2+~Ho and 
H"'n = -HE1,1 + En+l,n+t) + En,n + ~Ho; hence Y"" =~(El,l +En+l,n+d-E2,2, 
Y"'n = -~(El,l + Enfl,n+d + En,n, Z"" = Z"'2 = ~Ho, P = ~ Ej~-;(n - 2j + 2)Aj. 

Any /-! E ~* can be written in a unique way as /-! = X1Al + ... + Xn+1An+lwith 
Xj E C and E Xj = O. We shall identify /-! with (Xl, ... , Xn+l) E cn+l and ~* with 
the corresponding subspace of C n+l . 

Let us consider the case a = al. Then {.t E ~* satisfies {.t(Z",,) = -{.t(Ya.) if 
and only if {.t = X(Al + A2) + X3A3 + ... + Xn+1An+l. We have II = -Al - A2 + 
2An+l and rr = Al - An+l. We shall identify the restriction to ~* of an element 
p E C[Xl, ... , Xn+l] with the corresponding p E S(~) by setting p(Xl, ... , xn+d = 
p(X1Al + ... + Xn+1An+l), Xj E C and EXj = O. Then the equation (17) can be 
written as 

(20) p(x-1, x-t, X3, ... , Xn , Xn+l +t+ 1) = p(x-t-1, X, X3, ... , Xn, Xn+l +t+ 1) 

for all X, X3, ... , xn+1 E C such that 2x + Ej,;!"i Xj = 0 and all tEN. For 
p E C[Xl, ... , Xn+1] let p E C[Xl, ... , xn+d be defined by p(Xl, ... , xn+d = p(Xl -
n/2, X2 - (n - 2)/2, ... , Xn+l - (-n)/2); in this way p(/-!) = p(/-!- p) for all/-! E ~ •. 
':I'henit can be easily seen that (20) is equivalent to 

(21) p(X, x + t, X3, ... , Xn+l) = p(x + t, x, X3, ... , xn+d 

for all x, X3, ... , Xn+l E C, t E Z such that 2x + t + X3 + ... + Xn+l = O. As before 
this implies that 

for all Xl, ... , Xn+l E C such that E Xj = O. But the symmetry (Xl, X2,···, Xn+1) 
1-+ (X2, Xl, ... , Xn+l) of cn+1 when restricted to ~* coincide with 8"". Therefore if 
p = Q(b), bE U(m)M ® U(o), then b E B"" if and only if (Lemma 7) p E S(~)·"'. 

When a = an the proof is exactly the same. The proof of the proposition is 
now complete. 
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The following choice of a representative in M~ of the non-trivial element in 
W = W(g, a) will be convenient. Let 

_ { D~ag(=l, 1, .. ~ 1, -1,1), for Go : SO(2p -1: 1),~ 2: 2 
w- Dlag( 1, ... , 1,1), forGo -SO(2p,I),p2:L. 

Diag(~, ... ,~, -~), for Go = SU(n, 1), n 2: 2,~n+1 = -1. 

Then w E M~ and Ad( w )Ho = - Ho. Moreover in the first case we have 

p-l p-2 

Ad(w) L itj+l(E'2j,2j+l - E'2j+l,2j) = L itj+l(E'2j,2j+l - E'2j+l,2j) 

j=l j=l 

- itp (E'ZP-:2,2p-l -- E3p - 1,2p-7), 

Therefore (see (13)) the Caftan sub algebra t ofm is Ad(w)- stable, W(Aj) = Aj 
(j = 2, ... ,p-l) and W(Ap) = -AI' (see (15)). Hence ~(m,t)+ is also stable under 
the action of w (see (16)). In the other two cases it is clear t.hat Ad( w) restricts to 
the identity on t. Thus in all cases Ad(w)lb defines an element in W(g, ~), which 
we shall also denote by w. 

Proposition 9. Let Go = SO(n, l)e or SU(n, 1). An element b E U(m)M ® V(a) 

belongs to (U( m)M ® U( a)) W if and only if Q(b) E S(~)tV. 
Proof. When Go = SO(n, l)e or SU(n, 1) we have 

(U(m)M ® U(a)) W = {b E U(m)M 0 U(a) : Ad(w)(b('\ - p)) = b( -A - p), A E a*}. 

(See (3), also Kostant, Tirao [15, Corollary 3.3].) If b E U(m)M ® U(a) let bW E 
U(m)M ®U(a) be defined by bW(A-p) = Ad(w- 1)(b(-,\-p)) for all A E a*. Then 

b E (U(m)M ® U(a)) W if and only if bW = b. The projection q: U(m) --+ U(t) 
commutes with Ad( w) because m + and m - are Ad( w )-stable. Therefore if b E 
U(m)M ® U(a) 

(22) Q(bW)(I/,>. - p) = Q(b)(w(v),>. - p) 

for all v E t*, ,\ E a*. If we replace in (22) v by v - Pm and take into account that 
w(Pm) = Pm we see that 

(23) Q(bW)(v - Pm, A - p) = Q(b)(w(v) - Pm, >. - p) 

for all v E t*, >. E a*. Now from the explicit description of ~(fl, ~)+ and of ~(m, t)+ 
it follows that pit = Pm. Then (23) is equivalent to 

(24) 

for all J-l E ~*. Therefore Q(b) E S(~)'ii if and only if Q(b) = Q(bW). Since 
Q: U(m)M ®U( a) --+ S(~) is one-to-one (cf. Wallach [22, Theorem 3.2.3]) we finally 

have: b E (U(m)M ® U(a)) W ¢=> b = bW ¢=> Q(b) = Q(bW) ¢=> Q(b) E S(~)tV, 
for all bE U(m)M ® U(a). 
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Proposition 10. If Go = SO(n, 1)e or SU(n, 1). Then (U(m)M ® Uta)) n BW = 

(U(m)M ® Uta)) n B and Q((U(m)M ® Uta)) n B) = S(~)W(9,ij). 
Proof If c E U(m)M it is well known (cf. Wallach [22, Theorem 3.2.3]) that 
q(c)(v - Pm) = q(c)(w(v) - Pm) for all v E t*,w E W(m, t). By extending each 
wE W(m,t) to ~ by making it trivial on a we can consider W(m,t) as a subgroup 
of W(g, ~). Then for all bE U(m)M ® Uta) we have 

Q(b)(v - Pm, >. - p) = Q(b)(w(v) - Pm, >. - p) = Q(b)(w(v) - Pm,w(>') - p) 

for all v E t* , >. E a* , w E W( m, t). Equivalently 

Q(b)(l-t - p) = Q(b)(w(J-!) - p) 

for all J-! E ~*,w E W(m,t). Hence Q(U(m)M ® Uta)) C S(~)W~l). 
From the explicit description of the corresponding sets of simple roots given 

before we see that: 

{ 
(Sl,""Sp), forF=R,n=2p 

W(g,~)= (Sl""'Sp), ~orF=R,n=2p-1 

(Sl, ... , sn), for F = C; 

W(m,t) = 

(S2""'Sp), 
(S2,""Sp), 
(e) 

(e) 

where Si = SOli in all cases. 

for F = R, n = 2p,p ~ 2 

for F = R, n = 2p - 1, p ~ 3 

for F = R,n = 3 

for F = C,n ~ 3 

for F = C, n = 2, 

If Go = SO(2p, 1)e,P ~ 2 or Go = SO(2p - 1, 1)e,P ~ 3, then a1 is the unique 
simple root in P+. If Go = SU(n, 1), n ~ 2, then a1 and an are the unique simple 
roots in P+. While if Go = SO(3,1)e then a1 and a2 are in P+. In any case 
we see that W(g,~) is generated by W(m, t) and {SOl: a E P+ is a simple root}. 
Thus ~ Proposition 8 and from what was observed above it follows that Q(b) E 

S(~)W(g,~) for all bE (U(m)M ® U(a)) n B. 

Conversely if p E S(~)W(9,ij) there exists a unique b E U(m)M ® Uta) such 
that Q(b) = p (see Wallach [22, Theorem 3.2.3]). Now Propositions 8 and 9 imply 
that bE (U(m)M ® Uta)) n BW. This completes the proof of our proposition. 

Theorem 11. If Go = SO(n, 1),e or SU(n, 1) then P(Z(g)) = (U(m)M ®U(a)) nB. 

Proof From Theorem 37 of Tirao. [11] and Proposition 6 it follows that P(Z(g)) C 

(U(m)M ® Uta)) n B. If b E (U(m)M ® Uta)) n B then Q(b) E S(~)W(9,ij) 
(Proposition 10). Now Q 0 P: Z(g): -+ S(~)W(9,ij) is the Harish-Chandra isomor
phism (see Wallach [22, Theorem 3.2.3]). Hence there exists U E Z(g) such that 
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Q(P(u)) = Q(b). Since Q: U(m)M ® U(a) ---> Sib) is injective we get P(u) = b, 
proving what we wanted. 

To prove that when Go = SO(n, l)e or SU(n, 1) we have U(g)K :::: Z(g) C?,l Z(e) 
it will be convenient to begin discussing the following concept. 

Let 6.(e, j)+ be a choice of a positive root system of e and let A be the corre
sponding set of all dominant integral linear functions on j. Also let Q be the set 
of all dominant integral linear functions on t, with respect to 6.(m, t)+. A subset 
X C j* (X C t*) is a separating set of S(j)1 (S(t)l) if for any .f E 50)1 U E S(t)l) 
.fIx = 0 implies .f = O. (S(b)1 denotes the subspace of S(I1) of all elements of 
degree st.) For A E A (w E Q) let 'Il" (lY",,) be a finite dimensional irreducible 
e-module (m-module) with highest weight A (w). If wED set 

A(w) = {A E A: HOlTIm(W"", VA) f O}. 

When Go = 50(n,l)e (5U(n, 1)) the algebra e :::: !loin, C) (g[(n, C)) and 
m :::: !loin - 1, C) (g[(n - 1, Cl) corresponds to the sub algebra of all matrices in 
!lo(n, C) (g((n, C)) with all zeros in the first row and in the first columll. Let A' 
(D') be the set of all A E A (w E [n such that there Rxists a represelltation of 
50(n,C) or GL(n,C) (50(n - I,C) or GL(n -l,C)) of highest weight A (w). 
according to Go = 50(11, I)" or Go = 5U(n, 1). 

For the proof of the following proposition we need to recall how a represRntation 
I";, of 50(n,C) or GL(n,C) decomposes as a rRpresentation of SO(l1 - I,C) ()f 

GL(n - I.C), respectively. We need to distinguish three cases: 50(2// + I,C), 
50(2//, C) or GL(lJ, C). In any of these cases a basis AI,"" All of j ran be chosell 
in such a way tbat any A E A' c'an be writen as ), = mlAJ + .... + m ll \/ where 

{ 

1111 ::: ... ::: 1TIu ::: 0, 7ni all integers or half-integers, 

1711:::"'::: 7J1 11 -1::: Imlll, mi all integers or half-integers, 

7nl ::: ... ::: 111,11 ::: 0, Tni all integers, 

for SO(2// + 1, C) 

for 50(2//, C) 

for GL(//, C). 

Now the following branching formulas hold (see Foulton, Harris [4,§25.:3]). 
The restriction from SO(2//+ 1, C) to 50(2//, C) is determined by the followiHg 

spectral formula 
... ~ 

(25) \~m}"rnv) = L Till("""v) 

the sum over all (PI, ... ,PII) with ml ::: PI ::: 1712 ::: ])2 ::: ... ::: ])11- [ 2:: mil ::: I]J/I I, 
with the Pi and mi simultaneously all integers or all half-integcrs. 

When we restrict from SO(2/l, C) to 50(2//- J, C) we have 

Vcm".,mV) = LTV(p}, ,P,,-I! 

the sum over all (PI, ... , PII-t) with ml ::: ])1 ::: m2 ::: P2 ::: ... ::: ])11-[ ::: Imv I, with 
the Pi and mi simultaneously all integers or all half-integers. 

For GL(// -l,C) C GL(lJ,C) the restriction of VA A = (ml,.··,m/l) frolTl 

GL(//, C) to GL(// - 1, C) is given by 

t,(m}, .. ,m v ) = LW(Pl' ,l'v-I! 

the sum over all (PI, ... ,Pv-d with ml ::: PI ::: m2 :::]}2 ::: ... ::: ]}v-l ::: mv ::: 0, 
with the Pi and mi all integers. 
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Proposition 12. Let Go = SO(n, l)e or SU(n, 1). The set YI of all w E Q such 
that A( w) is a separating set of S(j)1 is a separating set of S( t)n for all n EN. 

Proof. If w E [2' let A'(w) = {A E A' : Homm(Ww , VA) # O} and Y/ = {w E 0' : 
A' (w) is a separat.ing set of SO)r}. Then clearly A' (w) C A( w) and Y/ C 'Ii for all 
wE Q',I E N. Thus it will be enough to prove that.~' is a separating set of $(t). 

If Go = SO(2// + 1, l)e and w = (PI, ... ,PII),PI ~ ])2 ~ ... ~ P,/-l ~ !])v!, 
Pi simultaneously all integers or all half-integers, then from (25) it follows that 
A/(Pl"",PII) = {A = (ml, ... ,rTl.v ): ml ~ PI ~ m2 ~])2 ~ ... ~ PII-l ~ mil ~ 
!PII!,Pi and 1I7i all integers or all half-integers}. Now we claim that A'(Pl, ... ,Pv) is 
a separating set of S(j)1 if and only if I(Pl, ... , Pv) = min {PI - P2, P2 - P3, ... , PII-l -
!])1I1} ~ I. In fact, if ;rl,' .. , XII is the dual basis of AI, ... , All then any element of 
SO) can be viewed as a polynomial in Xl'''''XII' Thus if I(Pl,,,,,PII) ~ I, f = 
f(:I:1, ... ,;I: II ) E S(j)1 and f(ml, ... ,m,l) = 0 for all (ml, ... ,1nIl ) E A'(pl,""Pv) 
then clearly f = 0, i.e. A'(P1,'" ,PII) is a separating set of S(j)I. Conversely, if 
Pi-l -iPi! < I for somei = 2, ... ,// then f(Xl, ... ,xv) = TI(:rj -In.i) (t.he product 
over all mi such that }7i-l ~ 1ni ~ !Pi! Pi and mi both integers or both half
integers) is a nonzero element in S(j)1 which vanishes on A' (PI, ... ,P/I)' Therefore 
Y/ = {w = (PI,'" ,PI/) E Q' : I(PI,'" ,Pv) ~ l} which obviously implies that }/ is 
a separating set of Set). 

In a completely similar way the proposition is proved when Go = SO(2JJ, 1) or 
Go = SU(//, 1). 

Corollary 13. Let al, ... ,(lm be a.linearl'y independent 8Ilh.'wt o( Z(l') iiJu/let 
PI,'" ,Pm E U(t). Then Li (liP, == 0 mod (U(e)m+) implif's Pi = O. i = 1, ... ,111. 

Proof. Let I = max{cleg(ai), deg(Pi) :i = 1, ... , m}. Given w E Y/ and ..\ E A(w) 
let 0 # v E 1/~ be a highest weight vector of m of weight w. Let ,: (! (t) ~ (! (i ) 
be the Harish-Chandra projection defined by the direct sum deCOIllposit.ioll If (n = 
U(j) EB (1'- U(l') EB U(t)t+). Then an element a E Z(t) acts on l'A by IlmltipJicatioll 
by ~l(a)(A). Therefore 

(
m ) m L l'(ai)(A)pi(W) v = L aiPi . v = 0, 

,=1 ,.=1 

hence Li~l(ai)(A)pi(i.I.)) = 0 for all A E A(w),w E YI. Now we claim that the linear 
span L of {(-y(a1)(A), ... , Im(A)) : A EA(w)} is em. In fact, let ~ = (~l"" ,~m) 
be an element in the annihilator of L. Thus 61'( ad (A) + ... + ~m 1'( am) (A) = 0 for 
all A E A(w). Since A(w) is a separating set of SO)I it follows that ~l/(ad + ... + 
~m~(((lm) = O. But 1': Z(t) --+ U(j) is injective, therefore ~1al +-. '+~mam = 0 which 
implies that ~ = 0, because by assumption a1,' .. ,am are linearly independent. 
From this we get that Pi(W) = 0 for all wE }i, i = 1, ... , m. Since YI is a separating 
set of S(t)1 we finally get that Pi = 0, i = 1, ... , m, as we wanted to prove. 

Proposition 14. Let Go = SO(n,l)e or SU(n, 1). Take a linearly independent 
subset a1, ... ,am ofZ(t) and elementsci E Z(m)0U(a) fori= 1, ... ,m. 
(i) IfLi (/,iCi E B then Ci E B for i = 1, ... ,m. 

(ii)Jf Li aici § B W then Ci E B W for i = 1, ... , m. 
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Proof· We enumerate .6.( m, t)+ = {,8I, ... ,,8q} and choose bases YI , ... , Yq of m - , 
Xl,'" ,Xq of m+ with Yj E m_pj, Xj E mPr Also let HI,,'" HI be a basis of t. 
Let E = Eex> Y = Y"" Z = Z"" where 0: E P+ is a simple root. If I,]{ E Ng set yI = 
(Yd' ... (yq)i q , XK = (XI)kl ... (Xq)k q • If J E N~ put H J == (HJ)it ... (HI)jl. 
Then the Poincare-Birkhoff-Witt Theorem implies that the elements yI H J XK ®Zs 
form a basis of U(m) ® U(a). Let Ci = Li,s,I,J,K Ci,s,I,J,Ky I H J XK ® zs. 

The element b = Li aici E B if and only if (see (2)) 

Enb(n - Y -1) == b(-n - Y -1)En 

Now, using Lemma 18 (vi) of Tirao [11] and the hypothesis, we obtain 

(26) 

-En La' yIHJ - iGi s I J K ) , ) ) 

i,s,/,J,K 

x (n - Y - 1 + (kl ,81 + ... + kq{3q)(Y))' Xl( 

==En L aiCi,s,O,J,oH J (n - Y - 1)' .. 
i,s,J 

Similarly, and taking into account that [m+, E] = 0, we get 

(27) 

i,s,I,J,K 

i',s,I,J,K 

x ( - n - Y - 1 + (kl {31 + ... + kq,8q)(Y))' En XK 

== L aici,.,O,J,oHJ (-n - Y - 1)' En 
i,s,J 

=En L aici,s,O,J,o(H - no:(H))J (- n - Y - 1 + no:(Y))' . 
. {,$)J 

Hence if bE B, from (26) and (27) and using Lemma 20 of Tirao [11], we get 

L aici,s,O,J,oHJ (n- Y _1)8 == L aiCi,.,O,J,O (H _no:(H))J (-n- Y -l+no:(Y))"'. 
i;s,J i,s,J 

If we set Pi = Ls,J Ci,s,O,J,O [HJ (n- Y -1)' -(H -no:(H))J (-n- Y -1+no:(YW] E 
U(t) and apply Corollary 13 to Li aiPi == 0 we get that Pi = 0 for i = 1, ... , m. 
Therefore 

(28) L c;,8,o,J,oHJ (n-Y _1)8 = L C;,8,o,J,o(H _no:(H))J (-n-Y -1+no:(Y))' 
.,J .,J 
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for i = 1, ... , m. If we multiply (28) on the left by En and follow the steps leading 
to (26) and (27) backwards, we see that 

i.e. Ci E B for i = 1, ... ,m, proving (i). 
To prove (ii) we just need to observe that for W E M~ -Mo, >. E 0* (see (3)) 

Ad(w)(b(>'-p)) = b( ->.-p) is equivalent to Li aiAd(w)(Ci(>'-p)) = Li aici(>'-p) 
which implies that Ad(w)(cj(>, - p)) for all i = 1, ... , m, because Z(t)Z(m) ~ 
Z(t) 129 Z(m). This finishes the proof of our proposition. 

Theorem 15. If Go = SO(n, l)e or SU(n, 1) then fJ: Z(g) 129 Z(t) --+ U(g)K is a 
sUljective isomorphism. 

Proof Let us first consider the case Go = SO(n, l)e. The proof will be by induction 
on n ~ 2. For n = 2 an s-triple {H, X, Y} can be chosen in g with H E t. 
Set ( = H2 - 2H + 4XY. Then Z(g) = C[(), Z(t) = C[H] and {XiyiHj} 
is a basis of U (g)K . From this it is clear that fJ: Z (g) (9 Z (t) --+ U (g)K is a 
surjective isomorphism. For n ~ 2 let J{n = SOC n) x SOC 1) ~ SOC n), Mn = 
SO(1)xSO(n-l)xSO(l) ~ SO(1)xSO(n-1) and let gn, tn, mn denote respectively 
the complexifications of the Lie algebras of SOC n, l)e, J{n and Mn. Also let 'TJ be 
the automorphism of glen, C) which interchanges the first and the last row and 
the first and the last column of a matrix. Since 'TJ is given by conjugation by an 
orthogonal matrix it dearly restricts to an automorphism of tn. 

N ow assume the theorem has been already proved for Go = SOC n - 1, l)e, 
n ~ 3. Then 

Let us return to our old notation for Go = SO(n, 1)e. Given U E U(g)K set 

b = P(u) E BW C U(t)M 0U(o). Then we can write (see (29)) b = L7:1 aici where 
a1, ... , am are linearly independent in Z(t) and Ci E Z(m) 129 U(o) for i = 1, ... , m. 

From Proposition 14 we know that Ci E BW. Now by Theorem 13 there exist 
Ui E Z(g) such that Ci = P(Ui). Then Li aiui E U(g)K and P(Li ajUi) = P(u), 
hence U = Li aiUj E Z(~)Z(g). This proves that fJ: Z(g) 129 Z(t) --+ U(g)K is 
surjective. As we pointed out in the introduction this establishes the theorem for 
Go = SO(n, l)e. 

The proof for SU(n,l) will be also by induction on n ~ 2. For n = 2 we 

have U(~)M = Z(~)Z(m) (Lemma 1). Given U E U(g)K set b = P(u) E BW C 

U(~)M 129 U(o). Then b = L7:1 aici where a1, ... ,am are linearly independent in 
Z(t) and Cj E Z(m) 129 U(o) for i = 1, ... , m. As before from Proposition 14 and 
Theorem 11 it follows that U E Z(t)Z(g), proving the theorem for SU(2, 1). For 
n ~ 2 let J{n = S(U(n) x U(I)) and 
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Also set fin, ~n, mn denote respectively the complexifications of the Lie algebras 
of SU(n,l), Kn and Mn. Now take n 2 3 and assume the theorem has been 
proved for Go = SU(n - 1,1). Then ~n ~ g[(n, C) = 3(g[(n, C)) EEl .s[(n, C) = 
3(g[(n, C)) EEl £In-I. Let 

Mn={(~ ~) :aEU(1),AEU(n-l),a2 detA=1} 

Kn- I = {( ~ ~) ': a E U(l),A E U(n -l),adetA = I} 
and observe that 

U(~n)Mn ~ U(3(g[(n, C)))U(gn_dWn 

= U(3(g[(n, C)))7](U(gn_I)Kn-l) 

= U(3(g[(n, C)))rJ(Z(gn-d)rJ(Z(~n-t)) 

= U(3(g[(n, C)))Z(fln-I)Z(mn) 

~ Z(~n)Z(mn). 

From this the proof is completed in the same way as in the case of Go = SO(n, l)e. 
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ABSTRACT. The theories of functions of hyperbolic and dual complex variable were 
deeply investigated between 1935 and J 941 as parallel theories with the classical complex 
analysis (see e.g. [2-6], [13-20]). 

In some recent papers [7-8], [l0-11], these theories present interest by some applications 
in the interpretation of physical phenomenoms. 

In this spirit of ideas, the purpose of this paper is firstly to prove by counter-examples 
that the sufficient conditions ofmonogeneity in [5, p.148] and in [14, Theorem V, p.258] are 
false and secondly, to consider new correct conditions of monogeneity which moreover have 
the advantage of an unitary presentation. 

1. INTRODUCTION 
It is well known that a two-component number system forming an algebraic ring can be 

written in the form z=a+qb, a,b E R, where q satisfies the equation q2 = aq+ f3 with fixed 

a,p E R. An important result states that all the systems L~={z=a+qb;a,bER} are ring 

isomorphic with one of the following three types (see e.g. [9]): 

(i) C with q2 = -1, called the system of usual complex number, if a 2 14+ P < 0; 
q 

(ii) C with if=O, called the system of dual complex numbers, if a 214 + j3 = 0; 
q 

(iii) C with q2=+1, if a 2 14+ f3 >0. In this case, a number in C is called binary [9], 
q q 

or double [21], or perplex [7-8], or anormal complex [1], or hyperbolic complex [4-6], [13]. 
While the theory of functions of usual complex variable is well known and does not 

represents the aim of the present note, the teory of functions of hyperbolic complex and dual 
complex variable was deeply investigated between 1935 and 1941 in e.g. [2-6], [13-20] (see 
also the more recent monograph [12] for generalisations to functions of hypercomplex 
variables). 

In some recent papers (see e.g. [7-8], [10-11]), these theories were been taken in 
attention by some applications in the interpretation of physical phenomenoms. 

In this spirit of ideas we firstly prove by counter-examples that the sufficient conditions 
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of monogeneity in [5, p.148] and that the Theorem V in [14, p.258] are false and secondly, 
we consider new correct conditions of monogeneity which present the advantage that all the 
three cases q2= -1, q2=0 and q2=+ 1 can be more unitaryly treated. 

Throughout in this paper we will consider q2=+ 1, or q2=0, or q2= -1 and a number 
z=a+qb will be called q - complex number. 

2. CONDITIONS OF MONOGENEITY 
Keeping the notations in Introduction we can consider the following 

DEFINITION 2.1 ([13], [14]). If z=a+bq E Cq thenlzl=~a2+b2 represents the 

modulus of the q - complex number z, in all the three cases q2=+ 1, q2=0 and if= -1. Also, 

Nq(z)=a2 _q2b2 represents the q - norm of the q - complex number z. 

THEOREM 2.2 ([13], [14])0{( q2=0 or q2= + 1 then the set of all divisors of 0 in Cq is 

given by Zq = {z = a +qb;Nq(z) = o}. Also, if Z E Cq \ Zq then z is invertible. 

REMARK. If q2= -1 then Z ={O} and C is even a field. 
q q 

Let Dc Cq be and f:D ~ Cq . Then we can write:j(z) = u(x,y) +qv(x,y), for all 

z = x + qy ED, where 11 and v are real functions of two real variables. 

DEFINITION 2.3 ([5], [14]).fis called q-monogenic in Zo E D if there exists the limit 
. , 

lun [f(z)- /(zo)]l (z- zo) = / (zO) 
Z~:::O 

Z-ZO~Zq 

Concerning this concept, the following results are known. 
THEOREM 2.4 ([5, p. 147]). Let q2=+ 1. iff is q-monogenic in Zo = Xo +qyo E D, then 

u and v have partial derivatives of order one in (xo,y) and the equalities 

(1) [OJ I al( xo,Yo) = [a, I q;](xo,yo), [at! cY]( xo,Yo) = [~I al( Xo ,Yo) 
hold. 
THEOREM 2.5 ([5, p. 148]). Let q2=+ 1. If 11 and v have continllolls partial derivatives 

of order one in (xo,y) which satisfy (1), then is q-monogenic in zo=xo+qyo 
THEOREM 2.6 ([14, Theorem V, p.258]). Let q2=0. The fimctionfis q-monogenic in 

Zo = Xo + qyo E D ~(and only if u and v are differentiable in (x 0 ,y) and satisfy 

(2) [011 tJi](xo,yo) = 0, [011 al(xo,Yo) = [a,1 cY](xo,Yo)' 
Firstly, we will prove by counter - examples that the Theorems 2.5 and 2.6 are false. 
Indeed, let us define u(X,Y)=X2+y, v(x,y)=O andf(z)=u(x,y)+qv(.'(,y)=u(x,y), for all 

z=x+qy. 
Obviously U and v have continuous partial derivative of order one in (0,0), which implies 

that U is differentiable in (0,0). Also, we immediately get 

[ml cx]( 0,0) = [a" 10']( 0,0) = 0, [m / 0-']( 0,0) = [a, / &]( 0,0) = 0. 

Let q2=+1. We have 
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lim [f(z)-f(O)]/z= lim u(x,y)/(x+qy)= lim (x 2 +y2)(x_qy)/(x2 _i)= 
z~zo x,y~O x,y~O 

Z~Zq Ixl*!y! Ixl*!yl 
lim x(x2 +y2)/(x2 _y2)_q lim y(x2 +i)/(x2 _y2). 

x,y~O x,y~O 

Ixl*lyl Ixl*lyl 

But if we choose, for example, xn = lIf;;, Yn = 1/~n+l' we get xn ~ 0, Yn ~ 0, 

IXn I:;c IYn I and 

xn( x; + y;) / (x; - y;) = (1/ ..(,;). (11 n+ II (n + 1)) I [1 I n -1 I (n + 1)] = 

n(n+l)'(2n+l)/[n(n+l)"{';] = (2n+l)I"{'; ~+oo, for n~-t«l. 
Analogously, 

Yn(xn 2 + Yr,2)/ (x/ - Yn2 ) = (2n+ l)~n+ 1 ~ +00, for n -HOO. 

As conclusion, f is not monogenic in z=o although u and v satisfy the conditions in 
Theorem 2.5. This means that Theorem 2.5 is false. 

Now, let q2=0. We get 

lim [J(z)- J(O)] I z= lim u(x,y)/(x+qy) = 
z--+O x,y--+O 
zeZq x;"o 

lim (x 2 + i)(x-qy)/ x 2 = lim (x 2 + i)/ x-q' lim (x2 + i)1 x 2 

x,y~O x.y~O x,y~O 
x;"o x*o x*o 

But choosing X=y3, y * 0, we obtain 
(X2+y) Ix = y3+y 2 (y3 = y3 + ily --+ +<Xl, for y ~ 0 
and 
y(x2+y) Ix2 = y+y3 ly 6= y+ J/y3 ~+<Xl, for y ~ O. 
As conclusion, f is not monogenic in z=O, although u and v are differentiable in (0,0) 

and satisfy the relations (2) in Theorem 2.6. This means that the sufficient conditions in 
Theorem2.6. are false. 

Now, letf(z) = u(x,y)+ qv(x,y), z ~x+qy, q2=0, where 

{
x,x:;c O,Y E R {y,X :;c O,y E R 

u(x,y) = Iyl,x = O,y E R ' v(x,y) = o,x = O,y E R 

We have u(O,O) = v(O,O) = frO) = 0 and 

lim [fez) - J(O)]I z = lim [u(x,y)+q'v(x,y»)/ (x +qy) = 
z--+o x~--+o 
zeZq x*o 
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lim (x+qy)/(x+qy)=l= 1'(0) 
x,y---+ ° 

x .. o 
i.e.fis monogenic in z=O. 
On the other hand, (eM £31)(0,0) does not exists because 

lim[u(O,y)- u(O,O)]l y = limlyl! y 
y-+O .1'-+0 
Y'>,O .1' .. 0 

As conclusion the necessary conditions in Theorem 2.6. also are false. 
In the sequel we will give correct versions for the above Theorems 2.5. and 2.6. 
Firstly, we will introduce the following. 

DEFINITION 2.7.' Let u:M ~ R,M c R2 be and (XO,yo) EM. We say that u is q

dtf!erentiable in (xo'Y') ~[there exist A,B E Rand (0= (o(x,y) with 

lim (o(x,y) = w(xo,Yo) = 0 where = = x + qy, =0 = Xo + qyo such that 
X-+Xo 
y-+Yo 
"'-'" "'z - -0'" q 

u(X.Y) -u(xO,Yo) = A(x -xo)+ B(y- YO) + liJ(x;y)· Nq (=- =0) liz - zol,for all (x,Y) E M 

with =-zo e Zq. 

REMARKS. 1). Obviously we have 

Nq(=-=o) 11=- =01 =[(X_XO)2 -qtv-YoY]t J(x- x(i +Cv- YO)2 

2). If q2 "': -1 then the Definition 2.7 becomes the usual definition of differentiability in 
(xo,y,). Concerning the q - differentiability we can prove the following. 

LEMMA 2.8. (i) Let q2 = +1. {[u is q - d~f[erentiable in (xo,y,) then there exists 

[all iX](xo,Yo) = A and [a,l ry](xo,Yo) = B. 

(ii) Let (/ = O. If u is q - d~fferelltiable in (xilY,) then there exists [al/ a](xo,Yo) = A. 

{[ moreover there exist 8 > 0 such that F(x) == u(x,y) is continuous asfunction ofx in 

~61\1IY- yol < 8, then there exist.'; [alli.)'](xo,Yo) = B. 

PROOF. (i) Taking in Definition 2.7 x = Xo and Y 1= Yo (which implies z - Zo ~ Zq)' we 

obtain 

u(xo,y)- u(xo,yo) = B(y- Yo)+W(Xo,y)·[ -(y- Y(J~ Jly- Yolo 

Dividing by y - Yo * 0 and then passing to limit with y ~ Yo we get 

lim [lI(XO,Y)~ u(xO,yo)]l (y- YO) = B- lim (o(xO,Y)(Y- yo)/Iy- YOI = B 
Y~Yo y~Yo 
y1=yo y1=yo 

smce 



lim 
x~xo 

Y~YO 
z-ZoeZq 

~x,y) = lim ~xo,Y) = 0 
y~YO 

Y"'YO 
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Analogously, taking in Definition 2.7 y=Yo and x =F- Xo and reasoning as above, we get 

that there exists [atlry](xo,Yo)=B. 

(ii) Taking in Definition 2.7 Y = Yo and x * Xo (which implies z - Zo e Zq), we obtain 

u(x,Yo) -u(xo,Yo) = A(x - xo) + w(x,y 0) ·Ix - xol, Vx * xo' 

Dividing by x- Xo * 0 and passing to limit \\jith x ---* Xo we immediately get 

raJ / &](xo,Yo) = A· 

Now, let Iy- Yol < £5 , Y =j:. Yo be fixed. Passing to limit with x -?> xo, X * Xo III 

Definition 2.7, we obtain 

u(Xo,y)-u(xo,Yo) = B(v-Yo)+ lim OJ(X,y)(x-xof I~(x-xof +(Y-Yof 

for all Iy - Yo 1 < 8 , Y =j:. YO 

x~xo 

x"'xo 

But by lim w(x,Y) = 0 follows that for 1:: > 0, there exists eli > 0 such that 100(x,y)1 <", for 
x----)xo 
.,lJ----)yo 

x*xo 

T'\ ___ .L_C-' • ( . .., ..... ) ____ t1_ ... 1 !_ 
UCIlUlC 0 0 = l111n1o ,ad aIm Ita W-Yol <00 , y;t Yo' 

We get x~l~.Jv(x,Y)I::::c, forallIY-Yol<b'o, Y*Yo. Since 
X"'xo 

(X-XrJ /~(x-xi +(Y-Yor =lx-xo~·lx-xol/~(x-xJ +(y-yJ ::;Ix-xol, we obtain 

lim ko(x,y)I,(x-xof I~(x-xof +(y-Yof :::: c' lim Ix-xol= 0 for alllv-Yol<oo, y;t Yo 
x~Xo X~Xo 

x;txo x;txo 

As conclusion, 

u(xo'Y) - lI(xo'y) = B(y-y), V y * YCl' Iy- Yol < 80 , 

Therefore, dividing with y - Yo =F- 0 and then passing to limit with y -?> Yo we obtain 

[all iY](xo,Yo) = B, which proves the lemma. 

A correct version of Theorem 2.5 is the 

THEOREM 2.9 Let q2=, +1 be and !:D---*Cq;DcCq,f(=) = u(x,y) + qv(x,y), 
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Z=X+qyE D, Zo =xo+qyo E D. 
If u and v are q - differentiable ill (xo'Y) and sati!.iy the relations (1) in Theorem 2.5, 

then f is q-monogenic in zoo 
PROOF By hypothesis and by Lemma 2.8, (i) we get 

u{x,y) -l~XO,yo) =a(x-Xo) +b{y-Yo) +cq(x,y) .[(x-xO)2 -(y-YO)2]; ~(x-xo)2 +(y-YO)2, 

~x,y) -1{ xo,Yo) = ~x-xo) +a(y-Yo) +ct2(x,y) .[( X_XO)2 -(y-YO)2]; J( x- xot +(y- yo)~ 
for all x - Xo + q(y- Yo) = z- Zo ~ Zq, where 

By simple calculus we obtain 

lim Wj(x,y) = 0, j= 1,2. 
x~xo 

Y~YO 
::-::0 <lZq 

fez) -: f(::o) = (0 +bq)(= - ~o) + [rul (x,y) + q(()~(x,Y)l·[ (x - xo)" - tv -Yo)"]; ~( x - xi + tv -Yof 

Dividind by z-zo ~ Zq and then multiplying by l=f(x-x)-q(Y-Y)P[(x-x)-q(y-y)/ on the 

right hand, the above equality becomes 

[f(z)-f(.:o)] I (z-.:o) =a+bq+[(x-xo) -q(y-YO)]· [(q(x,y)+q(q(x,y)] I ~(x-xO)2 +(x-xO)2 

=a+bq+(x-xo)· (q(x,y)I J(x- xo)2 +(y-Yo)2 -(y- yo)-rq(x,y)1 ~(x-xo)2 +(y-Yo)2 + 

~(x- xo)· (O:!(x,y) I ~( X_XO)2 +(.v- Yo)" -(y-Yo)· (~(x.y) I ~(x - xo)" +(y- y(J" ] 

By Ix - xoll ~( x -x(J + (y- Yo)" :<; I and Iy- Yol I ~(.X" - x(Y + b; -y(J" :<; I, passing to limit 

with z -+ zo, :: - Zo '" Zq (which is equivalent with x ~ xo ,Y ~ Yo' Ix - xol c;e.ly - yol), we 

immediately get that there exists lim [f(.:)-f(.:o)]/(.:-.:o)=a+qh which proves the 
::~::o 

::-::O<lZq 

theorem. 
Now, a correct version of Theorem 2.6 is the 

THEOREM 2.10. Let q2=O and f:D~Cq, f)cCq,f(.:) =' lI(x,y) -t qv(x,y) , 

z = x + qy ED, =0 = Xo + qyo ED, slIch that F(x) = lI(x,y) alld G(x) = v(x,y) are continuous as 
functions qf x in xo' for all y belongill?, to a neighbourhood (?f y 0' delloted hy V(y)-

Iff is q-motlogenic in zo' then u and v sati~fy the relations (2) in Iheorem 2.6. 
Conversely, if 11 and v are q-d(fferentiahle in (xo 'Yr) and satl.~fy the relatiol/S (2) in 

Theorem 2.6, then f is q-monogenic ill ':0. 

PROOF Let suppose thatfis q-mo~og:enic in =0 

• Let us denote h ( ::) = [f ( z) - f ( :: 0 )] / ( :: - :: 0 ) - f (:: 0) = 
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By hypothesis we get lim h;(x,y) = 0, i = 1,2 and 
X~XQ 

Y~YQ 
X"XQ 

hI (x,y)+ql;. (x,y) =[ u(x,y) -u(xo,yo) +q(v(x,y) - v(xo,Yo»]/[(x-xo) +q(y-Yo)]-(a+qb),x :;t:xo' 

By simple calculus, for all x :;t: Xo and all y with =, =0' = - =0 ED, we obtain 

(3) u(x,y)-u(xo,Yo) = a(x- xo) +h} (x,y)(x.,.- xo)' 

(4) v(x,Y) - ,,(xo,Yo) = b(x - xo)+a(y- Yo) +I;.(x,y)(x- xo) + h1 (x,y)(y- Yo) 

Taking y=Yo in (3), dividing with x-.\():;t:( and then passing to limit with x ~ xo,x:;t: xo' 

it follows that[aJ/a](xo,yo)=a, since lim h1(x.y)= lim hI (x.Yo) =0 . 
X--->XO x--->xo 
y~ YO x'*.\"o 
X"XO 

Then, passing with x~xo in (3) and taking into account that F(x)=u(x,y) is continuous 

in xo; we get 

(5) U(XO,y)- u(xo,Yo) = lim hi (x,y)· 0, 'IIy E V(yo)· 
x~xo 

x:;t:xo 

But reasoning exactly as in the proof of Lemma 2.8, (ii), (for (U(X,y) = h1(x,y», there 

exists a neighbourhood V (y) such that I lim h1(x.y)l= lim Ih1(x.y)l:S;c.joroIlYEV1CVo) 
} 0 X4XO .Y--->.YO 

.Y".YO X"XO 

Combining with (5) we obtain 

u(xo,y)-u(xo,Yo) = 0, \ty E V(Y(Jn~(Yo)' 
This obviously implies (a, / ry)(xo,Yo) = 0 

Analogously, takingy=yo in (4) as above we have [c1'i &](xo,y,J = h 

Then passing to limit with x ~ Xo in (4) and taking into account that G(x)" v(x,y) is 
continuous in xo' it follows 

v(xo,y)-v(xo,Yo)=a(y-yo)+ lim h2 (x,y)'O+ lim h](x,y)·(y- Yo), for all 

Y E V(Yo) 
Reasoning as above, there exists V/y J such that 

v(xo,y)-v(xo,yo)=a(y-yo)+ lim h1(x,Y)'(y-yo),\;f YEV(Yo)nVj(yo). 
x~xo 

X;CXQ 

Dividing by Y - Yo '# 0 and then passing to limit with y ~ Yo we get 

[aJ/ry](xo,yo)=a+ lim h1(x,y)=a+O=a 
x-+xo . 
y~yo 

x:;t:xo,y:;t:yO 
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As conclusion, [~/ q.,](Xo,Yo) = ° and [a,/ &](xo,Yo) = [~/ 0;](Xo,yo). 
Now let suposse that u and v are q-differentiable in (xO'Y') and satisty the relations (2)' 

in Theorem2.6. 
By Lemma 2.8, (ii) and by hypothesis we get 

u(x,y) -lI(Xo,Yo) = a(x- xo) + ~(x,y)· (x - XO)2 / ~(x - XO)2 + (y- Yol , 

v(x,y) - v(xo,Yo) = A(x- xo) +a(y- Yo) +mz(x,y)· (x- xo)2 / ~"""(x---x-o-')Z'---+-(-y---~-o)-::-z, for 

all x:;t: xo' y.such that z,zo,z - Zo ED, where 

lim llJ;(x,y) = 0, ;=1,2 and a = [& lix](xo ,yo),A = [ev,a](xo'Yo) 
x->xo 
y ..... yO 
x .. xo 

By simple calculus we get 

? f? 2 
fez) - f(:o) = (a +qA)· (z - zo) + (x - xot . [r.q (x,y) + qrU:2 (x,y)]/ V (x - xot + (y- Yo) 

Dividing by z-zo r£ Zq and then multiplying with I=[(x-xo)-q(y-Yo)]/[(X-xi)-q(y-yo)] 

on the right hand, we arrive at 

[fez) - f(zo)]/ (z- zo) = a +qA + m] (x,y)· (x - xo)/ ~(x - xo)z + (y - yo)z + 

q. [m2 (x,y)· (x - xo)/ ~(x- xo)z + (Y- Yo)" - r~ (x,y)· (y - Yo)/ ~(x - XO)2 + (y - YO)2] 

Passing to limit with = ~ =0'= - Zo r£ Zq (which is equivalent with 

x ~ xo'y ~ yo,x:;t: xo) by 

Ix - xol/ ~(x - xo·_)-z -+-(y---y-o)-2 :0; 1,ly - yol/ ~(x - XO)2 + (y - Yo)2 :0; I, and by the hypothesis 

on m/x,y) we immediately get 

lim [f(z)- f(zo)]/(z-zo)=a+qA, which proves the theorem. 
z~zo 

z-zo flZq 

REMARKS. 1). If q2= -1 it is known that the q-differentiability of II and v in (xo,yo) 
together with the Cauchy-Riemann conditions in (xo'Yo) is even equivalent with the 
monogeneity offin zo=xo+qyo' 

2). In the cases when q2=+ 1 or q2=O, there exist functionsf=u+qv with u and v q
differentiable in (x O'Y') and satisfying (1) or (2), respectively. 

Indeed, for q2= + 1 let us define 

{o,lxl= Iy/ 
u(x,y)=. I I II ,v(x,y)=0,f(=)=lI(X,y),z=x+qy. Wehave 

x 2 _ y2 , Ixl :;t: y 

[Ou / o.x](O,O) = lim [u(x,O) - 1/(0,0)] / x = lim x 2 / x = 0, 
x ..... 0 ~ ..... o 
x .. o x .. O 

[ou / Oy](O,O) = lim [u(O,y) - u(O,O)]/ y = lim y2 / y = 0, 
y ..... O , ..... 0 
y .. O y .. O 
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[Ov / &](0,0);:: [8\1 / ~](O,O) = O. 

Also, u(x,y)-u(0,0);::0.x+O.y+OJ(x,Y)·IX2_y21/~X2+y2 for all Ixl:;t:lyl, where 

m(x,y) = ~ X2 + y2 satisfies lim {O (x, y) = 0, i.e. 11 is q-differentiable in (0,0). 
x -+ 0 
y -+ 0 
Ixl" Iyl 

Analougously, for q2=0 we define 

r X2 ,x:;t: O,y E R 
u(x,y) = ~ ,v(x,Y) == 0,/(=) = u(x,y),z = x+qy. It is easy to check that 

LO,x= O,y E R 

[at / ar ](0,0) = [at /0'](0,0) = ° and 11 is q-differentiable in (0,0) with m(x,y) = ~ x2 + l· 
3). Let q2=+ 1. The sufficient conditions ofq-monogenity in Theorem 2.9 however are 

not necessary. Indeed, let us define J(z)=II(x,y)+q(x,y),z=x+qy,zo =0, 

. _ {X(X1 + y~),lxl:;t: IYI, _ {y(X~ + y~)'/xl:;t: Iyl 
u(x,y) - I I I I ,l(X,y) - I I I I 

~x=y ~x=y 

We have 

/(0)= lim [/(z)-j(O)]/z= lim [lI(x,y)+qv(x,y)]/(x+qy)= 
z--+ 0 X,Y--+ 0 
Ixl",/,vl Ixl"'lyl 

lim (x2+y2).(x+qy)/(x+qy)= lim (x2+y2)=0, 
x ,y --+ 0 x. V --+ 0 
Ixl"'lyl I.;I",/.vl 

wich means that fis monogenic in =0=0. 
On the other hand u is not q-differentiable in (0,0). Indeed, let suppose that 1I is q

differentiable. We easily get [all ar](O,O) = [iii I 0'](0,0) = ° and therefore by Lemma 2.8, (i) 
we get 

u(x,y) = (.(}(x,Y)·[X2 - y2]1 ~X1 + y2, for alllxl:;t: Iyl, with lim m(x,Y) = 0. 
X. V--70 

1;'",lyl 
It follows x(x1 + y2) = m(x,y). [x2 _ y2]1 ~ x~ + y1, which implies 

m(x,y) = x(x2 + y2)3/2 l[x2 _ y2], for alllxl:;t: Iyl. 
Now, choosing for example xn = II J;;,Yn = I1..r;;.;J ~ o,lxnl:;t: IYnl, by simple calculus 

we obtain 

m(xn,Yn) = (211+ 1)3/2 I [11.J11 + 1]n:;""2, contradiction. 
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Prcsell1ado por Rc?/acl Panzone 

Abstract 

We consider the moment problem for the sequence {e->.;t}. in L2(0, T) (0 < 
,EN 

T $ 00), being {Ad iEN a sequence of positive real numbers such that L~l t < 
00. We prove properties of the moment space M of that sequence. In [K) it is 
shown that M is a moment space. Our main result is that M is a I-Iilbert space 
and moreover, that is the image of £2 by the operator Gl/2, the square root of 
the Gram matrix G of the sequence. The operator G1/2 is proved to be the 
limit in B(f2) of a sequence of simple operators of finite rank. We also obtain 
an upper bound for the norm of the operator G. We find different expn;ssions 
for the solution of minimum norm of the stated moment problem, extending 
some results of [Z]. 

1 Introduction 

We consider the moment problem of the sequence: 

{e->';t}. (1) 
,EN 

in L2(O, T) (0 < T < CXl), being {Ad iEN a sequence of positive real numbers such 
that: 

00 1 
2:-<00 
i=l Ai 

Remark: This condition implies that the sequence (1) is not dense in L2(O, T) . 
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Our main goal is to characterize the moment space M of that sequence. In the 
first section we introduce the moment problem and recall some well known results 
about it. In the second section we prove the following properties of M: 

*) M is a dense and proper subspace in £2. 
*) M does not depend on T. 
*) M is a Hilbert space, and there exists a continous inmersion in.£2. 

In the third section we obtain the operator C. It is defined by the Gram matrix 
of the sequence (1) as the limit in B(£2) of a sequence of simple operators of finite 
rank. This allow~; us to show that C1/ 2 is a compact operator. 

In section four we prove that M is the image of £2 by the operator C 1/ 2 . In the 
last two sections we find different expressions for the solution of minimal norm of the 
moment problem of our interest. 

2 The moment problem. 

Let H be a real Hilbert space, provided by an inner product (.,.). Let {I d kE N a 
sequence of elements of H such that any finite subfamily of this sequence is linearly 
independent. We note by {CdkE N an arbitrary real sequence. So, the inner product 
(J,Ik) , kEN is called the nth. moment of I, arid the sequence {(J,!k)}kEN is the 
moment sequence of I. Then in the theory of moments the following problem arises: 

Does there exist an element IE Hsuch that: (J,Ik) = ck,k = 1,2, ... 7 

The moment space M of {Id is then the collection of all the moment sequences 
M = {(J, Ik) : I E H}. Thus a numerical sequence {cd kf N belongs to M if and only 
if there exist I E H such that Ck. = (J, Ik), k = 1,2, .... 

i\;f is a Banach space with the norm defined by: 

n n 

II 11 2 ,,(n) I·" (n) 
C M = sup L.- (}l k CkCI =--' 1m L.- (}l k CkCl 

nEN k,l=l' n-CX) k,l= 1 1 

where (}i~) is the (I,k) element of the inverse of the Gram matrix Cn of {II, f2' ... , In} . 
The last equality is valid because: 

k,l=1 

does not decrease as n increases [K]. It is easily proved that M is also a Hilbert space 
(cf. Lema 2). 

Remark: To avoid confussion we use a subscript denoting the space we are refering 
to; for example (., ·)H or II·II H . 
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3 The moment space of a sequence of exponen-
tials. Some properties. 

Let H = H(T) = £2(0, T) , 0 < T ~ 00 and let fk(t) = e->'kt , k = 1,2, ... , being 
{>'d kEN a sequence of positive real numbers such that >'1 < >'2 < .. , < >'n < ... and 
00 

~ lk < 00. In what follows, we will call M (T) the moment space of (1) if 0 < T < 00, 
k=l ' 

and M if T = 00. We will study properties of M and M(T). 
If T < 00 ,let 

be the Gram matrix of {e->'kt} . 
kEN 

If T = 00 ,then 

G(T) = [, 1 ] 
>'i + >'j i,jEN 

PROPOSITION: 
a) M(T) C £2 , M(T)=/: £2, "IT> 0 
b) M(T) = M , "IT > 0 ' 
c) M is dense in £2 ,and the inmersion i: M-,>£2 is continuous. 

Proof: 
'a) Let ,in)(T) be the greatest eingenvalue of Gn(T), and ,~n)(T) be the smallest 

one. Then 

(n)(T) (x, Gn(T)x) 
'1 = max 2 

XER,xfO IIxll 
and 

n 1 _ e-(Ai+Aj)T n 1 
(x, Gn(T)x) = L >.' >.. XiXj ~ L >.. >.. IXillXjl = 

i,j=1 ,+ 3 i,j=l ,+ J 

( )1/2, 2 

~ >'i>'j IXil IX;I < 1 (~ Xi ) < T G II' 112 
.~ >.. + >.. (\ .)1/2 (\ .)1/2 - 2 ~ (\ .)1/2 - r n X ,,,=1 ' 3 A, A3 ,=1 A, 

where Tr Gn is the trace of Gn. Then ,in)(T) ~ Tr Gn , "In EN, (1) is a Bessel 
sequence [y], and M (T) C £2. 
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Since 

(n)(T) < 1 - e-2AnT 
In - 2An 

then I~n)(T) ~ 0 if n ~ 00 , and (1) is not a Riesz-Fischer sequence. Then M(T) f
£2. 

00 

b) (Gn - Gn{T))i3' = J e-Ajte-Ajtdt then Gn - Gn(T) is the Gram matrix of 
, T 

{ e-A;t} , in £2{T, 00). So Gn - Gn(T) is positive definite. It follows that Gn ~ l<.<n 
Gn(T). --

In addition to this, the following result is valid 

LEMMA 1: G:;;l(T) ~ G:;;l. 
Proof" 

Let L be a linear transformation such that [CHj LT Gn(T) L = ld and LTGnL = 
D where D = (di,jh:5,i,j:5,n is the diagonal matrix of order n such that 

d { Pi i = j 
i,j = 0 if- j 

Then Gn -Gn(T) ~ 0 implies that Pi ~ 1, 1 ::; i ::; n. Also L -IG;;I (T)(LT)-I '= I d 
and L-1G:;;1{T)(LT)-1 = D, where D = (~,jh:5,i,j:5,n is the diagonal matrix of order 
n such that 

-.. _{l/pi i=j 
d' 3 - 0 .. -1- • 

, I ~J 

Then ld -75 ~ 0 and G;;I(T) ~ G:;;I. 
As a consequence of Lemma 1, M (T) ~ M. Also, there exists a constant K = 

K(T) such that: . 

1 
K(T) Gn ::; Gn{T). 

In fact, let C = (Cj)jEN E w, and c{n) = (C1'~' ... , en) E Rn 

n 
where P(t) := E e;e-A;t. In an analogous way, 

i=l 

(c(n), Gn (T) c(n)) = IIP(t)II~2(o,T)' 

Acording to ~ result proved by Scwartz [S] there exists a constant K = K (T) such 
that 
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IIP(t)IIL2(O,00) ~ K(T) IIP(t)lIp(O,T)' 

Hence K(T)Gn ~ Gn(T) and G;;l(T) ~ K(T) G:;; 1 , Therefore M ~ M(T), 
c) Let x E £2 be such that (X,C)f2 = 0 , Vc E M. Since C E M there exists 

W (t) E L2(0, T) such that: 

00 00 T 

T 

J W (t) e-Ajtdt = Cj, Vj E N. 
o 

Then l:xiCi = l: Xi J w (t) e-Aitdt = 0 , Vw (t) E L2(0, T). By the continuity of the 
i=l i=l 0 

inner product 

l~ JT(f-xie-Ait) W(t)dt = O. 
N 00 0 i=l 

00 T(OO ) Since i~l Xi e- Ait E L2(0, T), it follows that [ i~l XicAit W (t) dt = O. 

The sequence (1) is minimal in the sense that each element of the sequence lies 
outside the closed linear span of the others. Then there exists a biorthogonal sequence 
[Y] {gi(t)}iEN such that taking w(t) = gi(t) will give Xi = 0 , Vi E N. Then X == O. 

To show that the inmersion i : M -t £2 is continuolls, we shall show that: 

This is inmediate since 

(c(n),G~lc(n)) = Ilc(n)1I2 (C(~~~f~~,~(n)) ~ Ilc(n)1I2 (ry~n)r1 ~ 

IIc (n)112 (Tr Gn r': l • 

LEMMA 2: (M; II·IIM) is a Hilbert space. 

4 An approximation to the Gram matrix. 

The Gram matrix: 

G=( 1 ) 
'\ + Ai l$i,j<oo 
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generates a bounded operator on [2 because IIGII ::; Tr G. This result is a particular 
case of the following one: 

LEMMA 3: IfG = (gi,j)l$i,j<OO is the Gram matrix of a system {f;}iEN such that 

f gi,i < 00 then Igi,jl = l(fi,Ii)1 ::; IIfilillIiIl ::; (gi,i)1/2 (gj,j)1/2 , 1 ::; i,j < 00 and 
i=l '. 

I,f 9iJXiXjl::; (f 9i,i) (f IXiI2). Hence IIGII::; ,f, gi,i = Tr'G. 
',}=1 ,=1 ,=1 .=1 

LEMMA 4: IIGII < TrG. 

Let Gn be the nth. section of G, Gn = (gi,j)l$i,j$n' 

Th h fi -G () = { gi,j, 1 ::; i, j ::; n en t e in nite matrix n = gi,j 1<_i,}'<00 O,i>norj>n 
bounded operator Gn :[2 ~ [2, "In E N 

LEMMA 5: Gn ~ G on B W) ifn ~ 00. 

Proof: 
Let R,. := G - Gn and let x E [2 , Y = Rnx. Then 

00 

Yi = L gi,jXj i = 1,2, ... , n 
j=n+l 

00 
Yn+i ~ L gn+i,jXj i = 1,2, ... 

j=l 

thus, if 1 ::; i ::; n, 

Hence 

n (n (Xl ) (00 ) (00)( 00 )(00 ) ,,~ 2 < ~ ~ 2, ~ x2 < 1. 1.. ~ 1- ~ L ~ X2 = 
L. Yt - L. L. g.,}. L. J - 2 2 L. A· L. A ' L. J 
i=,1 i=lj=n+1 j=n+1 ;=1' j=n+1 J j=l 

,(00) 2 00 . = ~T . I: 1 II:rll£2 where 7 := i ,2: t· In an analogous way results 
]=n+l J .=1 

00 1 (00 1) ,L Y;::; 27 ,L ~ Il xll;2' 
t=n+1 }=n+1 J 

Hence lie - Gn l1 2 
::; T (, f 1) and Gn ~ G on B ([2) if n ~ 00. • 

]=n+1 J 

defines a 

Remark: It can be proved in a similar way that Lemma 5 is valid if G = (gi,i)l$i,j<oois 
00 

a Gram matrix such that I: gi,i < 00 
;=1 

The operators Gn are of finite rank and positive (recall that a bounded linear 
operator T on a I-Iilbert space H is said to be positive if (T f, J) ~ 0 , Y f E H ). 
Therefore G is a compact and positive operator. Since 
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it follows that 0 ::; Gn ::; TId , 'tin EN, and 0 ::; G ::; TId. Hence for every natural 
number n there exists a unique operator Tn such that T; = Gn and a unique operator 

2 -1/2 I T such that T = G. We will denote them by Gn and G1 2 respectively. Now, 
because of the uniqueness, it follows that 

( ~n ... ~ "'J -1/2 : :. 
Gn =0 0 \ : ... : ... 

. . . . 

where Qn is the only matrix such that Qn 2: 0 and Q~ = Gn. 

-1'2 
LEMMA 6: Gn f ~ G1/ 2 on B(f2) ifn ~ 00. 

Proof: 
Let {Pk (>')}kEN be a sequence of polinomials with real coefficients that converges 

uniformly to the function p (>.) = >.1/2 , >. E [0, T]. Let T be a selfadjoint operator 
such that 0::; T ::; T.ld. Then 

Therefore {Pk(T)}kEN is a Cauchy sequence in B(f2). Accordingly, there exists an 
operator l' E B(f2) satisfying: 

i) Pm(T) ~ T , if m ~ 00 

ii) 1'2 = T 
iii) l' 2: 0 
iv) T is the only operator with the properties i)-iii). 

We note T 1/ 2 = 1'.We choose an arbitrary positive small E and find an index k such 
that 

sup Ipk (>.) - >.1/21 < -3E • 
AE[O,r) 

For thatk we have: Ilpk(G) - G1/ 2 11 < i and IIPk(Gn) - Gn1/2·11 < i. Let no = no(E) 

be such that Ilpk(Gn) - Pk(C)11 < ~ , 'tin > no. Hence 

IICn 1/2 - Gl/211 < to, 'tin> no. • 



50 

5 . A. characterization of M. 

THEOREM 1: M = G1/2(£2). 
Proof: 

Let c E M. Then (c(n), G;;lc(n» ::; K , '<In E N. We denote 

x (n) = (G~lr/2 c(n). 

Hence Ilx(n)1I ::; K , '<In EN, and c(n) = G;!2x(n). We define the elements 

_ ._ { Xi (n) 
Xn,i·- 0 

if 1 ::; i ::; n 
if i > n 

and we denote xn = (Xn,i)iEN' As IIxnlll2 = Ilx(n)IIR" ::; K , '<In E N ,we can suppose 
that {xn}nEN is weak convergent in £2 (if it is not the case, it is sufficient to consider 
a subsequence with this property). Then 

(xm y) ~ (x, y) if n ~ 00, '<Iy E £2. 

Since G1/2 is a compact operator G1/2xn ~ G1/ 2X if n ~ 00 and Gl/2xn ~ c if 
n ~ 00 , then c = G1/2X. 

To show that G1/2(£2) ~ M , let c be an element of .01/2(£2). Then there exists 
x E £2 such that G1/ 2 X = c . We now introduce the elements 

(s) G 1/2 
U := s x 

We assume for an instant that u(s) EM, '<In EN .. Then we have 

II( G;lr/2 c(n)11 ::; II( G~lr/2 (c(n) - u~~»)11 + ~~£ II( G~lr/2 ui~)11 ::; 

:s: II(G;;1)1/2 (c(n) - ui~»)11 + K ,being K a constant. So 

II(G~lr/2 c(n)ll::; II(G~1)1/2 (c(n) - }~~ Ui~»)11 + K = K 

because u(s) --; c in £2 if s ~ 00. Thus c E M. 
To show that u(s) EM, '<In E N let's introduce the set 

- { 2 .} Rs = 0: = (O:i)iEN E £ : O:i = 0 '<It > s 

and consider {gi} iEN a biorthogonal sequence to the sequence (1). Next we define 
9 = O:lgl + 0:2g2 + ... + O:sgs , 9 E £2(0,00). Then 

(g,e-Ajt)={~i :;: 

and hence fis ~ M , '<Is E N. • 

Remark: Now the part a) of the proposition is obvious. 
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6 Solution of the moment problem. 

If 'Pn(t) is the solution with minimun norm of the truncated moment problem 

then [K] 
n 

'Pn(t) = L lie- Ait 

i=1 

n 
where 'Y; = J. a;; (n)c; and a, .( n) is the (i. i)-element of G~ 1. It can be moved that , .. - J'"'' J "'J',1 "oj, - -- - .,~ - -- .1.- - -----

i=1 

lIn Ak + \ 
If we call D:i(n) = 2Ai we can write ai,j(n) 

k=1 Ak - Ai 
k;ii 

moment problem has a solution if and only if there exist a constant K > 0 such that 
[K] II 'Pn(t) II ~ K , 'In E N. Let Dn = (di,jh<:;i,j<:;n be a diagonal matrix of order n 
such that 

d. . _ { D:i (n) i = j 
',J - 0 i cI j 

where d(n) = ( ~:~~l J = GnDnc(n). 

dn(n) 
00 1 

The condition L ~ < 00 implies convergence of the infinite products J~~ D:i (n) = 
i=l ' 

D:i , Vi E N [C] . For every i E N the sequence {di(n)}nEN has also a finite limit 
when n --> 00. Then we write di = lim di(n). 

n->oo 
n 

In fact, let Pn(t) = 2:= ci(n)D:i(n)e- Ait ; then IIPn(t)11 = II'Pn(t)11 ~ K , 'In E Nand 
i=l 

(Pn, e- Ait ) = di(n). This shows that {Pn(t)}nEN is a sequence of elements in £2(0,00) 
such that the norms form a nondecrea5ing sequence of real numbers with K as an 
upper bound. Then there exists P E £2(0,00) such that Pn --> P if n --> 00. 
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The following theorem is valid 

THEOREM 2: If there exist a constant (J > 0 such that An+l - An 2 (J , Vn E N, 
00 1 

and L >: < 00 then 
k=l k 

00 

rp(t) = Ldjaje-Ajt 
j=1 

is the solution with minimun norm of the moment problem 

Proof: 
First, 

00 J rp(t)e-~Ait = Ci , i E N. 
o 

00 

'" d -a _e- Ajt E £2(0 00) 
~ J J " 
j=1 

n 
is a consequence of a theorem of Schwartz [S]_ In fact, as rpn(t) = L di(n)ai(n)e-A,t 

is the solution of minimun norm of the problem of order n: 

n 

00 J rp(t)e- Ait = c; , 1 :S i :S n, 
o 

i=1 

there exists rp(t) = lim L ai(n)di(n)e- Ait E L2(0, (0), being rp(t) the solution of 
n--+oo i=l 

minimum norm of the moment problem [K]. Then rp(t) belongs to the clansurc of the 

subspace of £2(0,00) generated by {e- Ait } _ and can be written as a Dirichlet series 
tEN 

[S] 

00 

rp(t) = L kie-->'i t 
i=1 

As {e-AitLEN isa minimal system [S] it follows that k; = aid; , Vi EN, i.e.: 

00 

rp(t) = L a;d;e- Ait E L2(0, (0) 
i=1 

00 

It remains to prove t.hat L djaje- Ajt is a solution. As 
j=1 

(
00 ) 00 1 - Ait -Akt _ 
Ld;a;e ,e - Ldia; A A 
;=1 ;=1' + k 

then we must prove that: 
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00 

But L: Gid;e-A,t E L2(0, (0) then 
i=l 

7 Another expression for the solution 
00 

The solution of minimun norm of the problem of order n <Pn(t) = L: dj(n)aj(n)e- Ajt 
j=1 

00 

can be written as <Pn(t} = L: "(j(n)e-A;t with "((n) = bi(n))l<i<n = DnGnDnc(n). 
~1 --

But DnGnDn = G;;l , then 

"((n) = bi(n))l~i~n = G;;lc(n), 

The goal of this section is to find an analogue expression for the solution <p(t). In 
section 5 we proved that there exists P(t) E £2(0, (0) such that 

n 

P(t) = lim P"l(t) = lim '" ci(n)ai(n)e-Ait 
n~oo n----t-oo L..,; 

i=l 
Then P(t) belongs to the clausure of the subespa.ce of £2(0, (0) generated by the 
system {e- Xit }. and P(t) can be developed in a Dirichlet series 

tEN 

00 

i=1 

But {e-Ait } iEN is a minimal system, then hi = aie;, Vi E N, 

00 

P(t) = E e;aie-A,t E £2(0,00). 
i=l 

( ) 
00 e;a. 

Then P(t) , e-Ajt = E ~ ~. converges and 
;=1 + 3 

do - I' do() - I' ~ cjaj(n) _ ~ cjaj 
,- 1m ,n - 1m ~ - ~ . 

n--+oo n--+oo 0 \ 0 + >. 0 • >. 0 + >. 0 

3=1 Ai J 3=1' J 
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_ 00 00 00 0"0' . 
Then <p( t) = .1: diaie-).it = E E ., 3 Cje-).i t • 

,=1 i=1 j=1 '\ + )..j 
If we define the operator DCD as the one generated by the infinite matrix 

( 0"0" ) ( a· ) )... • ~. and the operator CD as the one generated by the infinite matrix )... .)... 
• + J i,j • + 3 i,j 

00 

it follows that <p(t) = 1: (DCDc)ie-).it. 
i=1 
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CROWNS. 

A UNIFIED APPROACH TO STARSHAPEDNESS 

Fausto A. Toranzos 

Departamento de Matematica 

Universidad de Buenos Aires 

ABSTRACT: It ;s observed that many papers concerning starshaped sets 

have similar structure and objectives. Those papers usually deal with 

construction of the convex kernel, dimension of the kernel and 

Krasnose/sky-type theorems. Furthermore, the logical connections 

among these different topics are almost the same in the different papers. 

The aims of the present note are to exhibit these logical connections and 

to sketch a unified theory of starshapedness. A third implicit aim is the 

development of a brief survey of some aspects of this part of Convexity 

Theory. The main tool to obtain these objectives is the notion of crown of 

a starshaped set. 

1.- INTRODUCTION. 

More than thirty years ago, F. A. Valentine, in his classical book [15] on 

Convexity, posed several problems regarding starshaped sets. The first and 

more important two problems were: 
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(Po) Characterize the starshapedness of S in terms of the maximal convex 

subsets of S. (Problem 9.3 of [5]). 

(P1) Determine neccessary and sufficient conditions that the convex kernel of 

S have dimension a. ,where 0 s a. s d , and d is the space dimension. 

(Problem 1.1 of [5]). 

Problem (Po) was completely solved in [11] , but its solution provoked a similar 

and more general type of problem : 

(P2) Describe the convex kernel of a starshaped set S as the intersection of a 

certain family of subsets of S. 

In 1946 Krasnoselsky [8] proved that a compact set S c R" is starshaped if 

and only if for each subset of n+1 pOints of S there exists a point of S than can 

see via S all these points. This theorem, perhaps the most important result in 

the theory of starshapedness, suggested a new angle of research about 

starshaped sets and visibility. The results of this new approach are usually 

labelled as Krasnoselsky-type theorems, and provide answers to the following 

problem: 

(P3) Describe properties (related to visibility and starshapedness) of the set S 

by means of conditions upon each subset of k points of S, where k is an 

integer related to the space dimension. 

The literature on starshapedness and related matters includes scores of 

particular solutions of problems (P1) , (P2) and (P3) . We will mention some of 

those solutions in Paragraph 3. The main purpose of this note is to exhibit the 

logical connections among these problems. We intend to show that a solution 

to any of these problems can produce solutions to the remaining ones. 

2.- BASIC DEFINITIONS. 

Unless otherwise stated, all the points and sets considered here are included in 

a real locally convex linear topological space E. The interior, closure, 

boundary, convex hull and affine hull of a set S are denoted by int S , cl S , 



57 

bdry S, conv Sand aff S , respectively. The open segment joining x and y is 

denoted (x y) . The substitution of one or both parentheses by square ones 

indicates the adjunction of the correspondig extremes. The ray issuing from x 

and going through y is denoted R(x ~ y) , while R(y x ~) is the ray issuing 

from x and going in the opposite direction. All rays are considered closed. We 

say that x sees y via S if [x y] c S . The star of x in S is the set st(x,S) of all 

the points of S that see x via S. A star-center of S is a point XES such that 

st(x,S) = S . The kernel (convex kernel, mirador) of S is the set ker S of all the 

star-centers of S . Finally, S is starshaped if ker S is not empty. 

A crown of the starshaped set S is a collection 9t of .subsets of S whose 

intersection is ker S. If S is a starshaped set and 9t is a crown of S, a subcrown 

is a subfamily .3 c 9t such that .3 itself be a crown of S. A minimal crown of S 

is a crown that admits no proper subcrown. A covering crown of S is a crown 

whose union is S. A finite crown is one with a finite number of members. Any 

other qualification of the word "crown" (e.g.: convex crown, closed crown, etc.) 

indicates that the same adjective applies to each of the members of the. crown. 

That is, 9t is a Convex crown if and only if it is a crown and each of its members 

is convex. We are naturally inclined to try to prove, by means of a 

nonconstructive approach (Le. Zorn's Lemma, well ordering principle, or the 

like), a theorem that assures that every crown admits a minimal subcrown. 

Unfortunately, such a theorem would be false, as a counterexample given 

below shows. 

3.- EXAMPLES OF CROWNS. 

In this paragraph we consider seven examples of crowns already in the 

literature. We shall restrict our exposition -to the basic definition in each case, 

and the statement that identifies the crown considered. 

THEOREM 3.1 If S is a starshaped set, the family 9t = {st(x,S)I XES} is a 

crown of S. 
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No proof is needed here. This is just a different way to state the definition of the 

convex kernel of S. An interesting type of problem is to describe, in different 

environments and settings, a minimal subcrown of the crown just defined. 

Theorem 3.3 and Theorem 3.6, stated below, present two different approaches '.j 

in this direction. A convex component of S is a maximal convex subset of S. 

THEOREM 3.2 (Toranzos, [11]) If S is a starshaped subset, a covering 

family of convex components of S is a covering and convex crown of S. 

The original statement of this result refers to the family of all convex 

components of S, but the proof applies to the present statement. It is important 

to remark that both previous theorems omit any topological and/or dimensional 

requirement, either on the space or on the starshaped set S. 

The relative interior of a set M, denoted 'relint M', is the interior of M in the 

relative topology of aff M . A k-simplex is the convex hull of k+1 affinely 

independent pOints. A point XES is a k-extreme point if no k-simplex L\ c S 

exists such that x E relint S . Of course, in these two definitions k is not larger 

than the space dimension. The set of all the k-extreme pOints of S is denoted 

by extk S . 

THEOREM 3.3 ([6], [10]) Let S be a compact starshaped subset of Rd. The 

family 91 = {st(x, S) I x E extd_1S} is a crown of S . 

This statement was proved simultaneously and independently by Tidmore [10] 

and by Kenelly et al. [6] . It is easy to construct, even in R3 , counterexamples 

to show that the set of regular extreme points of S , that is extl S in the 

previous definition, is not enough to describe the convex kernel as intersection 

of its stars. 

The point y sees clearly x via S if there exists a neighborhood lftx of x such 

that lfLx c st(y,S) . The nova (or clear star) of x in S is the set nova(x,S) of all, 

pOints of S that see clearly x via S . A pOint XES is a point of' local convexity 
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of S if there exists a neighborhood Ux of x such that Ux (l S be convex. 

Otherwise, x is a point of local nonconvexity of S. The set of all points of local 

nonconvexity [local convexity] of S is denoted by Inc S [Ic S] . 

THEOREM 3.4 (Stavrakas, [9]) Let S be a compact connected subset of Rd . 

Then, the family of novae of points of local nonconvexity of S is a crown of S. 

This theorem has recently been generalized in Theorem 2.2 of [14] where the 

requirement of finite dimension is dropped, and the condition of compactness 

of S is substituted by that of Inc S. As we remark here, these improvements 

yield easily better results about the dimension of the kernel and new 

Krasnoselsky-type theorems. 

Let p and q be pOints of S. The point p has higher visibility via S than q if 

st(q,S) c st(p,S) . The visibility cell of pin S is the set vis(p,S) of all the pOints 

of S having higher visibiiity via S than p . Of course, p E vis(p,S) aiways. 

THEOREM 3.5 (Toranzos, [12]) Let S be a closed connected set such that 

Inc S be compact. The family of visibility cells of a/l paints of local nonconvexity 

of S is a convex crown of S . 

A simple smooth Jordan domain is a compact set S c R2 whose boundary is 

a simple closed smooth Jordan curve having a finite number of inflection 

points. 

THEOREM 3.6 (Forte Cunto, [2]) Let S be a simple smooth Jordan domain. 

The family of stars of the inflection points of bdry S is a finite crown of S. 

Let y E bdry S and x E st(y,S). We say that R(x ~ y) is an inward ray 

through y if there exists t E R(x y~) such that (y t) c int S . Otherwise, we say 

that R(x ~ y) is an outward ray through y. The inner stem of y in S is the set 

ins(y,S) formed by y and all the pOints of st(y,S) that issue outward rays 
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through y . A regular domain is a set 8 having connected interior and such that 

8 = cl int 8. 

THEOREM 3.7 (Toranzos, [13]) Let 8 be a nonconvex regular domain. Then 

the family .3 = {ins(x, 8) 1_ x E Inc 8} is a crown of 8 . 

EXAMPLE 3.8 Example of a crown without minimal subcrowns. 

Let 8 be a planar set consisting of three quarters of a circular disk, that is, 

using polar cordinates : 

Let 0 be the origin, p = (1,%) and q = (1,p). The convex components of S are 

the closed semidisks obtained by intersection of 8 with a halfplane limited by a 

line through 0 . Each of these convex components is characterized by the point 

of the arc [p-q1 where its limiting line intersects this arc. If x is a point of this 

arc, let Kx be the corresponding convex component. It is easy to verify that if L 

is a subset of the mentioned circular arc such that the points p and q are 

accumulation points of L, then the family 9lL = {Kx 1 x E L} is a crown of S . 

Consider now the family !ZJ of all the convex components of 8, with the 

exception of Kp and .I<q. Then !ZJ is a crown of 8 that has no minimal 

subcrown.O 

4.-REPRESENTATION AND DIMENSION OF THE CONVEX KERNEL. 

The natural way to begin a study on starshapedness is to prove a theorem of 

representation (or construction) of the convex kernel of a starshaped set. The 

format of such a theorem is : 
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THEOREM 4.1 Let S be a starshaped set with property <:P included in the 

space E with structure Q . Then the family 91 of subsets of S is a crown of S. 

Unless we determine explicitly the property (or properties) 'P , the structure Q 

and the family 91 , this statement is not a real theorem but a theorem-format 

i.e. a logical template that can be filled with real mathematical contents. All of 

the theorems quoted in the previous paragraph fit into this format. The proof of 

a theorem having this format is a particular solution of the Problem (P2) stated 

in the first paragraph. Once solved the Representation Problem of the convex 

kernel, the Dimension Problem, stated above as Problem (P1) , can be 

approached in the same way by means of another theorem-format. 

THEOREM 4.2 Let S be a set with property <Jl inciuded in the space E that 

has structure Q , and let 91 be a crown of S . Then dim (ker S) :2 a :2 0 if and 

only if there exists an a-dimensional flat F , a point x E relint (F II S) , and a 

neighborhood 'fIx of x such that for each M E 9t holds ('fIx II FilS) eM. 

Proof : The lif' part is simple since the definition of crown implies 

('It 'X II FilS) C M where the set between brackets has dimension a . For the 

converse implication it is enough to take F = aff ker S and x E relint ker S.O 

Let us now apply this theorem-format to the examples of crowns that were 

introduced in the previous paragraph. 

THEOREM 4.3 Let E be a locally convex linear topological space, and S a 

starshaped subset of E . Then dim (ker S) :2 a:2 0 if and only if there exists an 

a-dimensional flat F, a point x E relint (F II S) , and a neighborhood <fix of x 

such that V t E S , (<fix II FilS) c st(t,S) . 

Proof: This is just the conjunction of Theorem 3.1 and Theorem 4.2 .0 
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THEOREM 4.4 Let E be a locally convex linear topological space, S a 

starshaped subset of E, and m a covering family of convex components of S. 

Then dim (ker S) ~ a ~ 0 if and only if there exists an a-dimensional flat F, a 

point x E relint (F n S) and a neighborhood Ux of x such that V K E m holds 

(Cf4 n F n S) c K . 

Proof: Conjunction of Theorem 3.2 and Theorem 4.2.0 

THEOREM 4.5 Let E = Rd ,and S be a compact starshaped subset of E . 

Then dim (ker S) ~ a ~ 0 if and only if there exists an a-dimensional flat F , a 

point x Erelint (F n S) and a neighborhood Cfh. of x such that V t E extt-1 S 

holds (Cftx n F n S) c st(t,S) . 

Proof: Conjunction of Theorem 3.3 and Theorem 4.2 .0 

THEOREM 4.6 Let E = Rd and S be a compact connected subset of E. Then 

dim (ker S) ~ a ~ 0 if and only if there exists an a-dimensional flat F , a point 

x E relint (F n S) t;Jnd a neighborhood Cftx of x such that V t E Inc S holds 

(Cftx n F n S) c nova(t,S) . 

Proof: Conjunction of Theorem 3.4 and Theorem 4.2 . It is important to recall 

that precisely the present result was proved in [9] , where Stavrakas introduced 

the notion of clear visibility. 0 

THEOREM 4.7 Let E be a locally convex linear topological space and S a 

closed connected subset of E such that Inc S be compact. Then 

dim (ker S) ~ a ~ 0 if and only if there exists an a-dimensional flat F , a pOint 

x E relint (F n S) and a neighborhood Ux of x such that every point of 

(Ux n F n S) has higher visibility via S than each of the points of local 

nonconvexity of S . 

Proof: This is the conjunction of Theorem 3.5 and Theorem 4.2 .0 
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THEOREM 4.8 Let E = R2 and S be a simple smooth Jordan domain. Then 

dim (ker S) 2:: a 2:: 0 if and only if there exists an a-dimensional flat F , a point 

x E relint (F n S) and a neighborhood Ux of x such that every point of 

(Ux n F n S) see via S every inflection point of bdry S . 

Proof: Conjunction of Theorem 3.6 and Theorem 4.2 .0 

THEOREM 4.9 Let E be a locally convex linear topological space and S a 

nonconvex regular domain included in E . Then dim (ker S) 2:: a 2:: 0 if and only if 

there exists an a-dimensional flat F , a point x E relint (F n S) and a 

neighborhood Ux of x such that every point of (Ux n F (-, S) issues outward 

rays through each of the pOints of local nonconvexity of S . 

Proof: This is the conjunction of Theorem 3.7 and Theorem 4.2.0 

We have shown, by means of these seven examples, that any solution to the 

Problem (P2) of representation of the convex kernel by a crown yields almost 

inmediately, via the theorem-format 4.2, a solution to the problem (P1) of the 

dimension of the convex kernel. 

5.- KRASNOSELSKY-TYPE THEOREMS. 

Every theorem that fits into the theorem-format 4.1 of representation of the 

convex kernel by means of a crown is essentially a result about the intersection 

of a certain family of sets. The literature on Convexity has, in the finite

dimensional case, a large corpus of theory usually labelled as Helly-type 

Theorems, that deals with the intersection of families of sets and has a strong 

combinatorial flavor. The conjunction of this type of result with the theorems 

exhibited in the previous paragraph is highly deSirable, but a technical problem 

arises : Helly-type theorems usually refer to families of convex sets, while the 

members of a crown are not necessarily convex. The difficulty is solved by 

means of an auxiliary iemma whose proof is usually far from simple. 
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LEMMA 5.1 (K-Iemma) Let S be a set with property I]> included in the space 

E that has structure Q and 9l be a nonconvex crown of S. Let XES but 

x ~ ker S . Then, ::J M E 9l such that x ~ conv M [x ~ cl conv M] . 

This lemma implies inmediately that ker S is the intersection of the convex 

hulls [the closed convex hulls] of the members of the crown 9l . The use of the 

alternative enclosed in square brackets depends on the topological conditions 

of the crown considered. It is clear that this lemma is superfluous if the crown is 

convex, as in examples 3.2 and 3.5 above. We quote here for later reference 

the three most commonly used Helly-type theorems. 

THEOREM 5.2 (Helly,[4]) Let E = Rd and 9l be a finite family of convex 

subsets of E such that each subfamily of k members of 9l, with k s d+1 , has 

nonempty intersection. Then, the intersection of all the members of 9l is 

nonempty. The condition of finiteness of 9l can be dropped if it is required the 

compactness of all its members. 

THEOREM 5.3 (Grunbaum, [3]) Let E = Rd and 9l be a finite family of 

convex subsets of E. If N denotes the set of positive integers, we define a 

function 9 : NxN ~ N by g(n,1) = 2n , g(n,n) = n+1 , and if n > k> 1 then 

g(n,k) = 2n-k. Any other value of g(n,k) is irrelevant. The dimension of the 

intersection of all the members of 9l is greater than or equal to a if and only if 

the dimension of the intersection of every subfamily of 9l that has at most 

g(d,a) members is at least a . 

THEOREM 5.4 (Klee, [7]) Let E = Rd , 9l be a finite family of convex subsets 

of E and () > o. The intersection of all the members of 9l contains a ball of 

radius 0 if and only if for every subfamily of d+1 members of 9l, its intersection 

contains such a ball. As in Theorem 5.2, the finiteness of 9l can be dropped 

provided the compactness of all its menbers is required. 
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The knowledge of a crown for a 'certain class of starshaped sets, plus the 

previous theorems, produce three different Krasnoselsky-type theorem-formats. 

As we have observed at the beginning of thiis paragraph, either the crown 

considered is convex or it must verify a K-Lemma that follows the format of 

Lemma 5.1. 

THEOREM 5.6 (Krasnoselsky-type 1) Let E = Rd , S be a compact subset of 

E , and 9t be a crown of S that either is convex or verifies Lemma 5. 1. Then S 

is starshaped if and only if the intersection of every su,bfamily of d+l members 

of 9t is nonempty. 

Proof: Theorem 5.2 and, if needed, Lemma 5.1. The compactness of S can be 

substituted by the finiteness of the crown 9t .0 

THEOREM 5.6 (Krasnoselsky-type 2) Let E = Rd , S be a subset of E , and 

9t be a finite crown of S that eiiher is convex or verifies Lemma 5. 1. If N 

denotes the set of positive integers, define a function g: NxN -) N by 

g(n,1) = 2n , g(n,n) = n+1 , and for n > k> 1 g(n,k) = 2n-k . Any other value of 

g(n,k) is irrelevant. Then, S is starshaped and dim ker S ;;::: Ct if and only if the 

dimension of the intersection of each subfamily of g( d,u) members of the crown 

is at least u . 

Proof: Theorem 5.3 and, jf the crown is not convex, Lemma 5.1. In this case 

the finiteness of the crown is essential and admits no substitution by any 

compactness condition.O 

THEOREM 5.7 (Krasnoselsky-type 3) Let E = Rd , S be a compact subset of 

E , and 9t be a crown of S that either is convex or verifies Lemma 5. 1. Then S 

is starshaped and ker S contains a ball of radius 0 > 0 if and only if the 

intersection of each subfamily of 9t having at most d+1 members contains a 

ball of radius 0 . 
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Proof : Theorem 5.4 and, if needed, Lemma 5.1. Once more, the· compactness 

of S can be substituted by the finiteness of the crown.O 

These three theorem-formats combined with the seven types of crowns 

described in Paragraph 3 can give rise to twenty one Krasnoselsky-type 

theorems. Some of those results are already known. M. Breen (in [1] and other 

papers) has derived several Krasnoselsky-type theorems from the Stavrakas' 

crown described in Theorem 3.4. The theorem that can be obtained by the 

conjunction of Theorem 3.1 and Theorem 5.5 is the original 1946 

Krasnoselsky's Theorem [9]. The nine Krasnoselsky-type theorems that can be 

derived from Theorems 3.5, 3.6 and 3.7 have already been proved in the 

papers ([12], [2] and [13]) where the respective crowns were described. As an 

example we state the theorems that can be derived from the crown described in 

Theorem 3.2. 

THEOREM 5.8 Let E = Rd , S be a subset of E , and 91 be a covering family 

of convex components of S. Then Sis starshaped if and only if every d+1 

members of 91 have non empty intersection. 

THEOREM 5.9 Let E = Rd , S be a subset of E , and 91 be a finite covering 

family of convex components of S. if N denotes the set of positive integers, 

define a function g: NxN -) N by g(n,1) = 2n , g(n,n) = n+1 , and for 

n> k> 1 g(n,k) = 2n-k. Any other value of g(n,k) is irrelevant. Then, S is 

starshaped and dim ker S 2 a if and only if the dimension of the intersection of 

each subfamily of g(d,a) members of 91 is at least a . 

THEOREM 5.10 Let E = Rd , S be a subset of E, and 91 be a covering family 

of convex components of S. Then S is starshaped and ker S contains a ball 

of radius 0 if and only if the intersection of each subfamily of 91 that has at 

most d+1 members contains a bail of radius o. 
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6.- CONCLUDING REMARKS. 

In the previous sections we have shown that once proved a theorem about the 

construction of the convex kernel that fits the format of Theorem 4.1 and, in the 

case that it would be necessary, a K-Lemma like 5.1, the whole 

Starshapedness Theory including theorems about construction and dimension 

of the kernel and Krasnoselsky-type theorems follows easily. The main tool in 

this development has been the idea of crown of a starshaped set. We claim 

that this notion is worthy of systematic study. The study of minimal crowns 

generated by some of the known types of crowns seems specially promising. 

In the Krasnoselsky-type theorems that fit the theorem-format 5.6 , sometimes it 

is possible to obtain a slight improvement if the analogous theorem of 

Katchalsky [5] is substituted instead of Grunbaum's Theorem 5.3. The 

application of different Helly-type theorems and/or adimensional theorems 

regarding intersections of convex sets to the present approach remains to be 

studied in the future. 
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Abstract: In IRn, given, E [0, n) andp E (1, nh), it is well known that wq E Ar, 
with 1/q = lip - ,In and r = 1 + q7' is a necessary and sufficient condition 
for the boundedness of the Maximal Fractional Operator M"( between LP( wP) and 
Lq(wq) spaces. In this work we study the dependence of the operator norm on the 
constant of the Ar condition. The result extends the obtained by S. Buckley for 
the Hardy-Littlewood Maximal Function (i.e.: ,= 0). 

§1. 

Let p, be a positive Borel measure in IRn. For each I in (0, n), the fractional 
maximal operator M"( with respect to p, is defined by 

(1.1 ) 

for IE L}oc (dp,), where the sup is taken over all cubes in IRn containing x. It is 
well known that for each pin (1, ni,) there exists a constant C, independent of 
I, such that the inequality 

(1.2) 

holds with 1 I q = 1 I p - I I n for every I in LP (wP dp,) if and only if w is a weight in 
the A (p, q) class with respect to p" that is, w is a non negative function satisfying 

* The authors were supported by: Consejo Nacional de Investigaciones Cientificas y Tecnicas de la 

Republica Argentina. 

Keywords and phrases: Lebesgue spaces operators norm, Fractional maximal function, Theory of 

weights, Weighted norm inequalities. 

1991 Mathematics Subjects Classification: Primary 42B25. 
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where the sup is taken over all cubes in lRn and p' = pI(p-l). From the classical .. t'. 
proofs of the above result, it can be obtained that the constant C in (1.2) depends 
on Kw,q,p, but they do not show explicitly the dependence. In 1993, S. Buckley 
([B]) solved the problem for the Hardy-Littlewood maximal function (i.e.: 'Y = 0 
in (1.1)). The purpose of this work is to extend that result to the general case of 
the operator in (1.1). Actually, our main result is the following theorem. 

(1.4) Theorem: If 0 :s; 'Y < n, 1 < p < nh, l/q = lip - 'YIn and W M a 
nonnegative function on IRn such that, for every cube Q, (1.3) holds, then 

The power K~,~~;::;) is the be.st possible. 

As it can be seen in §2, our techniques to prove the above theorem are extensions 
of those used by Buckley in the case 'Y = O. An important point in order to 
obtain these extensions is to recall the obvious relation between the A (p, q) classes, 
defined as in (1.3), and the Muckenhoupt's classes Ar with respect to {t. In fact, 
since a weight w is in Ar , 1 < r < 00, when 

where the sup is taken over all cubes in lRn , it is clear that w belongs to A (p, q) 
if and only if w q belongs to A1+q/p" with p' = pl(p - 1). Moreover, we have 

Bw. ,I+q/p' = KYv,p,q' 

§2 
As in the case 'Y = 0, we are going to prove theorem ( 1.4) by using an argument 
of interpolation. For this reason, let us first to state the following version of the 
Marcinkiewicz's interpolation theorem with respect to a positive Borel measure {t. 

(2.1) Theorem: Suppose that a quasi-linear operator T is simultaneously of weak 

types (PI, qd Y (p2, q2), 1 :s; Pi, qi :s; 00, ql i=- q2, with norms Ml y M2 respectively 

(i.e.: {t({x : Tf(x) > a}) :s; (~llfIILP.(dll)f', i = 1,2). Then for any (p,q) 

with 

~ = ~ + (1 - t) 1 t (1 - t) -=-+---, 0< t < 1, 
p PI P2 q ql q2 
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the operator T is of strong type (p, q), and we have 

Proof See [Z], p. 111, vo1.2 .• 

(2.2) Remark: From the proof of ( 2.1) in the case PI S P2 Y ql < q2, it follows 
that 

To apply the above theorem we need weak type inequalities for M"( . They wIll be 
given by the next two results. The first one was proved by S. Buckley and provides 
an estimate concerning a known property of Ar classes. The proof of the second 
one is due to B. Muckenhoupt and R. Wheeden ([MW)). However, accordingly to 
our purpose, here we are going to examine carefully that proof in order to obtain 
a more precise conclusion. 

(2.3) Theorem: If w satisfies Ap then w satisfies Ap-e with c '"'-J B~-:{ and 
Bw,p-e S CBw,p, where C= C(n,p). 

Proof See [Bl, p. 255, lemma 2.1.. 

(2.4) Theorem: If O:S; 'Y < n, 1 < p < nh, 11q = lip - 'YIn, 0: > 0, EO/ is the 
set where M"(f> 0:, and w is a nonnegative fu.nction on mn satisfying (1.;)) then 
there is a C , independent of f , such that 

(2.5) 

Proof Fix M > 0 and let EO/,M = EO/nB (0, M). It is clear that for each x E EO/,M 
there exists a cube Q containing x such thai 

Using Besicovitch.'s theorem we can choose a sequence {Qd of these cubes such 
that Ea,M C UQk and no point of mn is on more that C = C (n) of these cubes, 
i.e. E XQk S C. Then, since pi q S 1 and w satisfies (1.3), we have 



72 

::; ]{!:',p,qC (r IflPwPdp) 
a P JIRn 

Finally, letting M -t 00 we get (2.5) .• 

Now, we are able to proceed with the proof of our main result. 

Proof of Theorem ( 1.4): In the next, for the sake of simplicity, we are going to 
denote ]{w,p,q by ]{. As we said in §1, the fact that w satisfies (1.3) implies wq 

belongs to Ar with r := 1 + q/p' and Bwq,r = ]{q. Then, from (2.2), there exists 

c; rv ]{q(l-r') such that wq belongs to As with s =r - c; > 1 and Bwq,s ::; C]{q , 
C = C (n,p, q). Now, we choose numbers PI and ql such that 1 < PI < p, l/ql = 
l/Pl - 'Y /n and s = 1 + qdp~· So wq/ ql satisfies A (PI, qI) with ]{wq1ql,Pl,ql < 
C]{q/ql, C = C(n,p, q). Then, by theorem (1.4), 

(2.6) 

By defining Tg(x) = M"{ (gv::;' (x)), with v = w q ,and taking f = gv::;' (x), it is 
clear that (2.6) can be written in the form 

(2.7) 
!l. r v dp ::; C ~: (r n IglPl VdP)· Pl 

J{Tg(x»a} a JIR 
In the following step of the proof we shall asume c; ::; l n~"{ • This hypothesis can 

be ensured by taking c; min (1, i n~"{) instead of the original c; in the choice of PI 

and ql (note that this change preserves the relation between c; and K ). Now, we 
can pick q'l. and P2 such that l/q - 1/q2 = l/ql - 1/q and l/q2 = llp2 - 'YIn. 
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It is clear that 1 + q2/p~ > 1 + q/p', so, v E A1+q2/P~ with BV,1+q2Ip~ :=:; CKq 
C = C(n,q,p). Then, by reasoning as before, we get 

(2.8) 

Since there exists t E (0,1) such that 

! = ~ + (1 - t) and 
p PI P2 

1 t (1 - t) 
-=-+--, 
q ql q2 

theorem (2.1) allows us to obtain, from (2.7) and (2.8), the inequality 

(2.9) 

where C = C(n,p,q) and H is as in (2.2). From our choice of ql, P2 and q2 and 
the assumption on e, we have 

en 
ql =q- --, 

n-,,( 

q en 2 
- qqI _ - n=:y < q _ 2 

q2 - 2' - q 2en - 2 /4 - q, ql - q q - n-,,), q - q 

nq2 
P2 =:=:; 2q. 

n + ,,(q2 

Then, H can be estimated as follows 

The above inequality, (2.9) and the fact that e '" Kq(l':"'r') allow us to obtain 

IITglllq(v) :=:; CKqr' Ilglllp(v) = C Kq(~)llglllp(v)' 
with C = C(n,p,q). Finally, (1.5) follows from the definition of T by taking 
g=fw-q ::;; andv=wq . 

To see that the power of Kin (1.5) is the best possible, we give an example in IR 
(a similar one works in IRn for any n). Let r = 1 + q/p', where p and q are as in 
the hypothesis of the theorem, and (j belonging to (0,1). By a simple computation 
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(r-l)(1-6) 1-r 

we can see that w(x) = Ixl q satisfies A(p,q) with Kw,p,q ~ o-q-, when f..L 

is the Lebesgue measure. Then, from (1.5) with this weight, we have 

(2.10) 

Now, we take f (x) = Ixl(o-l) X[O,l) (x). It is not difficult to prove that 

C 
M .. rf(x) 2:: (; Ix I')' f(x), 

for every x E 1R, where C is independent of o. Then, the above inequality and the 
fact that Ilflllp w P = o-q/p allow us to get the estimate , 

where C is independent of o. Finally, we complete the proof by combining the 
above inequality with (2.10).-
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ABSTRACT. A completely mixed bimatrix game (A, B) has a uniqne equilibrium 

strategy. The values of this game for ~ach play~r, a.r~ d~fined by VI = x T Ay and 

V2 = xT By where (x, y) is an equilibrium strategy. We give a formula for computing 

the completely mixed equilibrium strategy when the bimatrix game has zero-value. 

1. INTRODUCTION 

For the zero~sum tVlo-person games Kaplansky (1945) introduced the notion of 

completely mixed strategies and showed that in games where both players have only 

completely mixed optimal strategies, the payoff matrix is square and each player 

has a unique optimal strategy. Raghavan (1970) extended this result to the non

zero-sum bimatrix games. Also Kaplansky (1945) gave a necessary and sufficient 

condition on the payoff matrix for a game of value zero to be completely mixed. He 

showed that if the value of a game is different from zero, then the payoff matrix is 

nonsingular and gave a formula for computing this value. Jansen (1981a, b) showed 

that in completely mixed bimatrix games with A > 0 and B < 0, the matrices A 

and Bare nonsingular. He also extended the formulas for computing equilibrium 

strategies and the values for completely mixed bimatrix games. 

lInstituto de Matematica Aplicada San Luis, U niversidad N acional de San Luis. Ejercito de los 
Andes 950, 5700-San Luis-Rep. Argentina. 
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Completely mixed bimatrix games have unique equilibrium strategies. The value 

of these games are defined to be the payoffs that the player receive when they play 

equilibrium strategies. In this paper we try to see how far the results can be extended 

to bimatrix games with zero value. 

2. GENERAL RESULTS 

A bimatrix game with m pure strategies for player 1 and n pure strategies for 

player 2, where 1 ~ m, n < 00, is specified by two real m x n matrices A and B. If 

player 1 chooses pure strategy i and player 2 chooses pure strategy j, the payoffs t~ 

players 1 and 2 are ai,j and bi,j respectively, for i = 1, ... ,m, and j = 1, ... ,n. Let 

Pn = {x E ~n : Xj 2': 0, i = 1, ... ,n, and t Xi = I} 
.=1 

and P': = {x E Pn : Xi > 0, i = 1, ... ,n}. Vectors are assumed to be column vectors, 

and T denotes transpose. The vectors in Pn are called mixed strategies and denoted 

by x 2: 0 where 0 = (0, ... ,0). The vectors in P': are called completely mixed 

strategies and denoted by x> o. A pair (x,y), where x E Pm and y E Pn is defined 

to be a equilibrium strategy of the game specified by (A, B) if 

for all ~ E Pm 

for all 'fJ E Pn 

Nash (1950) proved that this equilibrium strategy exists. Let E be the set of all pairs 

of equilibrium strategies. We say that E is completely mixed if the elements of E are 

completely mixed pairs. Let (x, y) E E be v(x, y, A) = xT Ay and v(x, y, B) = xT By 

are called equilibrium values of the bimatrix game (A, B). 

Let 

S(y) = {x E Pm: (x,y) E E} 

T(x) = {y E Pn : (x, y) E E}. 

We say that S(y) is completely mixed if all elements of S(y) are in P:;. A similar 

definition applies for T(x). 
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Theorem 1 If the set e is completely mixed and v(x, y, A) = v(x, y, B) = 0 then 

z. A and B are square matrices and rank(A) = rank(B) = n - 1 

ii. Ai,j, Bi,j denotes the cofactor of a;,j and bi,j' Then there exists an i with 

1 ~ i ~ m such that Ai ,l,"" Ai,n are different from zero and have the same 

sign. There exists a j with 1 ~ j ~ n such that B1,j,"" Bn,j are different 

from zero and have the same sign. 

uz. E;,j A,j i- 0, and E;,j Bi,j i- O. 

Proof. The necessity of (i) is an immediate corollary to Theorem 1 and 4 from the 

paper of Raghavan (1970). 

Let (x, y) be completely mixed equilibrium strategy. Let A;,j be the cofactor of 

a;,j' Since x > 0 and (x, y) E e implies that 

Ay=O. 

Then 

Y1 Y2 Yn (1) Ai,l - Ai,2 - ••• - A;,n' 

Since rank(A) = n - 1 then there exists i,j such that A',J is different from zero. 

As y is a completely mixed strategy this implies in (1) that for i = z, and for all j, 

A"j have the same sign. A similar remark applies to B. Hence the necessity of (ii) 

is proven. 

Since rank(B) = n - 1 then rank(cof(B)) = 1 where cof(B) is the matrix in 

which the (i,j) elements are the cofactors for bi,j' Without loss of generality we 

assume that the cofactor of bn,n, Bn,n i- 0, then 

n-1 
b1,1 b1,n-1 Et·b1 . 3 ,3 

j=l 

B= n-1 
bn- 1,1 bn- 1,n-1 E t jbn- 1,j 

j=l 
n-1 n-1 n-1n-1 
E(-A;)b;,l E( -A;)bi,n-1 E E( -Ai)tjb;,j 
;=1 . ;=1 ;=1 j=l 
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and 

-tn- 1 An-1 Bn,n 
-tn- 1Bn,n 

where Ai = Xi/Xn. If E Bi,j = 0, implies that 
i,j 

n n n n n n 

E E Bi,j = E E Ai( -tj)Bn,n = Bn,n E Ai E( -tj) = 0 
;=1 ;=1 i=l j=l ;=1 j=l 

where tn = -1, then 

n n-1 

E(-tj) =0 or E(-tj) = l. 
j=l 

Since the system 

j=l 

I: {wTBw = OT 
~O 

has a solution x, we '11 show that the system 

(where 1 is the column-vector of length n with every element equal to 1) has a 

solution. In fact, ifthe system (II) has not a solution, by Alternative Theorems (see 

Mangasarian book, page 34, Table 2.4.1) then (by Theorem (6) Farkas) the system 

II(l) : { Bz ::; 0 
IT z > 0 

has a solution z. Therefore the system 

has a solution s = -z. 

It suffices to analyze three different case: 

a) If s fulfills that 

Bs> 0 

then (by Theorem 5 (Gordan)) the system (I) has not any solution. This is a 

contradiction. 
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b) If s fulfills that 

Bs=O 

since rank( B) = n - 1 and tT = (tt, ... , tn-I, -1) fulfills that Bt = 0 and 

then t = cs, but 
n n 

0= Ltj = c LSj # O. 
j=l j=l 

This is a contradiction. 

c) From a) and b) there exists i l and i2 such that 

L bi1 ,jSj > 0 
j 

and "b· 'S' - 0 L.J ~2,j J -
j 

Let 

and 
j j 

We denote by B II (B 12 ) the submatrix of B formed by the row i E .h (i E h). 

Then S is a solution of system 

but (by Theorem 2 (Motzkim)) the systems 

has not any solution. This is a contradiction since VII = Xlt, fh2 

Xh = {Xi: i E Id and Xh = {Xi: i E Id) is a solution of this system. 

From a), b) and c) the system (II) has a solution. Let v a solution of systems 

(II), and v = vi L.i Vi. It is clear that v E Pm and is different from x. 

Finally, we are showing that (v, y) E E. 

for all ~ E Pm 

it holds true because Ay = O. 

for all 'I] E Pn 
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it holds true because fjT B = IT. 

Thus (x, y), (ii, y) E E. This contradicts that a completely mixed bimatrix game 

has a unique equilibrium strategy. Hence Ei,j Bi,jf. O. 0 

Corollary 1 If the set E is completely mixed and (x, y) E E then 

detA 
v(x,y,A) = E .. k. 

t,) ttl 

detB 
and v(x, y, B) = E .. B- . 

t,) I,) 

the denominator is always different from zero.' 

Proof. By Theorem 4 of Raghavan (1970) we easily s~e that the pajr (x., y) is a 

unique equilibrium strategy. Let 

v(x, y, A) = Vl and v(x, y, B) = V2 

then the game (C,D) given by 

andd;,j = bi,j - V2 

is completely mixed, (x, y) is equilibrium strategy and 

v(x,y,C)=O and v(x, y, D) = 0 

In particular by Theorem 1 det(C} == det(D}= O. 

det(C) = det(A) - Vl LAi,j and det(D)= det(B)- V2 L Bi,j 
i,j 

By Theorem 1 LCi,j f. Oand L Di,j f. O. The case Vl = 0 or V2 ~ 0 obviously 
iJ i,j 

need not be considered. Hence we have det(A) f. 0 and det(B) f. o. 0 

Proposition 1 If for the bimatrix game (A, B) there exi$t Vl; t12 such,that, for any 

(x,y) E E, 

Ay = v1l 

and if (i) and (ii) of Theorem 1 hold true, then E is compMteiyinixed.· 
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Proof. By hiphotesis A is square, rank(A) = n - 1 and there exists i such that 

(Ai,l, ... ,Ai,n) have the same sign. Then the vector fj (f}j = A,j / L A,k) belongs to 
k 

P;;. Similarly we choose x E P;; (Xi = Bi,i/ L Bi,k). It is clear that (x, fj) E [. and 
k 

v(x, y, A) = v(x, fj, B) = O. Since x > 0, it follows that if y* E T(x) then Ay* = O. 

But rank(A) = n - 1 assures us that y* =fj and y* > O. Let (x, y) E £, then there 

exists VI, V2 such that 

Thus (x,y),(x,fj) E E. By the argument above we have x x,y fj and 

x> O,y >0. D 

Jansen, M. J. M. (1981a) "Regularity and Stability of Equilibrium Points of Bimatrix 

Games" Math. of Oper. Res. vol 6N°4 pp.530-550. 

Jansen, M. J. M. (1981b) "Maximal Nash Subsets for Bimatrix Games" Naval Res. 

Logist. Quart. 28 pp.147-152. 

Kaplansky, I. (1945) "A Contribution to von Neumann's Theory of Games" Ann. 

of Math.,46 pp.474-479. 

Mangasarian, O. L.(1969) "Noil !.inear Programming" McGraw-Hill, New York. 

Raghavan, T. E. S. (1970) " Completely Mixed Strategy in Bimatrix Games" J. 

London Math. Soc. 2 pp. 709-712. 

Recibido en Agosto 1995 





Revista de la 
Union Matematica Argentina 
Volumen 40, 1996. 

ON THE MEASURE OF SELF-SIMILAR SETS II 

PABLO PANZONE 

ABSTRACT. In §1 we show a condition for H!(Kb) > 0 for almost all b = (b1, ... , b.e) E 
.e 

Rnl where Kb = i';;1'I/Ji(Kb) and 'l/Ji are similitudes, 'l/Ji(X) : R n -> R n defined by 

'l/Ji(X) =ki Aix + bi, Ai an orthogonal matrix, 0 < ki < 1/3, bi a vector of Rn . 
.e 

In §2 we give a (geometrical) criterion for a set K = u 1/Ji(K) to be HS(K) = 0 
,=1 

if the Hausdorff dimension is equal to its similarity dimension. 
l 

In §3 we develop a method for calculating the measure of K = .U i/ii(K) \vhen 
1.=1 

K meets certain conditions, generalizing a method shown in [7]. We also calculate 
dimensio'ns of sets K such that their dimensions do not coincide with their similarity 
dimensions. 

Finally we give some examples (Sierpinski sets with overlapping). 

§1 
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Let 'l/Ji(x),i = 1, ... ,£, be similitudes inRn i.e .. 'l/Ji(x) : Rn ~ Rn, 'l/Ji(.r,) 
kiAix + bi with 0 < ki < 1, Ai an orthogonal matrix and bi a vector. Let b 
(b l , ... , bE) ERnE and let Kb be the (unique) compact set such that 

(0) 

The following theorem is due to Falconer 

Theorem 1 [1]. Ifmax ki< 1/3, then the Hausdorff dimension of Kb is in! (n, s), 
where E;=I kf = 1, for almost all bERnE in the sense of the Lebesgue measure 
£nE. 

The number s, E;=I kf = 1, is usually known as the similarity dimension of Kb. 
In this paragraph we assume that {max kd < 1/3 and b E A :={ a E RnE:Ka 
has Hausdorff dimension s with E~=I kf = 1}. 

It is easy to show that 1{S(Kb) < 00 for bE A (see [3] pg.122). 
One natural question is to ask whether 1{s (Kb) > 0 for b E A. (It should be 

noted that if 'l/Ji are affine contractions instead of similitudes then 1{S(Kb) may be 
infinite, cf. [4].). 

We prove 
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Theorem 2. Let 9 := {min ki } and a := {max kilo Suppose 

(1) 
( 2109 g) 

£ log G . gn < 1 == £2.an < 1 

Then 'HS(Kb) :-0. 0 for almost all bEnnE. 

Condition (1) right implies that the similarity dimension is less than n and there
fore by theorem 1, A is almost all nnf.. That both formulas in (1) are equivalent 

follows from taking logarithm to the left hand formula i.e. log [g( ~~~gJ) gn] < 0' == 
i~: bl09 £2 + n log 9 < O. Multiply this last expression by ll~~~' getting the right 
hand formula. 

We recall a theorem of McLaughlin [5], generalized by Falconer [2], which we 
shall use. It should be noted that theorem 3, lemma 1 and corollary 1 are true 
without assuming {max ki } < 1/3 or b E A (or both). 

Theorem 3 [2]. Suppose that Kb has the following property: there exist a natural 
number m and 0: ,To> 0 such that for any set N C Kb with INI < To there are sets 

m, 
N j with N c ,U N j and mappings !pj: Nj --t Kb (1 ~ ) ~ m) sllch that 

J=1 

(d(.,.) is the euclidean distance) 

for :C, y E N j . Then 'HS(Kb) > O. 

To prove Theorem 2 we need 

Lemma 1 [6]. Fix b. If'lj;'i(Kb) n 'lj;j(Kb) = 0 fOT i i-) then 'HS(Kb) > 0 

Proof. 

One can use theorem 3 or one can notice that Kb satisfies an open set condition. 
See [3] • 

Let C(K) denote the convex hull of a subset K of Rn. Let i j be natural numbers 
such that 1 ~ i j ~ £. I stands for a finite tuple of such ij i.e. 1= i1 ... im , and III 
denotes the length of such a tuple. We write for short 'Ij; I (.) = 'lj;il ( ... ('Ij;i"" (.)) ... ). 

Given I,J two tuples, we say that I is a curtailment of J (we write I ~ J) iff 
I = i 1 . , . im, ; J = i 1 ... im, , )m+1 ... )S, s ~ m. It is not difficult to see that ~ 
defines a partial order in the set of all finite tuples. 

Corollary 1. Suppose Kb has the following property: there exists a finite family 
of tuples F (not necesarily of equal length) such that 

(i) For any l' , WI ~ ry~JIJI, there exists I E F such that I ~ I' (F is secure). 

(ii) 'lj;I(Kb) n V;J(Kb) = 0 for any pair I, J E F with i1 i- )1 
. Then we llave 'HS(Kb) > O. ' 
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Proof. 

Suppose p E VJ-i(I{b) 1 ~ i ~ e, say p E 'lPI (Kb). Choose an index I' = li/2 ... i' m 

such that WI = '7E?jIJI and p E 'l/Jl'(Kb). Therefore by (i) we have an index IE:F 

such that I ~ I' and p E 'lh(Kb) :J 'lj)F(Kb) with I = 1i~ ... i~(j~m)' A similar 
argument and (ii) shows that p tJ. 'lPi(Kb) , 1 ~ ii-I ~ e i.e. 'l/Jl(Kb) n'l/Ji(Kb) = 
f/J Vi i- 1. By lemma 1, HS(Kb) >0 .• 

Proof of theorem 2. 

Let bo E gn.f.. There is no loss of generality if we assume 0 E Kbo ' Let Qbo be 
a cube in gn.f. centered at bo , £nf.(QbJ ~ 1. Therefore IKb U {O}I < Co, for some 
constant Co if b E Qbo ' This is possible since Kb = {bil +ki1 Ail bi2 +kil ki2Ail At2bi3 + 
... : ij E {I, ... ,e}}. We will show that HS(Kb) > 0 for almost all bo E Qbo ' This 
will prove our theorem. 

Let Qt = {(e - 1) - tuples (b1, ... ,bj , ... ,bf.) : b E Qbo }' Fix 0 a large 
natural number and :Fo be the set. of all tuples I = i 1 ... im such that gO < 
kil ... kim_l and kil ... kim ~ gO. Then:Fo has property i of corollary 1 and 
Kb = U 'l/Jr(Kb) for all b. Let 

rEre> 

(2) 

and 

2.:: (b) : = bil + kil Ail bi2 + ... + kil ... kim_l Ail' .. Aim_l bim 
r 

= 'l/Jr(O) 

( log g) 

The number of elements of :Fo is not greater than Cl . e \0 
log G where Cl ~ e. 

Let I, J E :Fo ; i1 i- ]1. We want to measure AIJ := {b : b E Qbo and Tr(b) (l 
TJ(b) i- f/J}. Let bE AIJ. Then 

! 2.:: (b) - 2.:: (b) I = l'l/Jr(O) - 'l/JJ(O) I ~ i'l/Jr(Kb U {O}) U 'l/JJ(Kb U {O}) I 
r J . 

(3) ~ l'l/Jr(C(Kb U {O})) U 'l/JJ(C(Kb U {O})) I ~ 2cogO 

Therefore if b, b' E ArJ and 

b = (bl, ... ,bil-I, bi1 , bil +1> ... ,bi) 

b' = (b1, ... ,bi1-1,b~1,bil+1, ... ,bf.) 

Then from (3) and (2) and i 1 i-]l we get 
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with 

Combining this last two inequalities we get Ib i1 -b;'1 I ~ C2·g0 with C2 d(~pending 011 h:i. 

and Co. Therefore projecting along the axis 'i 1 we have £nf(AIJ) ~ C:3£,,(1'--1) (Q;/ ). 
gO.n ~ C3 . gO." with C3 depending on k:i , Co and n . " 

If b 1:- { _U.. AIJ} then Kb has property ii) stated in Corollary 1 and lIWll 
I,JEfa ;1,,#.11 

}(S(Kb) > O. But the number of pairs (IJ) 1,J E Fo ,i1 :f.h, is not g[(~at(T thall 
log g 

20--

CI . e log G. Therefore the set { , U.. A lJ } has (outer) nwasurc at most 
] ,.lETa; '/.] i.1J 

,oj. C3 . (g". I e~;q g) )" a.~d thi~ t.end~ '0 "'0 by hypothesis if 0 ~ 00. The 

theorem follows .• 

§2 

f 
Let K be a self-similar set i.e. K = U 4J, (K) where 'I/J, are silllilitlld('s of ratio 

.,,=1 

o < k:i < 1, K compact. Recall that }(' (K) < 00 if .s is the similaritv dillWllSioll 
(cf [3] pg.122). Assume that the Hausdorff dimellsion of J{ is (~qllal to its silllilari jy 

dimension. Under such hypothesis we want to give some geollldrical criterioll for 
1ts (I<) = 0 . This is proposition 1 below. To prove it we need SOIlH~ toob. TIH' 

following function 1(6) has been defined in [7] for K, .'j as abow . with tlw ('xtra 
condition 0 < 1tS (K): let, for 6 > 0, 

1 (6) : = .sup{1ts (K n Co) / 6s : Co i.s (). conve:r e(YII/pad .set of r/io'flld c/' !J } 

In [7] it was proved that f(6) ~ 1 for all 6> 0 (see abo §3 of this paper). 
\Ve follow the notation of the proof of theorem 2, Fo being the S(~t of all tuples 

1 = il ... im, such that gO < h:'1 ... h:i",_1 and 

(4) 

Recall K = ,U 7fJI(K). Write for short T] := C(4JI(K)). 
lETa 

Let h(O) :=the maximum Humber of elements h .. . 1'1 E Fo such that 

(5) 

The function h( 0), roughly speaking, measures the overlapping of the sets of ap
proximately equal diameter 'l/JI(K), 1 E Fo. 



87 

Proposition 1. If the Hausdorff and similarity dimension of K are equal to s then: 
1-{S(K) = 0 ¢:=::? lim h(O) = 00 

0-+00 

Proof. 

=}) Suppose lim h( 0) ::::; f3. Therefore if 0 is any large natural number then 
0-+00 

by definition of h(O) any set N such that N c K, gO+1 < INI· IKI ::::; gO can be 

decomposed in at most f3 sets Nj = 'l/JIj (K) n N with I j E Fo i.e. N c YNj . Apply 

theorem 3 with 'Pj = 'l/JiI. 
J 

¢=) Suppose lim h(O) = 00 and 1{S(K) > O. Then we are in condition to 
0-+00 

define the function f(8) as above. Also observe that 1tS('t/Ji(K) n't/Jj(K)) = 0 for 
1 ::::; i =1= j ::::; e and therefore 1-{S('t/Jr(K) n 't/JJ(K)) = 0 if 1=1= J E Fo· 

. By definitiorrof h(O) there exits II ... h(o) such that d(TIilTlj)::::; yOIKI. 
Let Coo = {x : d(x, TIl) ::::; 2g0IKI}. 
Therefore (by (4)) Coo contains TIl>"" Th(C)) and has diameter 80 ::::; 5· gO ·IKI. 

Therefore, since 1-{S(1/JI l (K) n 1/JI.CK)) = 0 we have 

S h(O){, min 1{S('t/JI.CK))} 
1 >- f(8 ) >- 1-{ (K n CoJ >- >=1...h(O) >- (b 4) >-

?" o?" 88 ?" 5sIKIs Os ?" Y r 
o 9 

>- h(O)1-{S(K)gS 
?" 58 1KI8 

This is absurd taking 0 -+ 00 • 

§3 
e 

In this section we assume K to be a self - similar set, i.e. K = .U't/Ji(K) , 't/Ji 
>=1 

a similitude of ratio 0 < ki < 1. In [7] a method was given which permits to 
approximate the Hausdorff measure of 1-{s (K) assuming that: 

(i) 0 < 1-{s (K) < 00 

(ii) K has property A (see below) 
e 

(iii) L k:= 1 i.e. the Hausdorff dimension of K is equal to its similarity 
i=l 

dimension. 
In this section we want to generalize this result by dropping condition iii). Recall 

thatJor a self similar set K satisfying conditions i) and iii) one must have 1-{s ('t/Ji(K)n 
't/Jj(K) = 0 Tli =1= j j 1 ~ljj ::::; e. 
Theorem 4. Assume K to be a self similar set and 0 < 1-{8(K) < 00. Define 

f(8) := 

Then f(6) ~ 1 Tl6> O. 

. sup 
C6 convex 
compact 

of diameter 0>0 
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. Proof. 

If the Hausdorff dimension of K is zero then K has to be a point (if K had two 
points at least then being K a self similar set defined by similitudes then it should 
have infinite points. This would contradict 1l0(K) < 00 ). The theorem is true in 
this case. 

Therefore we assume s > O. Suppose 1-lS(~8nC6) = 1-l"f~18C6) ~ (3 > 1 for some 

Co convex and compact. Moreover one can assume IK n aCol = ICol = 8. Let 
00 

An = U 'lfJI(K n Co). Therefore An+1 C An. Let A = .n Ai. For A we have 
III~nt=l 

1{S(A) > 0 or 1{S(A) = O. 
Assume 1{S(A) > O. Let no be such that 1{S(AnaiA) < E and observe that 

{'lfJI(K n Co)}, III ~ no is a Vitali family for A. Since for any countable disjoint 
subfamily we have 

(6) 

LI'lfJI(K n CoW:;:::; 12.=.1{S('lfJI(K nCo)) 

1{S(K) 
:;:::; {3 <00, 

there exists a disjoint countable subfamily indexed by F such that 1{s (AI U 'lfJI(Kn . IEF 
Co)) = 0 (cf.[3], pg.ll). Besides, we can assume 

IEF IEF 

This is absurd if E is sufficiently small. 
If 1{S(A) = 0, let c be a fixed positive number such that 0 < 8 < c and 

(7) K c [KnCo]c = {x: d(x, KnCo):;:::; c} 

For any E > 0, let no = no(E) be a natural number such that 1{S(AnJ :;:::; E. Then 

(8) 

where F' denotes a maximal family of indices I of lenght no chosen in the following 
way: first choose 10 (1101 = no) such that l'lfJIo(KnCo)1 = max l'lfJI(KnCo)l. From 

III=no 
all the indices I (III = no) such that 'lfJI(KnCo) n'lfJIo(KnCo) = 0 choose one such 
that its diameter is maximum, call this 'index h and so on. Using (7) we see that 

(9) 
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arid by the way F' is chosen (recall 0 < {) < c) 

(10) 

Moreover 

(11) VI E F' 

Using this last formula, (8) and (10), we get 

e~ ~I' {TT_;-v\lq~ (8\s(~" "~,_~,,,o\_ 
(J ? L I7fJH.t\. I I G8)1~ ? I 3c) I L IV'IUK r 1 C,'8JcJI") ;?: 

IE:F' \ , \JE:F' 

(12) 

It follows that 1tS(K) = 0, an absurd .• 

( 8 \ S 'l-J8 ( V-\ 
\ 3c ) I "3c{ max k i } n" ,,~~ J 

Corollary 2. Assume the hypothesis of theorem 4. Then: 
(i) f(8) ::;;; 1 "18 >0 
(ii) limJ(8) = 1 

8--+0 

(iii) f(8) is continuous from the right 

Proof. 

(ii) follows from elementary density bounds (see [3], p. 24). 
(iii) From Blaschke selection theorem follows that for any 8 there is a compact, 

convex set of diameter 8, C8, such that f(8) = ,}-l"(~<nCb). Notice that f(8)8 8 is non 
decreasing. Using these last observations and the continuity of 1ts (-) we get (iii) 
(cf. [7] §1) .• 

Property A. We say K has property A if there exists a > 0 sl1ch that for any 
sphere BTl (x) with Tl < a there exists an expandlng similitude 'Ij;(z) with contrac
tion ratio ~ ~ 1 and an index io ) 1::;;; io ::;;; .e, such that 

Property A is indeed quite strong. 

Proposition 2. If K is a self-similar set with property A and Hausdorff dimension 
s then K is an s-set i.e. 0 < 1tS(K) < 00. 
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Proof. 
e 

As 'ljJi are similitudes and K = U 'ljJi(K), by [2] page 550 we get H8(K) < 00. 
2=1 

That 0 < H 8 (K) follows from the fact that property A implies the hypothesis 
of theorem 3. This assertion is proved as follows. Let N be any subset of K of 
diameter less than a of property A. Then by this property there exists an index 
i o , 1 :( io :( £ and 'ljJ an expansive similitude such that 'ljJ(N) C 'ljJi,,(K). Taking 
'ljJ;1 in this inclusion one gets 'ljJ;1'ljJ(N) C K. If 1'ljJ;1'ljJ(N) I < a then proceed as 
before with 'ljJ;:,I'ljJ(N) as N. Afte; a finite number of ~teps one gets 

'ljJ;:,I'ljJ' ... 'ljJ;:,1'ljJ(N) c K 

a:( l'ljJi,,1'ljJ' ... 'ljJ;:,1'ljJ(N) I 
where 1 :( i j :( £ and 'ljJ', ... , 'ljJ are expansive similitudes. Therefore one can 
define cp(x) = 'ljJi-,.1'ljJ' ... 'ljJ;:,1'ljJ(x) : N -+ K. It is easily chequed that a d(x, y) :( 
INI d(cp(x), cp(y) for all x, yin N .• 

The following is a corollary of theorem 4. 

Corollary 3. If K has property A and 0 < H8(K) < 00 then f(8) = 1 for some 80 

such that a :;:;; 80 :( IKI 
Proof. 

Let 8 be such that 0 < 8 < a. We want to show that f(8) :( f(8Hmin kd- I). 
. H 8 (KnCo) . 

For thIS let Co be a convex compact set such that f(8) = 88 • ObVIOusly 

Co C Brl (x) for some sphere with radius T1 < a. From this and property A we get 

'ljJ(Co n K) c 'ljJ(Brl (x) n K) c'ljJiJK) 

and therefore 'l/J;:,1('ljJ(Co n K)) = 'ljJ;:,1('ljJ(Co)) n 'ljJ;;/('ljJ(K)) c K. Intersecting this 
last expression with 'ljJ;:,1('ljJ(Co)) we get 'ljJ;:,1('ljJ(Co n K)) c K n 'ljJ;:,1('ljJ(Co)) and 
therefore 

i.e. 

(notice that 'ljJ;:,l('ljJ(Co)) is convex, compact, of diameter 8~k;;/). This proves the 
assertion. From this, i) and ii) of corollary 2 we get that sup f( 8) = 1 and therefore 

[a,CXl) 

snp f(8) = 1 because f(8) = H88~) for 8> IKI. Since f(8) is continuous from 
[a,IKIl 
the right and f(8) .88 is non decreasing we get f(8 0 ) = 1 for some a :( 80 :( IKI .• 
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Definition. K is e - discrete if 0 < '}1S(K) < 00 and there exist (non void) sets 
Kl, ... ,Kq , q = q(e), such that: 

q 
(i) K = ,U Ki and '}1S(Ki n K j ) = 0 for if- j 

.=1 
(ii)IKil ~ e Vi 
(00') th b ' .- 7t8(K;) '- 1 b 1 1 d HI e num ers u •. - 7t 8 (K) ,z - '" q, can e ca cu ate . 

The reader should observe that if a self similar set K is such that 0 < '}1S(K) < 00 

and its Hausdorff dimension s is equal to its similarity dimension then K is e 
-discrete. To see this, just take as Ki in the above definition the sets 'l/JI(K), 

III I, 'I . on p . ') ") '1 'fi d d '}18(Kd = Z1 ... Zno = no I.e. q =.{. o. ropertIes 1 ,11 are easl y ven e an (\ 
'}18 K, 

'}1S('l/JI(K)) = k~ k~ 
'}18 (K) "1 .. ' 'no' 

Therefore the Sierpinski set and the Cantor set are e-discrete. See §4 this paper 
for other examples. 

If K is e - discrete with e < ao then we can obtain approximations of f (8) on 
[ao,IKIJ. This is theorem 5 belo\v. Later ,ve shall use ao == a, \vith a of property ~A1.. 

For this theorem we need some definitions that only assume that K is e - discrete 
with e < ao , 

Let P be the family of all non void sets {i 1 , . .. ,it} with 1 ~ i 1 < ' .. < it ~ q. 
If pEP define C(p) = I U Ki I. It is clear that C(P) is a finite set of non negative 

,Ep 
numbers and there exists some d E C(P) such that d ~ e < ao (by ii) of the 

above definition). Define U on C(P) in the following way: U(d):= ma'-I: (LUi). 
p 8uch iEp 

that 
G(p)=d 

Next we define U(8), for 8 ~ ao, (U(8). '}18(K) will be an approximation of f(8) . 
88 ). Define U(b) := max U(d). Easy consequences of the definition of U(8) 

d~Jj 
dEG(P) 

are that it is a non decreasing function and that U (8) is constant on the intervals 
[ao ,al),[al,a2), ... ,[aw ,00) with aw ~ IKI where al < ... < aware points of 
C(P) and U(8) = 1 for 8 E [aw , 00) by i) of the above definition. We also recall 
that f(8) .88 is non decreasing and continuous from the right and that s does not 
coincide necesarily with the similarity dimension. 

Theorem 5. Assume that K is e - discrete witb e < ao' Tben 
(i) U(8) ~ ~S8l%) ~ U(8 + 2e) for 8 ~ ao 

(ii) Supposetbat K is e - discrete for eacb e > O. Tben 

( U(8 + 2e) U(8)) sup - sup -- ~ 0 for e ~ O. 
8E[ao ,IKll 88 6E[ao ,IKll 88 

Proof. 

We assume s > O. If s = 0 then K must be a point and the theorem is trivial. 
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(i) Fix 8, By Blaschke selection theorem f(8) ,88 = H8 (K n Co) for some Co 

convex compact, Let d E G(P), d ~ 8, Then U(d) , H8(K) = max CL,O:i)'}t8(K) = 
G(p)=d iEp 

max ("£H8(Ki)) ~ f(8) ,88 This last inequality because 1 U Kil = d ~ 8 and 
G(p)=d iEp iEp 

G(p)=d 
f (8) ,88 is non decreasing, From this the left hand inequality of i) follows, To prove 
the right hand inequality, suppose that Co is such that f(8) ,88 = H 8 (K n Co) and 
let Po E P be the set of indices i such that Ki intersects Co' As IKjl ~. 6 Vj we get 
G(po) = I. U Ki 1 ~ 8 + 26 and therefore by the definition of U( 8) we have 

'.Epo 

f(8) .88 = H8(K n Co) ~ H8(K n C U Ki)) 
,Epo 

= ('LO:i) H8(K) ~ U(G(Po))H8(K) 
,Epo 

~ U(8 + 26)'}t8(K) 

proving the other inequality of i). 
(") F .) t U(o) ~ U(8+2e) ~ 

11 rom I we ge sup 8"S" sup os " 
oE[ao , IKI] oE[ao,IKI] 

/' U(0+2e) (0+2e)8 /' US,~) sup (O-t;?se)s. But "'::: sup (8+2e)8 sup -0-' - "'::: sup u> u 
oE[ao,IKI] oE[ao,IKI] oE[a o +2e,IKI+2e] oE[ao,IKI] 

U(8)= 1 if 8 ~ IKI. Then sup Ui~) ~ sup uPJl, From this and the 
oE[a o +2e,IKI+2e] oE[ao,lKl] 

1 . l't to" U(8+2e) U(b) a )ove mequa 1 y we ge :':::::: sup 08 sup bs 

oE[ao,IKI] oE[ao , IKI] 

~ sup Ui~l( sup (O~:er - 1) ~ (byi) ~ 
oE[ao,IKI] bE[ao , IKI] 

/' f(b) ( (8+2e)' 1) h' h ") • "'::: sup Tts(K) sup -b-S - - w IC proves 11 . 
oE[ao , IKI] bE[ao ,IKI] 

Finally, we show how to obtain bounds for HS(K). Assume 
(i) K has property A 
(ii) K is E -- discrete with 6 < a , a of property A 
Then, from theorem 5 and corollaries 2 i) and 3 we get 

(13) 

If K is 6 - discrete for any 6 > 0 we get from theorem 5 ii) that in (13) the two 
suprema tend to 1/H'(K), yielding the algorithm. For an example see §4. 

We finally point out that in practice, knowing O:i in the definition of the 6 -

discreteness requires the knowledge of s, the dimension of K. We prove a lemma 
showing how this dimension can be obtained in some cases. We assume that 
0< '}t8(K) < 00, which in practice will follow from theorem 3 and [2]. 
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f 
Lemma 2. Let K = /~l'lj;i(K). Assume 'lj;i(K) n'lj;j(K) ,'i i- j, is a disjoint union 

of sets K;,j t = 1, ... ,n(i,j) where K;,j = 'lj;;j(K) and 'lj;~j is a similitude with 
contraction ratio ~~j. Assume also Ji8('lj;i(K) n 'lj;j(K) n'lj;A:(K)) = 0 for any /;riple 
(i,j, k), i i- j i- k i- i. Then the Hausdorff dimension s verifies tile following 
relation 

(here ~i is the contraction ratio of'lj;i) 

Proof. 

From the hipothesis \ve knovl that 

( . \ f n(i,j) 

H'(,p,(K)) ~ H' lW'(K)/(}~: ,pi (K)) ) + E t; 1i" (K;,j) (14) 

lie' 

and therefore 

(15) ~iJi8(K) = Jis .(,p'(K)/(j~: ,pi (K))) + E n~) «(?)''It'(K) 
1 Hi 

Also from the hypothesis we get 

(16) 1i" (K) ~ tH' (,p'(K)/(~~: ,pj( K))) + '~, n~) H'(K;,j) 
l<t 

Putting (15) in (16) we get 

H'(K) ~ (t,,}H'(K)- (tE~(E;j)') JiS(K)+ (t~(E;j)") Ji'(K) 

liet l<t 
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§4 Example ( Sierpinski set with overlapping): Let 6 be an equilateral trian
gle of side 1 and let PI, P2, P3 be its vertices (fig.l). Let 61, 62, 63, be three 
smaller equilateral triangles inside 6 and touching PI, P2, P3, respectively. We 
define 'l/Ji(X) ; i = 1,2,3, as the similitudes that transform 6 onto 6i (without ro
tation). We assume that all contracting ratios are equal to e , 0 < e < 1. Notice 
that C(K) = 6 (C = convex hull). We write for short: 61 = 'l/JI(6) = 'l/JI(C(K)) 
and assume that e satisfies the following equation: 

(17) 2e - en = 1 ; n ~ 3 , n an integer. 

We will see that we can apply the previous theory to K i.e. we will prove that K 
has property A and therefore by proposition 2, K is an s - set. We will also show 
that K is c - discrete. To prove all these assertions one needs lemmas 3 and 4 and 
the following discussion. 

It is easy to prove that there is a unique e , 0 < e < 1 satisfying (17), for the' 
polinomial 2x - xn - 1 has only two roots in [1/2,1]' being 1 one of them. 

Let 0 < 6 < 1 where 6 satisfies (17) with n = 3. Then 6 = VS;-1 . It is easy 
to prove that if 0 < e < 1 and satisfies (17) then 1/2 < e ::::; 6· Therefore e must 
also satisfy 

(18) 

with equality only if n=3 and 

(19) 
. V5-1 

1/2<f::::;6= 2 <2/3 

From (19) it is seen that 61 n 62 n 63 = 0 and 6i n 6j :I 0 for i :I j. Notice that 
by (17), 6i n 6j is an equilateral triangle of side e"". From the construction we get 

(20) 6·n6· -6" . -6" .' 
t J - ZJ ... J - JZ ... Z 

"-..--" -.......-.. 
n 

and from this it follows that 

(21) .1.. . ·(x) ~ 'l/J.. ·(x) 'f'zJ ... J - JZ ... z 
~ -.......-.. 

n n 

Fig. 4 a) shows K for e = 6. Our aim is lemma 4 below which will be used to 
prove the mentioned properties of K. For the following lemma it is useful to look 
at figures 3,2 a), b), c). 

Lem.ma 3. For any index I beginning with 1 of length q = m(n - 1) + 1 , m ~ 1, 
such ''that 61 n 612 ... 2 :I 0, we have a) or b) or c): 

'--v--" 
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a) if 6[ C 6 12 ... 2 then there exists J = ~n+1" .jq such that 'lfJ[(x) = 
~ 

n 

'lfJJ(X). 

b) if 6[ 1;. 612 ... 2 and 6[ n 612 ... 2 is not a point then there exists 
~ '--v--' 

n n 

J = ~n+1'" jq such that one side of 6[ and one side of 6 J are on the 
n 

same line and 6[ n 6 J = 6[ n 612 ... 2 is an equilateral triangle of side of length 
'--v--' 

n 

~(m+1)(n--1)+1 (Observe that there are only two possibilities, see flg.2 a, b) 

c) 6[ n 6 12 ... 2 is a point, flg. 2 c). 
~ 

The same holds interchanging 1 with 2. 
OnlyaJ will be used bllt bJ and cJ are needed in the proof. 

Proof. 

The proposition is-tr-ue if m = 1 because the only sets 6 J with III = 71, I 
beginning with 1 that can touch 6 12 .".2 are, by (18), 612. .. 22, 6 12 ... 21 , 612. .. 23 

'--v--" 
"-

and in case n=3 also 6 112 , 6 132 (fig. 3). The last two satisfy c). The first one 
satisfies a) and the others satisfy b) with J = ~;3. 

n 

Assume that the lemma is true for m. Take an index I beginning \vith 1 and 
of lenght (m + l)(n -- 1) -1- 1 with 6/ touching 6 12 ... 2, Then 6[ C 6], where 

'--v--' 
-n 

1'1" = I, I' of lenght m(n-1)-1-1 (P is a curtailment of I). For m the lemma was as-
sumed, therefore if 61' c 612 ... 2 then there exists J' = ~n+l ... jm(n--l)+1 

~ 
n n 

such that 'lfJp(;c) = 'lfJdx) and therefore 'lfJPl"(x) = 'lfJ[IJII(X) = 'lfJ](x). 

Now, assume 6]1 1;. 6 12 ... 2' If c) is true for I' then 6[ n 612 ... 2 is at most 
'--v--' '-v-'" 

n n 

a point. If b) is true for I' then there exists J' with the mentioned properties. We 
assume that 6[1 and 6 p are located as in fig. 2 a. As 61' n 6J' is an equilateral 
triangle of side ~(m+1)(n-1)+1 we get (by 17) that 61' n 6 p = 6/1 n l', 12 ... 2 = 

~ 

n-1 n-1 

Therefore 61'[11 = 6[ must touch 61'2 ... 2 . But the only sets 61' L , II'LI = 
'-v-" 

n-1 

(m+1)(n-1)+1 that could touch 61'2 ... 2 are (by 18) 61'2 ... 22,61'2 ... 23,61'2 ... 21, 
'-v-" 

n-1 

6[12 ... 212,61'2 ... 232. Therefore I mu~t be one of the above. If I is the first then as 
61'2 ... 2 = 6JI3 ... 3 we get 'lfJ1'2 ... 2(X) = 'lfJJI3 ... 3(X) and a) follows. If I is one of 

'-v-" "-v-" 
n-1 n-1 
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the last two then c) is true and if (for example) ['2 ... 23 = [ then it is seen that 
'--v-'" 

b) is true with J = J'3 ... 3 .• 
'-v-" 

n-1 

n-1 

Lemma 4. (a) 6 1 n 6 2 n K = '¢12 ... 2(K) = '¢21 ... 1 (K) 
'--v-'" '--v-'" 

n 

(b) 6 1 n 6 3 n K = '¢13 ... 3(K) = '¢31 ... 1 (K) 
'--v-'" '--v-'" 

n n 

(c) 6 2 n 6 3 n K = '¢23 ... 3(K) = '¢32 ... 2(K) 
'--v-'" '--v-'" 

Proof. 

We prove the first proposition, the others follow from symmetry. Obviously 
'¢12 .. . 2(K) c 6 1 n 6 2 n K. Let P E (int(61 n 6 2 )) n K, then there exists 
'--v-" 

n 

an index I beginning with 1 (or 2) of lenght m(n-1)+1 with m great enough such 
that P E 1.{'j(K) and P E 6 j C 6 1 n 6 2 . Recalling (20), by Lemma 3 a) we get 
P E '¢12 ... 2(K) (or p E 7jJ21. .. 1(K) respectively). Therefore using (21) we get 

a). 

'--v-" '--v-'" 

If p E 8(61 n 6 2 ) then obvioulsy P E '¢12 ... 2 (I<), • 
'--v-" 

Lem.ma 5. K has property A. 

Proof. 

Let ql = '¢12 ... 2 (P3) and q2 = '¢12 ... 21 ... 1 (P3) (see fig.3). We want to show 
'--v-'" ~ 

'L 7&-1 

that the 'shape' of K near q1 is the same as near q2. Notice that from (18) the only 
sets 6 1 , III = n that touch q1 are 612. .. 2 = 621. .. 1,612 ... 23,621...13 and eventually 
6 132 and 6 231 if n=3. We assume for simplicity that n > 3 and let the reader fill 
the gaps if n=3. Therefore, if c is small enough, from K = U{'¢j(K) : IIi = n} we 
get, 

(22) 
K n Bc(qd = ('¢12 ... 2(K) U '¢12 .. . 23(K) U '¢21 .. . 13(K)) n Bc;(qd 

'--v-" "--v-" '-ov-" 
n 

By lemma 4 c) if c is small enough we get '¢2(K) n Bct;l-n ('¢2(P3)) C '¢32 ... 2(K) 
'--v-" 

n 

and applying '¢12 ... 2(x) to this last relation we get '¢12 ... 22(K) n Bc (q1) C 
'--v-'" "--v-" 

n-l 

'¢12 ... 232 ... 2(K) C '¢12 ... 23(K). Applying this to (22) we get 
~'-v-" "--v-" 

n-1 
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Also q2 only touches 612. .. 2 = 621. .. 1 and 612 ... 21 of sets 6[ , III = n. Therefore 
K n Bc(q2) = ('ljJ12 ... 22 (K) U 'ljJ12 .. ,21 (K)) n Bc(q2)' Using this last formula, (23) 

'--v--" '--v--" 
11. n 

and the fact that 'ljJ12 ... 23(x) +(q2 -qd = 'ljJ12 . .. 21 (x) ; 'ljJ21. .. 13(x) +(f{2 -qd = 
'--v--" '--v---"' '"-v-' 

rt 1~ 

'ljJ12 ... 22 (x) we get that there exists E > 0 such that 
'--v--" 

Using this last assertion one .can prove that K has property A as follows. 
Let (L < < E, (L will be the parameter of property A. We assume that Ba (r) is a 

ball touching 61 n 62 (if Ba(.T) touches only 61 but neither 62 nor 63 then take 
io = 1, 'ljJ = identity). Assume Ba(x) C Bc(qd then use (24) , lemma 4 a) and 
take 'ljJ(x) = :r +(q2 - qd , io = 1 in property A to get 'Ij)(Ba(x) n K) c 1j}1 (I{). 

If Ba(x) % Bc(qIJ then use lemma 4 a) 'ljJ = identity and io = 1 or 2, depending 
where x is placed .• 

Because of proposition 2, K is an s-set, s the Hausdorff dimension of K. 
Next we calculate s. Apply lemma 2 to get that s must satisfy 

(25) e - C s = 1/3 

Then, Z = (:S is a root of 1/3 = Z - zn 0 < z < 1 and s = log z. This last 
c, "log f. 

polynomial has two roots Tl ,T2, in (0,1): 0 < Tl < 6 < T2 < 1. Since K contains a 
segment, we have s ;;:, 1. From (17) and (25) we get for s = 1. ~ = 2/3, which is in 
contradiction with (19). Then s > 1. From z = e and (19) it follows that z = ') 
and s < 2. 
K is indeed E-discrete for any E > O. We prove this fact for 11 = 3 and a similar 
argument works for the other cases. 

Fig.4 a) shows a decomposition of K inclosed sets K i, i = 1, ... ,4; HS(Ki n 
K j ) = 0 for i i= j; K = Kl U K2 U K3 U K4. From lemma 4 it follows that 
Kl = 'ljJ2(K) , K3 = 'ljJu (K), K2 = 'ljJ33(K) and therefore HS(KJ) = ~3HS(K); 
HS(K2} = HS(K3) = ~1SHS(K) and 

(26) 

Fig. 4 b) shows a decomposition of the set K4 in closed sets K5, K6, K7; 
K4 = K5 U K6 U K7; HS(Ki n K j ) = 0, i i= j with K5, K6 similar to K4 and K7 
similar to K (K7 = 'ljJ311(K)). Moreover, using lemma 4 and symmetry, HS(K5) = 
HS(K6) = ~3HS(K4) = by (26) = (~3 - ~1s - 2~~S)HS(K) ; HS(K7) = ~~SHS(K). 
From this follows that K is E-discrete because one can apply the decomposition of 
figures 4 a) and 4 b) again and again to the smaller pieces which are similar to K 
and K 4 • 

Fig. 5 shows a variant of our example where the ratios of the contractions are not 



98 

equal: 6 = 6 2 , ~2 a root of x + x2 - x5 - 1 = ° (this forces 'l/J1222(X) = 'l/J211 (x)) 
and 6 such that 63 does not intersect 61 nor 62. In the case of the figure 
6 = 1/4,6 ~ 0,682 ... ,6 ~ 0,465 .... 
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ABSTRACT. We consider the complex solvable non-commutative two dimensional 
Lie algebra L, L =< Y > Ell < x >, with Lie bracket [x,y) = y, as linear bounded 
operators acting on a complex Hilbert space H. Under the assumption R(y) closed, 
we reduce the computation of the joint spectra Sp(L, E), U6,k(L, E) and u,..,k(L, E), 
k = 0,1,2, to the computation of the spectrum, the approximate point spectrum, 
and the approximate compression spectrum of a single operator. Besides, we also 
study the case y2 == 0, and we apply our results to the case H finite dimensional 

1. Introduction. 
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In [1] we introduced a joint spectrum for complex solvable finite dimensional Lie 

algebras of operators acting on a Banach space E. If L is such an algebra, and 

Sp(L, E) denotes its joint spectrum, Sp(L, E) is a compact non empty subset of 

L *, which also satisfies the projection property for ideals, i. e., if [ is an ideal of 

L, and if II: L * --t [*, denotes the restriction map, Sp(I, E) = II( Sp( L, E)). In 

addition, when L is a commutative algebra, Sp(L, E) reduces to the Taylor joint 

spectrum, see [5J. Moreover, in [2J we extended Slodkowski joint spectra alj,k and 

a'lr,k to the case under consideration, and we proved the usual spectral properties: 

they are compact non empty subsets of L *, and the projection property for ideals 

still holds. 

In this-paper we consider the complex solvable non-commutative two dimensional 

Li.e algebra L, L =< Y > E9 < x >, with Lie bracket [x, y] = y, as bounded linear 

operators acting on a complex Hilbert space H, and we compute the joint spectra 

Sp(L, H), alj,k(L, H) and a7r ,k(L, H), for k = 0,1,2, when R(y) is a closed subspace 

1 Research supported by UBACYT 
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of H. Besides, by means of an homological argument, we reduce the computation 

of these spectra to the one dimensional case. We prove that these joint spectra are 

determined by the spectrum, the approximate point spectrum, and the approximate 

compression spectrum of x in K er(y) and x in H / R(y), where x is the quotient 

map associated to x, (R(y) and Ker(y) are invariant subspaces for the operator x). 

In addition, we consider the case y2 = 0, (it easy to see that y is a nilpotent 

operator), and we obtain a relation between the spectrum of x in R(y) and a subset 

of the spectrum of x in H / R(y), which give us a more precise characterization of 

the joint spectrum Sp(L, E). Finally, we apply our computation to the case H finite 

dimensional. 

The paper is organized as follows. In Section 2 we review several definitions and 

results of [1] and [2]. In S~ctionJLy,re prove our main theorems and, in Section 4, 

we consider the case y2 = 0 and the finite dimensional.case. 

2. Preliminaries. 

In this section we briefly recall the definitions of the joint spectra Sp(L, H), 

0"6,k(L,H) and O"7r(L,H), k = 0,1,2. We restrict ourselves to the case under con

sideration. For a complete account of the definitions and mean properties of these 

joint spectra, see [1] and [2]. 

From now on, let L be the complex solvable two dimensional Lie algebra, L =< 
Y > EB < x >,with Lie bracket [x, y] = y, which acts as right continuous linear 

operators on a Hilbert space H, i. e., L is a Lie sub algebra of £(HtP, where £(H) 

is the algebra of all bounded linear operators defined on H, and where £(H)OP 

means that we consider £(H) with its opposite product. We observe that, any 

complex solvable non-commutative two dimensional Lie algebra may be presented 

in the above form. 

If f is a character of L, we consider the chain complex (H ® I\L, d(f)), where 

I\L denotes the exterior algebra of L, and d(f) is the following map: 

do(f)(a < y » = yea), do(f)(b < x» = (x - f(x))(b), 

d1(J)(c < yx » = (-(x -1 - f(x)))(c) < y > +y(c) < x > . 

Let H*(H ® I\L, d(J)) denote the homology of the complex (H ® I\L, d(J)), we now 

state our first definition. 
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Definition 1. With H, Land f as above, the set U E L>I<,J( L2) = OJ H>I< (® A 

L, d(f)) i= O}, is the joint spectrum of L acting on H, and it is denoted by Sp(L, H). 

As a consequence of the results of [IJ, we have that Sp(L, H) is a compact non 

empty subset of L>I<. Besides, as a standard calculation shows that the equality 

y = [x, y]OP = [y, xJ implies nyn = [yn, xl = [x, ynlOp r we have that y is a nilpotent 

operator. Thus, Sp( < y » = 0, and by the projection property, if f belongs to 

Sp(L, H), as < y >= L2 is an ideal of L, fey) = O. 

Now, let us consider the basis of L, A, defined by, A = {y, x}, and B, the basis of 

L$ dual of A. If we consider Sp(L, H) in terms of the above basis, and we denote it 

by Sp«y, x), H), i. e., Sp«y, x), H) = {(f(y),f(x)),f E Sp(L,H)}, we have that, 

Sp«y, x), H) = {(O,f(x)),J E Sp(L,H)}. 

In addition, the complex (H ® AL, d(f» may be written in the following way, 

d .d o -+ H ~ H EEl H ~ H -+ 0, 

do=(y x-A), _ (-(X-I-A») d1 - , 

Y 

where A = f(x). We denote this chain complex by (C,d(A». Thus, as (O,A) E 

Sp«y, x), H) if and only if f E Sp(L,H), where A = f(x), to compute the latter is 

equivalent to compute the former, and to study the exactness of the chain complex 

(H ® AL,d(f» is equivalent to study the exa,ctness of (C,d(A»). 

With regard to the joint spectra 0"6,k(L, H) and O"7r,k(L,H), k = 0,1,2, we review, 

for the case under consideration, the definition of them given in [2J. If p = 0,1,2, 

let Ep(L,H) be the set, Ep(L,H) = {f E L*,/(L2) = OJ Hp«H ® AL,d(f))) i= O}. 

We now state our second definition. 

Definition 2. With H, Land f as above, 

0"6,k(L, H) = U E(L,R), 
0$p9 

O"7r,k(L,H) = U Ep(L,H)UU E L*,f(L2) = OjR(dk(f»is not closed}, 
k$p:$2 

where 0 ~ k ~ 2. 

We observe that Sp(L,H) = 0"6,2(L,H) = O"7r,o(L,H). Besides, as we have 

said, these joint spectra are compact non empty subsets of L>I<. In addition, as in 
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the case of the joint spectrum Sp(L, H), we consider the joint spectra U6,k(L, H) 

and u7r ,k(L, H) in terms of the basis A and B. As these joint spectra are sub

sets of Sp(L, H), we have that U6,k«Y, x), H) = {(O,f(x)),f E U6,k(L, H)}, and 

U7r ,k«y, x), H) = {(O,f(x»,f E u7r ,k(L, H)}, where k = 0,1,2. 

Moreover, as in the case of the joint spectrum Sp(L, H), to compute U6,k(L, H) 

and u7r ,k(L, H), 0 ::; k ::; 2, is equivalent to compute these joint spectra in terms 

of the basis A and B. Finally, to compute the latter joint spectra it is enough to 

study the complex (C, d('x), and to consider the corresponding properties involved 

in the definition of U6,k(L, H) and u 7r',k(L, H), 0::; k ::; 2, for it. 

3. The Main Result. 

We begin with the characterization of Sp(L, H). Indeed, we consider Sp«y, x), H), 

and by means of an homological argument we reduce its computation to the case 

of a single operator. 

Let us consider the chain complex (C, d), 

d=y 
0--+ H ----t H --+ O. 

Then an easy calculation shows that we have a short exact sequence of chain com

plex of the form, 
-- i P --

0--+ (C,d) -+ (C,d('x» -+ (C,d) --+ 0, 

where (ij)(O~j9) and (pj)(O~j9) are the following maps: '2 = 0, i l = IH Ell 0, 

io = IH, and P2 = IH, Pl = o Ell IH, Po = O. 

Thus, by [4,11,4], and the fact that p is a map of degree -1, we have a long exact 

sequence of homology spaces of the form, 

Pt. - - at 1 . - - it 10 
--+ Hq(C,d('x» --+ Hq_l(C,d) ---=-+ Hq_l(C,d) ~ Hq_l(C,d('x)) -+. 

We observe that Hl(C, d) = Ker(y), and that Ho(C, d) = HI R(y). Moreover, as 

[x,y]OP = y, we have that x(R(y)) ~ R(y), and that x(Ker(y)) ~ Ker(y). Then, 

by [4,11,4]' 8q , q = 0,1, are the following maps: 8o([a]) = [(x - 'x)(a)] = (x - ,X) [a] , 

and 8 l (b) = -(x -,X -1)(b), where x:H/R(y) --+ H/R(y) is the map obtained 

by passing x to the quotient space H / R(y). We now give our characterization of 

Sp(L,H). 
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Proposition 1. Let L be the complex solvable non-commutative two dimensional 

Lie algebra L =< Y > ED < x >, with Lie bracket (x,yj=y, which acts as right 

continuous linear opera-toTs on a complex Hilbert space H. If R(y) is a closed 

subspace of H, and if we consider Sp(L, H) in terms of the basis {V, x} of Land 

the basis of L * dual of the latter, we have, 

Sp«y, x), H) = {OJ x Sp(x -1,Ker(y» U {OJ x Sp(x,HIR(y». 

In addition, we have: 

i) Ho(C, d(>.» = 0 iJJx - >.: HI R(y) -t HI R(y) is a surjective map, 

ii) H2( C, d( >.» = 0 iJJ x-I - >.: ker(y) -t K er(y) is an injective map, 

iii) Hl (C. d( >')) = 0 iff x-I - >. is iniective. and x - >. - 1 is .H,rjective. 
~ ,"" "",,," ." J 

Proof. 

It is a consequence of the long exact sequence of homology spaces, and the form 

of the maps aj, j = 0,1. 

I 

In order to characterize the joint spectra a 1r ,k(L,H), we recall the notion of ap

proximate point spectrum of an operator T: >. is in the approximate point spectrum 

of T, which we denote by II(T), if there exists a sequence of unit vectors, (Xn)nEI'I/, 

Xn E H, " Xn 11= 1, such that (T - >,)(xn ) --:--+ o. An easy calculation shows that 
n--oo 

>. <t. II(T) if and only if Ker(T - >.) = 0 and R(T - >.) is closed in H. 

We now consider the spectrum a1r,2«y, x), H). We observe that, as [x,y]OP = y, 

(x -1)(Ker(y) ~ Ker(y). Then, we may consider II(x - 1,Ker(y». Indeed, we 

shall see that a1r,2«y, x), H) = {OJ x II(x -l,Ker(y». 

To prove the last assertion we proceed as follows. By Definition 2, we have 

that a;,2 = ((0,>'jH2(C,d(>'» = 0, and R(d1 (>.» is closed}. However, by the 

definition of dl (>.) and H2(C, d(>.», H2(C, d(>.» = K er(x -1- >.) n K er(y). Then, 

H2(C,d(>.» = 0 is equivalent to Ker(x - 1 - >'1 Ker(y» = O. Thus, in order to 

conclude with our assertion, it is enough to see that the fact R{x -1-,\ I Ker{y» 

is closed, is equivalent to R( dl (>.» is closed. 

Indeed, if (an )nEI'I/ is a sequence in K er(y) such that (x - 1 - >.)( an) ---t b E 
n-+oo 

Ker(y), we have that, dl(>.)(an) ---t (-b,O). If R(dl (>'» is closed, there is a z 
n-+oo 

in H such that d1(>.)(z) = (-b, 0), i.e., -(x -1- >')(z) = -b, and y(z) = 0: Thus, 

z E K er(y) and R«x - 1 - >.) I Ker(y» is closed. 
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On the other hand, if R( (x - 1 -..\ I K er(y» is closed, let us consider a sequenee 

(Zn)nEN, Zn E H, such that d1(..\)(zn) ----t (W1' W2) E H Ef) H. We decompose H 
n-oo 

as the orthogonal direct sum of K er(y) and K er(y)1.., H = K er(Y)Ef) K er(y)1... 

Let (an)nEN and (bn)nEN be sequences in Ker(y) and Ker(y)1.., respectively, such 

that Zn = an + bn. Then, 

d1(..\) = d1(..\)(a n ) + d1(..\)(bn) 

= (-(x - 1 - ..\)(an ), 0) + (-(x - 1 - ..\)(bn), y(bn », 

where y: K er·(y)1.. ---+ R(y) is the restriction of y to K er(y) 1.. • We observe that; 

as R(y) is a closed subspace of H, y is a topological homeomorphism. Besides, as 

y(bn) ----t W2, there exists a Z2 E Ker(y).l.. such that bn ~ Z2, and y(Z2) = 
n~~ n~~ 

W2. Then, -(x - 1 - ..\)(bn ) ----t -(x - 1 - "\)(Z2), and -(x - 1 - ..\)(an ) ----t 
n-oo n-= 

W1 + (x -1- ..\)(Z2). As (an)nEN is a sequence in K er(y), and R(x -1-,,\ I K er(y» 

is closed, there is a Zl E K er(y) such that W1 + (x - 1 - ..\)(Z2) = -(x - 1 - ..\)(zt). 

Thus, (W1,W2) = d1(..\)(Zl + Z2), equivalently, R(d1(..\» is a closed subspace of 

H Ef) H. 

With regard to 0'11",1 ((y, x), H), we have, by Definition 2, that, 

0' 11",1 ((y, x), H)C = ((O,..\); Hi( C, d( ..\» = 0, i = 1,2, and R( do (..\» is closed}, 

'which, by Proposition 1, is equivalent to the following conditions: 

i) x-I - ..\: K er(y) ---+ K er(y) is an isomorphic map, 

ii) x - ..\: HI R(y) ---+ HI R(y) is an injective map, 

iii) R(doC..\» is closed. 

We shall see that 0'11",1 ((y, x), H) = Sp(x -l,Ker(y» U II(x,HIR(y». 

Indeed, it is clear that condition i) is equivalent to..\ f/. Sp(x -l,Ker(y). Then, 

it is enough to see that condition ii) and iii) are equivalent to ..\ f/. II(x,HIR(y». 

However, by ii), it suffices to verify that the fact R(do)(..\) is closed is equivalent to 

R(x -..\) is closed. Now, as the quotient map, II: H ---+ H/R(y), is an identification, 

by [3,II,6], R = R(x -..\) = II(R(x- ..\» is closed in HI R(y) if and only if II-1(R) = 
R(x - ,\) + R(y) = R(do('\» is closed in H. 

In order to study the joint spectra O'I),k(L, H), k = 0,1,2, we recall the definition 

of the approximate compression Spectrum of an operator T in H: ..\ is in the 

approximate compression spectrum of T, which we denote by IIC(T), if there exists 
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a sequence of unit vectors in H, (Xn)nEN', Xn E H, II Xn 11= 1, such that (T -

..\)*(xn) ----40, i. e., IIC(T) = II(T*). Besides, an easy calculation shows that ..\ 
n---+oo 

does not belong to neT) if and only if (T - ,\) is a surjective map. 

We now consider th·~ joint spectra O"/j,o«Y, x), H). However, by Definiton 2, 

Proposition 1, and the previous considerations about the approximate compression 

spectrum, it is cleaT tha~ O"/j,k«Y, x), H) = {O} x nC(x,H/R(y)). 

With regards to O"/j,l «y, x), H), by Definition 2 and Proposition 1, we have that 

(0,..\) does not belong to O"/j,l«Y, x), H), if and only if (0,..\) satisfies the following 

conditions: 

i) x -..\: H/R(y) --t H/R(y) is an isomorphic map, 

ii) x-I - ..\: K er(y) --t K er(y) is surjective. 

Then, it is obvious that, O"/j,l«y, x), H) = {o} x Sp(x,H/R(y))U{O} xnC(x-11 

K er(y)). 

We now summarize our results. 

Theorem 1. Let L be the complex solvable non-commutative two dimensional Lie 

algebra, L =< Y > EB < X >, with Lie bracket [x,yJop = y, which acts as right 

continuous linear operators on a complex Hilbert space H. If R(y) is closed, the 

joint spectra Sp( L, H), O"o,k( L, H) and 0" To,k( L, H), k = 0,1,2, in term.s of the ba.~is 

{y, x} of L, and the basis of L * dual of the latter, may be characterize as follows: 

i) Sp«y, x), H) = {O} x Sp(x -l,Ker(y)) U {O} x Sp(x,H/R(y)), 

ii) O"/j,o«y,x),H) = {O} x nC(x,H/R(y)), 

iii) O"/j,l«y,X)) = {O} x Sp(x,H/R(y)) U {O} x nc(x -l,Ker(y)), 

ivy 0"'Ir,2«Y, x), H) = {O} x n(x -l,Ker(y)), 

v) O"'Ir,l«Y, x), H) = {O} x Sp(x -l,Ker(y)) U {O} x n(x,H/R(y)), 

vi) 0"6,2«Y, x), H) = O"'Ir,o«Y, x), H) = Sp«y,x),H). 

4. A Special Case. 

I 

As we have seen, y is a nilpotent operator. In this section we study the case 

y2 = 0, and we obtain a more precise characterization of th joint spectrum Sp(L, H). 

We decompose H in the following way: H = K er(y) EB K er(y).L. Besides, as 
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R(y) is contained in K er(y), let us consider M, the closed subspace of H defined by, 

M = K ere y) n R(y).L. Then, we have another orthogonal direct sum decomposition 

of H, H = R(y) EB M EB Ker(y).L. Moreover, if we recall that x(R(y)) <;; R(y) and 

x(Ker(y)) <;; Ker(y), we have that x and y have the following form, 

(
0 0 -) 

y= 0 0 ~ , 

000 

(
Xu 

x = 0 

o 

Xl2 
X13 ) 

X23 , 

X33 o 

where y is as in Section 3, and the maps Xij ,1 ::; i ::; j ::; 2, are the restriction of 

x to the corresponding spaces. We now see that, in the case under consideration, 

Sp( L, H) reduces essentially to the spectrum of x in K er(y). 

Proposition 2. Let L be the complex solvable non commutative two dimensional 

Lie algebra, L =< Y > EB < x >, withLiebracket[x, yjOP = y, which acts as right 

continuous linear operator.~ on a complex Hilbert space H. If R(y) is closed and y2 = 
0, Sp( L, H), in terms of the basis {y, x} of L and the basis of L * dual of the latter, 

may be described as follows. If Xu and Xn are the maps defined above, and if Si, 

i = 1,2, are the sets: S1 = (Sp(xu, R(y)) -1), and S2 = (Sp(X22' R(y).L nK er(y)), 

then, we have that, 

Sp«y, x), H) = {OJ X (S1 U (S1 +-2) U S2 U (S2 - 1)). 

Proof. 

An easy calculation shows that the relation [x, yjOP = Y is equivalent to yX33 -

xUy = y. However, as y is a topological homeomorphism, X33 = IKer(y)1. +y-l xuy. 

In particular, Sp(x33,Ker(y).L) = Sp(xu,R(y)) + 1. Then, as Sp(x,HjR(y)) = 
Sp(xn, M)USp(X33 , K er(y).L), where M = R(y).LnK er(y),we have that Sp(x, H j R(yp 

(Sl+2)US2' 

On the other hand, it is clear that Sp(x -l,Ker(y)) = S1 U (S2 -1). Thus, by 

Theorem 1, we conclude the proof. 

• 
Finally, we consider the case R(y) closed, y2 = 0, and H finite dimensional. If 

r = dim(R(y)) and k = dim(Ker(y)), let us chose a basis of Ker(y) such that the 

first r-vectors of it are a basis of R(y), and in this basis, x has an upper triangular 

form, with diagonal entries Aii, 1 ::; i ::; k. Then we have the following corollary. 
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Corollary 1. Let H, L and the operator y be as in Proposition 2. If H is fl

nzie dimensional, and if we consider a basis of K er(y) with the above conditions, 

Sp(L, H), m t.erms of the basis of Land L* considered in Proposition 2, is the 

following set, 
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Abstract: In this paper the continuity of the solutions of a mathematical model 
of thermoviscoelasticity with respect to the model parameters is proved. This was 
an open problem conjectured iIi [27J and [28]. The nonlinear partial differential 
equations under consideration arise from the conservation laws of linear momen
tum and energy and describe structural phase transitions in solids with non-convex 
Landau-Ginzburg free energy potentials. The theories of analytic semigroups and 
real interpolation spaces for maximal accretive operators are 'used to show that the 
solutions of the model depend continuously on the admissible parameters, in par
ticular, on those defining the free energy. More precisely, it is shown that if {qn}~=l 
is a sequence of admissible parameters converging to q, then the corresponding so
lutions z(tj qn) converge to z(tj q) in the norm of the graph of a fractional power of 
the operator associated to the linear part of the system. 

1. INTRODUCTION 

The conservation laws governing the thermomechanical processes in a one-dimensional 

. tThe work of the authors was supported in part by CONICET, Consejo Nacional de Investigaciones 
Cientificas y Tecnicas of Argentina and UNL, Universidad Nacional del Litoral through project 
CAl+ D94-00 16-004-023. 
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shape memory solid 0 = (0, 1) with Landau-Ginzburg free energy potential \lI. give 
rise to the following initial-boundary value problem. 

(1.1 ) 

pUtt - (Jpuxxt + 'YUxxxx = f(x, t) + :x [~\lI(ux,uxx,O)] , 

CvOt - kOxx = g(x, t) + 20'.20UxUxt + (Jpu;o 
u(x, 0) = uo(x), Ut(x,O) = Ul(X), O(x,O) = Oo(x), 
u(O, t) = u(l, t) = uxAO, t) =uxx(l, t) = 0, 
Ox(O, t) = 0, kOx(l, t) = kl (Or(t) - 0(1, t)), 

x E 0,0 :S t :S T, 

x E 0,0 :S t :S T, 
x E 0, 
o :S t :S T, 
o :S t :S T. 

The functions, variables and parameters involved in (1.1) have the following physical 
meaning: u(x, t) = displacement; O(x, t) = absolute temperature; p = mass density; 
k = thermal conductivity coefficient; Cv = specific heat; (J = viscosity coefficient; 
f(x, t) = distributed forces acting on the body (input); g(x, t) = distributed heat 
sources (input); uo(x) = initial displacement; U1(X) = initial velocity; Oo(x) = initial 
temperature; Odt) = temperature of the surrounding medium (input); kl = positive 
constant, proportional to the rate of thermal exchange at the right boundary, and T 
is a prescribed final time. The function \lI, which represents the free energy density 
of the system, is assumed to be a function of the linearized shear strain E = ux , the 
spatial derivative of the strain Ex = U xx and the temperature 0, and is taken in the 
Landau-Ginzburg form 

\lI(f, Ex, 0) = \lIo(O) + 0'.2(0 - (1)E2 - 0'.4E4 + 0'.6E6 + ~E;, 

\[10(0) = -CvOlog (:J + CvO + C, 
(1.2) 

where 01 , O2 are two critical temperatures and 0'.2, 0'.4, 0'.6, 'Yare positive constants, 
all depending on the material being considered. Note that for values of 0 close to 
()1 andEx fixed, the function \lI(E, Ex, 0) is a nonconvex function of t:. This property 
is related to the hysteresis phenomenon which caracterizes this type of materials 
ill the low and intermediate temperature ranges. The stress-strain relations are 
strongly temperature-dependent. The behavior goes from elastic, ideally-plastic at 
low temperatures, to pseudo elastic or superelastic at intermediate temperatures, to 
almost linearly elastic in the high temperature range. Shape memory and solid-solid 
phase transitions (martensitic transformations) are other peculiar characteristics 
of these materials whose dynamical behavior is described by system (1.1). For a 
detailed review of these and other properties and the derivations of the equations 
in (1.1) we refer the reader to [25] and the references therein. 

The boundary conditions mean that the body is clamped at both ends, thermally 
insulated at the left end and, at the right end, the rate of thermal exchange is 
prescribed. The nonlinear coupled equations in (1.1) are sometimes referred to as 
the equations of thermo-visco-elasto-plasticity. In particular, the first equation in 
(1.1) can be regarded as a nonlinear beam equation in u, while the second is a 
nonlinear heat equation in O. 

Initial boundary value problems of the type (1.1) have been studied by several 
authors ([15], [16], [21], [27], [28], [32], etc.; see [25] for a review). Initial efforts to 
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prove existence of solutions for this type of systems considered the heat flux in the 
form q = -kOx - akOxt , with a > 0, instead of the classical Fourier law (a = 0). 
This assumption introduces the additional term -akOxxt on the left hand side of the 
second equation in (1.1). Although this was done merely for mathematical reasons 
so that existence theorems could be proved ([15], [16], [21], [22]), it turns out that 
the second law of thermodynamics is not satisfied if Q: > 0, as it can be easily verified 
by checking the Clausius-Duhem inequality for the entropy production. Therefore, 
the case a > 0 has no physical meaning. The first results on existence of solutions 
for the case a = 0 are due to Sprekels ([27]). However, he imposed very strong 
growth conditions on the free energy Ill. In particular, those conditions excluded 
the physically relevant case in which III is given in the Landau-Ginzburg form (1.2). 
Later on, Zheng ([32]) derived certain apriori estimates from which he concluded 
that, if the initial data is smooth enough, then any local solution of (1.1) with W 
as in (1.2) can be extended globally in time. This result was later generalized by 
Sprekels and Zheng ([28]) to include more general free energy functionals. More 
recently, using a state-space approach ([25]) it was shown that system (1.1)-(1.2) 
has a local solution for a much broader set of initial data than the one considered 
in [28] and [32]. 

From a practical point of view it would 'be very important to find the values of all 
the parameters in (1.1)-(1.2) that "best fit" experimental data for a given material. 
This is called the parameter identification problem (ID problem in the sequel). 
Once this problem is solved, the next step is to determine how well this model can 
predict the dynamics of a given shape memory material which is subjected to certain 
external inputs. This is called the model validation problem. Although numerical 
experiments performed with system (1.1) have shown that physically reasonable 
results can be obtained for certain values of the parameters (see [4] and [19]), the 
ID problem still remains open. 

In order to establish the convergence of computational algorithms for parameter 
identification, one needs to show first that the solutions depend continuously on the 
parameters that one wants to estimate. As we shall see in the following section, 
system (1.1)-(1.2) can be written as a semilinear Cauchy problem of the form .i(t) = 

A(q)z(t)+F(q, t, z), z(O) = Zo, in an appropriate Hilbert space Zq, where q is a vector 
of admissible parameters, A( q) is a certain differential operator associated with the 
linear part of the partial differential equations in (1.1) and F(q, t, z) corresponds 
to the nonlinear part of the system. In [26] it was shown that the nonlinear term 
F(q, t, z) is locally Lipschitz continuous in the state variable z in the topology of 
the graph of (-A(q))'S, for any fJ > ~. Although this result is necessary to show the 
continuous dependence of the solutions of (1.1) with respect to the parameter q, it 
is not sufficient. In fact, it turns out that a key step in achieving this result involves 
proving that if {qn};::O=l is a sequence of admissible parameters converging to q, then 
the associated analytic semigroups T(tj qn) converge strongly to T(tj q) in the norm 
of the graph of ( - A( q))o. This is a much stronger result than the one obtained by 
using the well known Trotter-Kato Theorem (see [25], Theorem 4.1). 
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2. PRELIMINARIES AND STATE-SPACE FORMULATION 

In the sequel, an isomorphism will be understood to denote a bounded invertible 
operator from a Banach space onto another. 

Let X be a Banach space and X* its topological dual. We denote with (x*, x) ~ 

or (x, x*) the value of x* at x. For each x E X we define the duality set S(x) == 
{x* E X* : (x*,x) = 
IIxl12 = IIx*112}. The Hahn-Banach theorem implies that S(x) is nonempty for every 
x E X. If A is a linear operator in X with domain D(A), we say that A is dissipative 
iffor every x E D(A) there exists x* E S(x) such that Re(Ax,x*) ~ O. We say that 
A is strictly dissipative if A is dissipative and the condition Re(Ax, x*) = 0 for all 
x* E S (x) implies that x = O. If X is a Hilbert space then S (x) = {x} and therefore 
A is dissipative iff Re(Ax, x) ~ 0 for every x E D(A). We say that the operator A 
is maximal dissipative if A is dissipative and it has no proper dissipative extension. 
We say that the operator A is (maximal) accretive if -A is (maximal) dissipative. 
If the operator A is strictly dissipat~ve and maximal dissipative, we will simply say 
that A is strictly maximal dissipative. 

If A generates a strongly continuous semigroup T(t) on X then the type ofT is de

fined to be the real number wo(T) == inf !l~g IIT(t)ll. It can be shown that the type 
t>o t 

of a semigroup is either finite or equals -'-00. Moreover, wo(T) = lim! log IIT(t)lI. 
t-+co t 

Also, the semigroup T(t) is of negative type iff T(t) is exponentially stable, i.e., 
wo(T) < 0 iff 3M ? 1, a >0 such that IIT(t)1I ~ Me-at for all t > 0 (see [1, 
pp 17-21]). If the semigroup T(t) generated by A is analytic and u(A) denotes the 
spectrum of A, then wo(T) = sup Re). provided that u(A) i= 0 and wo(T) = -00 

AEt1(A) 

if u(A) = 0 (see [1]). 

Let us return now to our original problem (1.1)-(1.2). We define the function 
L(x, t) == or(t) cos(27rx) and the transformation O(x, t) = O(x, t) - L(x, t). We also 

define the stat, spa" Z = HJ(O, 1) n H'(O, 1) x L'(O, 1) x L'(O, 1), z = (;) E Z 

and the admissible parameter set 

Q == {q ~ (p,CV ,(3,a2,a4,a6,Oll'Y) I q E IR~o}' 

Next, we define in Z an inner product (., ')q depending on the parameter q as follows 

((n, (1)). =~ l' u"(x)u"(x)dx+p l' v(x);'(x)dx+ ~. l' w(x)w(x)dx 

and we denote by Zq the Hilbert space Z endowed with the inner product (., ')q. The 
norm induced by ("')q in Zq will be denoted by 1I·lIq' Note that these norms are all 
equivalent and, moreover, they are uniformly equivalent on compact subsets of Q. 
Then the initial boundary value problem (1.1) with \II as in (1.2) can be formally 
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written as an abstract semilinear Cauchy problem in Zq as follows 

( .i(t) = A(q)z(t) + F(q, t, z(t)), 

l z(O) = Zo, 

( 
U(X,t)) 

where z(t)(x) = ~t(x,t) , 
B(x,t) 

(2.1 ) 

. {( U) U E H:(O, 1), u(OJ = u(l) = 0 = u"(O) = ul/(I), } 
D (A(q)) = v E Zq v E Ho(O, 1) n H (0,1), , 

w wE H2(0, 1), w'(O) = 0, ';;w'(1) = -klW(I) 
(2.2) 

and fo, (~) ED (A(q)), 

A(q) (~) === (fJVII.~;UIIII') = (-l::. 
w ); w" 0 

(2.3) 

''''''''1.1 / , 

The element Zo is defined by 

zo(x) = ( ~~~~~ ) 
Bo(x) - Br(0)cos(2'7rX) 

and the nonlinear mapping F( q, t, z) : Q x [0, TJ x Zq --t Zq is defined by 

F(q,t'Z)=F(q,t,(~)) === (h(q~t,Z))' 
w !3(q,i,z) 

(2.4 ) 

where 

P!2(q, t, z)(x) = !(x, t) 

+ :x [2o:2(w(x) + L(x,t) - Bl)U'(X) - 4a4u'(X)3 + 6a6u'(X)5] , 

Cvh(q, t, z)(x) = g(x, t) + 2a2 (w(x) + L(x, t)) u'(x)v'(x) 

+ fJpV'(X)2 - CvBHt) COS(27TX) 

- 4k1r2 L(x, t). 

The following results can be found in [25J and [26J. 

Theorem 2.1. ([25]) Let q E Q and the operator A(q) : D (A(q)) C Zq --t Zq as 
defined by (2.2)-(2.3). Then 
i) A( q) is strictly maximal dissipative; 
ii) The adjoint A*(q) is also strictly maximal dissipative and is given by D (A*(q)) = 

D(A(q)), and fo, (n E D(A"Cq)) 

A*(q) (~) = (fJVII +V;UIfIf
) = 

W ..!!..w" 
Cu 

o 
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iii} 0 E p (A(q)), the resolvent set of A(q); 
iv) The spectrum 0' (A( q)) of A( q) consists only of eigenvalues, 0' (A( q)) = 0' P (A( q)) = 

P~'-, an}::"=l where A~'- = ffn (-r(q) ± Jr2 (q) - 1), an = -~, with Pn = 

,n47r4 () (3..jP d {}OO 11 th . . 1· f h . , -p-' r q = 2yf1 an Tn n=l are a e posItIve so utlOns 0 t e equatlOn P 

kl 
tan T = kT. The corresponding set of normalized eigenvectors in Zq is given by 

{ (;~~n ), (k:Xo~~n), UJ } ~~" 
whete en(x) = (p (Pn : I.\;t 12)) t sin( 7rnx), Xn(x) = (Cv forn ~::2(O d~) t cos( Tn X ) 

and P = I'n+I>.;t12. 
n I'n+l>'n F 

v) The operator A(q) generates an analytic semigroup T(t; q) of negative type which 
satisfies II T( t; q) Ilc(zq) ~ e-w(q)t, for t 2: 0, where w( q) is given by 

{ . (!:2I f!!i:..) 
ffiln C.' 2 ' 

w(q) = kr2 (3 2 2 

min ( ~, + - 2~ J (32 P - 4,) , 
if (32p ~ 4, 

if (32p > 4,. 

It will be useful to introduce some notation for certain interpolation spaces. If X 
is a Banach space and p 2:. 1 , L~(X) will denote the Banach space of all Bochner 

measurable mappings u : [0,00) -t X such that IlulljJ~(x) ~ fooo Ilu(t)ll~ '¥ < 00. Let 
X o, Xl be two Banach spaces with Xo continuously and densely embedded in Xl, 
p 2: 1 and () E (0,1). We shall denote by (Xo,Xl)e,p the space of averages (or "real" 
interpolation space) 

Endowed with the norm 

(Xo, Xl)e is a Banach space. In the particular case when p = 2 and X o, Xl are 
,p 

Hilbert spaces, we shall denote (Xo, Xde 2 = [Xo, Xlle· 

Since 0 E p(A(q)) and A(q) generates an analytic semigroup T(t;q), the fractional 
8-powers (-A( q))O of -A( q) are well defined, closed, linear, invertible operators for 
any 82:0 (see [23, pp 69-75]). Moreover, (-A(q)fO has the representation 
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where the integral converges in the uniform operator topology for every () > 0. Since 
A(q) is closed and ° E p(A(q», the operator (_A(q»5 is also closed and invertible 

for each () > O. Therefore, D (( _A(q))t) endowed with the topology of the graph 

norm is a Hilbert space. Since (( -A(q»O is boundedly invertible, the norm of the 
graph of (( _A(q»6 is equivalent to the norm Ilzllq,D ~ II( -A(q))6zllq. We shall 

denote by Zq,5 the Hilbert space D ((_A(q»)5) endmved with the 11·llq,s-norm. 

Theorem 2.2. ([26]) Let q E Q, A(q) : D (A(q» c Zq -+ Zq as defined by (2.2)
(2.3), 0 < () < 1 and Zq,S as defined above. Then 

i) Zq,o = [D (A(q» , Zq]l_O' in the sense of an isomorphism; 

ii) The norms IIZllq,o, Ilzll(D(A(q)),Zq),_6,2 and IIZllq + IllI-OA(q)T(t; q)zIIL~(Zq) arc 

all equivalent in D ((-A(q)~). 

The next lemma shows some relations between the spaces Zq,6 for different q's. 

Lemma 2.3. ([26]) Let () E (0,1). Then, 

i) For any pair q, q* E Q the spaces Zq,o and Zq',o are isomorphic. 
ii) Moreover, for any compact subset Qc of Q the norms {II' Ilg,s : q E Qc} 

are uniformly equivalent, i.e., there exist positive constants m, M such thai 

mllzll q,5:::; Ilzllq.,5 :::; MIIZllq,6 for every q, q* E Qc and all zED (( _A(q»)D) n 

D (( -A(q*»o). 

Consider the following standing hypotheses. 
(HI' rr'here ex:s' f"~~':on~}o' }' r T 2((\ 1 \ To' 1_\ "- (\ ~" T/ IX\ " (\ - - suc L 
\ J ~H . J"JUHL"J '" 'f' 'gC1.J\v,lj,llf\.L)~va.e.,llg\ )~va.e., .11 

that 

If(x, td - f(x, t2 )1 :::; Kf(x) It 1 - t21 and Ig(·T, td - g(:r, t2 )1 :::; f{g(x) !t l - t21 

for a.e. x E (0,1) and all iI, t2 E [O,T]. 
(H2) Or E HI (0, T) and O~ is locally Lipschitz continuous in (0, T). 

Theorem 2.4. ([26]) Let q E Q, ° < E < ~ and assume that the hypotheses (H1) 
and (H2) hold. Then, 

i) for any bounded subset U of [0, T] x Zq,f+' there exists a constant L = 
L( q, U, Or, f, g) such that 

liF(q, t l , ZI) - F(q, t2 , z2)ll q :::; L (It 1 - t21 + Ilz\ - z21Id+') 

for all (tl, zd, (t2, Z2) E U, i.e., the function F( q, t, z) : Q x [0, T] x Zq,f+< -+ Zq 
is locally Lipschitz continuous in t and z. Moreover the constant L can be 
chosen independent of q on any compact subset of Q; 

ii) for any initial data Zo E D ((-A(q))f+<), there exists il = tl(q,zo) > Osuch 

that the initial value problem (2.1) has a unique strong solution z(t; q) E 
1 

C ([0, td : Zq) n C I ((0, t l ) : Zq). Moreover ftz(t; q) E Cl~:< ((0, tl] : Zq), i.e., 
ftz(t; q) is locally Holder continuous on (0, tIl with exponent ~ - E. 
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Finally, we state the following theorem proved in [26], which states that for any com
pact -subset Qc of the admissible parameter set Q, it is possible to find a nontrivial 
common interval of existence for all solutions z(t, q), q E Qc. 

Theorem 2.5. ([26]) Let Qc be a compact subset of the admissible parameter 
set Q, qo E Qc, Zo E ZqQ,6, where ~ < 8 < 1. Let [0, tM(q)) = [0, tM(q, zo)) 
denote the maximum interval of existence of the solution z( tj q) with initial condition 
z(Oj q) = zoo Then 

3. CONTINUOUS DEPENDENCE ON THE MODEL PARAMETERS 

In this section we show that the mapping q ---+ z(. j q) from the space of admissible 
parameters Q into the space of solutions is continuous. More precisely, we shall 
show that if {qn}~=l is a sequence in Q converging to q E Q, then the sequence 
{z(t; qn)}~=l converges to z(tj q) in some appropriate sense. 

Throughout this section, to simplify the notation we will denote with An = A( qn), A = 
A(q), T"t(t) = T(t; qn), T(t) = T(t; q), zn(t) = z(t; qn) and z(t) = z(t; q). 

We shall need the following lemmas. 

Lemma 3.1. Let {qn}~=l be a sequence in Q, qn ---+ q E Q, and let A, An, T, Tn 
be as above. Then 

as n ---+ 00 

for every z E Zq and t > O. 

Proof. Let z E Zq. Since Tn(t), T(t) are analytic semigroups, Tn(t)z, T(t)z, are in 
D(An), D(A), respectively Vt > O. From Theorem 3.5 in [25] it follows that there 
exists an angle (), 0 < () < ~, such that the angular sector 

00 

Eo = {OJ U {A EtC: larg AI < i + ()} C p(A) n n p(An). 
n=l 

Now, let i < ()1 < i + () and let r be the path composed of the two rays 
re- i01 , re i01 , 0 :::; r < 00, r oriented so that Im(A) increases along r. We have 
the following expresions (see [23]) 

AT(t)z = ~ [ Ae>.tR(A;A)zdA, 2n ir 

AnTn{t)z = -21 . [Ae>.tR(AjAn)zdA, 
'Tn ir 

for every z E Zq, t > 0, where R(Ai A) = (AI - A)-I, R(Ai An) = (AI - An)-l. 
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II>.eM (R(>.; A) - R(>'; An)) Zllq ::; l>'jeRe(A)t C~I + I~I) IIZllq 

::; (1 + C)eRe(A)tllzllq E Ll(r), 

where the constant C appears because of the uniform equivalence of the norms 11·llqn 
and II . Ilq· Also, for any fixed>. E r 

In fact, 

II (R(>.; A) - R(>.; An)) Zllq -t 0 as n -t 00. 

II (R(>.; A) - R(>'; An)) Zllq = IIR(>.; An) [(U - An)R(>.; A) - I] Zllq 
= !!R(>.; An)(A - An)R(>.; A)zllq 
::; IIR(>.; An)IIC(Zq)II(A - An)R(>.; A)zllq 

which converges to zero as n goes to infinity by virtue of the uniform boundedness of 
iiR(.A; An)liC(Zq) and the strong convergence of An to A (which follows immediately 
from the definition of An and A, and the convergence of qn to q). 

The lemma then follows from (3.1) and the Dominated Convergence Theorem. • 

Lemma 3.2. Under the same hypotheses of Lemma 3.1 

II( -A)6(T(t) - Tn(t))Zllq -t 0 as n -t 00 

for every z E Zq, 8 E [0,1] and t ~ o. 

Remark. We note here that the assertion of Lemma 3.2 could be obtained imme
diately if (_A)6 commuted with Tn(t). However, this is not true since An does not 
commute with A, as it can be easily verified. 

Proof of Lemma 3.2. It suffices to show the result for E = 1. We can write 

IfA(T(t) - Tn(t))zll = II [AT(t) - AnTn(t) + (I - AA;l)AnTn(t)]zllq 

::; II(AT(t) - AnTn(t))zllq + III - AA;lllc(zq) IIAnTn(t)zllq· 
As a consequence of Lemma 3.1 the first term on the right of the above inequality 
tends to-zero as n goes to infinity and the sequence {IiAnTn(t)zllq}~=l is bounded. 
A straightforward calculation using the definition of A( q) shows that for any pair of 
admissible parameters q = (p,Cv,/3,a2,a4,a6,Ob"Y), ij = (p,Cv,~,a2,a4,a6,1J1!:Y) 

E Q and any z = (E) E z, 

A(qW'(q)z = ( (li - p(~) u~ + ';v ) , (3.2) 

from which it follows immediately that III - AA;;-lIIC(Zq) -t 0 as n -t 00. The 
theorem then follows. • 
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Lemma 3.3. Let Qc be a compact subset of Q. Then for any 6 E [0, 1] there exists 
a constant G depending only on 6 and Qc such that . 

Proof. Since the operator A(q) is maximal dissipative (Theorem 2.1), the space Zq,6 
is isomorphic to the real interpolation space [D(A(q)), Zqh-6, of order 1- 6 between 
Zq and D(A(q)) (see [1]), i.e. 

(3.3) 

From (3.2) it follows that there exists a constant G depending only on Qc such 
that IIA(q)A-1(q)zllti ~ Gllzllti for every q, q E Qc, z E Zq. Letting'fJ = A-l(q)z we 
obtain 

for all q, q E Qc, 'fJ E D(A(q)). (3.4) 

Since the 1I·llq-norms are uniformly equivalent for q E Qc, it follows from (3.4) and 
(3.3) that the norms 1I'lIq,6 are also uniformly equivalent for q E Qc. Thus, for any 
ql, q2, q3 E Qc 

II( -A(qt))6( -A(q2)t6 Zllq3 ~ G11I( -A(ql))6( -A( q2))-6 Zllql 

= GllI( -A(q2))-6Zllq106 

~ Gl G2 11( -A(q2))-6z ll q2 ,6 

= Gl G211Z llq2 

~ Gl G2 G3 11 Z llq3' 

where the constants Gi , i = 1,2,3, depend only on Qc and 6. • 
Remark. Since Tn(t) is an analytic semi group of contractions, by a well known 
result on semigroup theory ([23]), for any 6 E (0,1], there exists a constant G6 

independent of n such that 

where Vn is any angle in (~,7r) for which 

As we mentioned in Lemma 3.1, in this case the angle Vn above can be chosen 
independent of n. Hence, there exists a constant 66 depending only on 6 such that 

Next, we state a lemma whose proof can be found in [14] (Lemma 7.1.1). 
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Lemma 3.4. Suppose L ~ 0,0 < 8 < 1 and aCt) is a nonnegative, locally integrable 
function on 0 S t S T. Let u(t) be a real valued function defined on [0, T] satisfying 

it 1 
u(t)sa(t)+L ( )ou(s)ds 

o t - s 

on this interval. Then, there exists a constant I< = I< (8) such that 

u(t) S aCt) + I<L t ( a(s\o ds for 0 S t < T. 10 t - s 

The following theorem will be essential for our main result. 

Theorem 3.5. Let 8 E (~, 1), {qn}~=l C Q, qn ~ q E Q, and zn(t), z(t) be the 
solutions of the NP (2.1) with initial datum Zo E D (( _A)5) corresponding to the 
parameters qn and q, respectively, and let [0, t l ) be the maximal interval of existence 
of z(t). Then, for any t~ < tl there exists a constant No such that zn(t) exists on 
[0, t~l [or every n ~ No and a constant D such that 

Proof. Let 8 E G, 1), 0 < t~ < t l , and t~ > 0 be such that zn(t) exists on [0, t~) for 
each n E IN. Then, for t E [0, rnin{t~, q}) . 

z(t) = T(t)zo + lt T(t - s)F(s,z(s))ds 

which imply 

IIZ(t)-zn(t)lIq,o = 11(-A)Oz(t) - (-A)Ozn(t)llq 

S 11(-A)5 (T(t) - Tn(t)) zollq 

+ lilt (-A)OT(t - s)F(q, s, z(s)) - (-A)OTn(t - s)F(qn,s, zn(s)) dSllq 

S lie _A)5 (T(t) - Tn(t)) zollq 

+ 111\ -A)OT(t - s)F(q, s, z(s)) - (-A)OI~(t - s)F(q, s, z{s)) dSll
q 

+ lilt (-AlTn(t - s) [F(q, s, z(s)) - F(qn,s, z(s))] dSll q 

+ Illt(-A)5Tn(t - s) [F(qn,s,z(s)) - F(qn,s,Zn(S))] dS\\q 

~ I~(t) + I;(t) + I;(t) + I:(t). 
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Note that, even when this last inequality is true on [0, min{t~, tn), If(t), I;(t) and 
13(t) _are well defined on [0, t~l. 

We have the following estimates 

I;(t) ::; it II (-A)5Tn{t - s )IIC(Zq) IIF( q, s, z(s)) - F( qn, s, z(s ))lIq ds 

::; Ct it II( -An)5Tn{t - s)IIC(Zqn)IIF(q, s, z(s)) - F(qn, s, z(s))lIq ds 

i t C5 
::; Ct ( )5I1F(q,s,z(s)) - F(qn,s,z(s))lIqds. 

o t - s 

The second and third inequality follow from Lemma 3.3 and the Remark preceding 
Lemma 3.4, respectively. Now, for any s E [0, t~], IIF(q, s, z( s))-F( qn, s, z(s)) IIq ---t ° 
as n ---t 00. Also, there exists a constant C2 independent of n such that IIF( q, s, z(s))
F( qn, s, z( s)) IIq ::; C2 for every s E [0, t~], which follows easily from the continuity 
of z(s) and the definition of F. Therefore, 13(t) ---t ° as n ---too on [O,t~l by the 

. Ct C2C5 t 5 
Dommated Convergence Theorem and 13(t)::; 1 _ 8 t - , Vn E IN, Vt E [0, t~l· 

To estimate I;(t), observe that 

I;(t) ::; lt II( _A)5 (T(t - s) - Tn{t - s)) F(q, s, z(s ))lIq ds. 

Now, IIF(q,s,z(s))lIq is uniformly bounded on [O,t~], say IIF(q,s,z(s))lIq < C3 , 

Vt E [0, t~l and 

II( -A)5(T(t - s)-Tn{t - s))lIc(zq) 

::; 1I(-A)5T(t - s)lIc(zq) + II (-A)5Tn{t - s)lIc(zq) 

::; 1I(-A)5T(t - s)lIc(zq) + CII(-An)5Tn{t - s)lIc(zqn) 
C5 - CC5 C4 

::; (t - s)5 + (t - s)5 = (t - s)5· 

,On the other hand, for any s E [0, t~l we have 

II( _A)5 (T(t - s) - Tn{t - s)) F(q, s, z(s))lIq ---t ° as n ---t 00 

by Lemma 3.2.· Therefore I;(t) ---t ° as n ---t 00 by.the Dominated Convergence 

Theorem, and also I;(t) ::; ~~;tt-5, Vn, Vt E [0, t~l 
In regard to If(t) observe that 

I~(t) = II( _A)O (Tn(t) - T(t)) zollq 
= II( _A)5( -Ant5( -An)5Tn(t)Zo - (-A)5T(t)zollq 

::; C IITn{t)(-An)5Zollq + IIT(t)(-A)5 zo ll q 

::; C IITn(t)lIc(zq) C 11(-A)5zo llq + IIT(t)lIc(zq) 11(-A)5zo llq 
::; Csll( -At zollq, 
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where we have used that Zo E D (( _A)6) and the semigroups are contractive. Also, 
by Lemma 3.2 If(t) -r 0 as n -r 00. 

Similarly, 

From the above estimates on If(t), T;(t), I~(t) and I;(t), there follows 

where, for all t E [0, t~], €n(t) ~ If(t) + T;(t) + 13'(t) satisfies 0 ::; €n(t) ::; C7 

for all n E lN and €n(t) -r 0 as n -r 00. In particular, these conditions imply 
(t' 

Jo 1 €n(t) dt -r 0 as n -r 00. 

Let K = K(8) be as in Lemma 3.4 and define 1< ~ C7 + C6 C7 K and M ~ 
. sUPO~t9; IIz(t)llq,6. From the continuity of z(t) it follows that M < 00. Let 

n E IN. Since z(O) = zn(O) = zo, there exists 8n > 0 such that Ilzn(t)llq,6 ::; 
M + 21< for all t E [0,8n l. Let L be a Lipschitz constant for F on the set 

U ~ [O,t~l X {llzlls::; M +21<}, valid for q and all the qn's. Then, from (3.5) 
and Lemma 3.4, we have 

Now, 

it €n(S). d it C7 d 
S < S 

o (t - S Y - 0 (t - s)6 

it 1 
= C7 6 ds 

o S 

= ~tl-6. 
1 - 8 

(3.6) 

1-8 
Choosing TJ = TJ(L) > 0 sufficiently small so that t1- O ::; ~ for every t E [0, TJ]' it 

follows that 

t €n(s) C7 
io (t_s)6 ds ::;2L foreverytE[0,TJ1· (3.7) 
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On the other hand, if 1'/ < t ~ t~ 

t fn{t) ds = r fn{t - S) ds 
10 (t-s)6 10 s6 

= r _En....:...{ t-::~,--s....:..) ds + it fn (t ~ s) ds 
10 s '1/ S 

< --.!... + - f (t - s) ds C lit 
- 2L 1'/6 0 n 

. C7 1 r~ 
~ 2L + 1'/6 10 fn{S) ds. 

Hence, since J;~ En (s) ds ---t 0, there exists No such that 

r fn{t) < C7 + C7 = C7 Vt E ['TI,tl'] and n >_ Mo. (3.8) 
10 (t-s)6 - 2L 2L L ., 

From (3.7) and (3.8) it follows that 

fn{t) ~ C7 + C6C7K Vt E [0, t~] and n ~ No. (3.9) 

Consequently, from (3.6) and (3.9) 

IIzn{t) - z{t)lIq,6 ~ K Vn ~ No and t E [0,8nl. 

which implies 
(3.10) 

Finally, let n ~ No be fixed. We claim that z.n{t) exis·ts on [0, t~] and for t E [0, t~], 
Ilzn{t)lIq,6 < M +2K. In fact, suppose, on the contrary, that there exists t* ~ t~ such 

that IIzn(t*)lIq,6 = M + 2K and Ilzn{t)lIq,6 < M + 2K for ° ~ t < t*. Then, in (3.6), 
8n can be replaced by t* and (3.10) follows with 8n = t*, i.e. IIzn{t)lIq,6 ~ M + K 
on [0, t*]. This contradicts Ilzn(t*)lIq,6 = M + 2K. The theorem then follows taking 

D =M +2K. • 

Theorem 3.6. Under the same hypotheses of Theorem 3.5 

IIZn{t) - z{t)lIq,6 ---t 0, as n ---t 00 

for every t E [0, tl)' 

Remark. If the initial data is smooth enough, then the results. in [28] and [32] 
imply that tl = 00 and therefore, this theorem ensures the II . IIq,6-Convergence of 
zn{t) to z{t) on the whole interval [0,00). 

Proof ~f Theorem 3.6. Let 8 E U' 1) and t~ < t l . By Theorem 3.5 there exist 
No E IN and D > ° such that Zn{t) exists and II zn{t) II q,6 .~ D on [0, t~] for every 
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n 2:: No. Following the steps of Theorem 3.5 we see that for every t E [0, t~l and 
n 2:: No 

where 0 ::; fn(t) ::; C7 and fn(t) -t 0 as n -t 00 for every t E [0, t~J. In the 
last inequality we have used the fact that F is locally Lipschitz continuous and 

Ilzn(t)llq,o ::; D, Vn 2:: No, Vt E [0, til. 
Hence, by Lemma 3.4, there exists J{ > 0 such that 

as n -t 00. 

Since t~ is arbitrary, the theorem follows. • 
4. CONCLUSIONS 

In this paper we have shown that the solutions ·of the IBVP (1.1), with free en
ergy potential \II in the Landau-Ginzburg form (1.2), depend continuously on the 
parameters p, Cv , /3, fr2, fr4, fr6, 01 and "y. In particular, we have shown that if {qn = 

(Pn, Cv,n, /3n, fr2,n, 

fr4,n, fr6,n, B1,n, "Yn)}~=1 is a sequence of admissible parameters converging to the ad
missible parameter q, then not only z(t; qn) -t z(t; q) in the norm of Zq, but also in 
the stronger II . Ilq,o-norm (6 = ~ + f). This constitutes an important step towards 
solving the parameter identifiability and the ID problems for system (1.1). These 
problems, to which we are already devoting efforts, involve also showing that the 
mapping q -t z(- ; q) from the admissible parameter set Q into the space of solutions 
is locally one-to-one. Results on this issue will be published in a forthcoming articie. 
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THE a-CONCENTRATION OF PROCACCIA OF INFINITE WORDS 
IN FINITELY GENERATED FUCHSIAN GROUPS. 

E. CESARATTO 

ABSTRACT. In order to study the spectral decomposition (a,f(a» of Procaccia 

of the limit set L(G) of a finitely generated Fuchsian group G of rigid movements 

in the hyperbolic half plane IH, it is necessary to calculate the a of each element 

of L(G). Each such element is an allowed infinite word, each letter a generator of 

G. In this paper we calculate first the 0' of the periodic infinite words, and use 

this result in order to calculate the 0' of the non-periodic irrational words. 

SECTIO]\" 1. INTRODUCTION. 

In 1993, a method [lJ was proposed to generate fractals n such that their multifractal 
decomposition (0', f( 0')) of Procaccia modelled all (0', f( 0')) curves in the Tel classifi
cation [2J. 

The importance of the curves (0', f( 0')) in the Tel classification and their relevance 
to the study of a variety of physical phenomena is described in [1]. The fractal sets 
n generated in [lJ are the limit sets n=L(G) of minimally generated groups G, all 
generators being rigid movements in IH and having zero trace. 

The importance of expressing the elements of n =L(G) by means of an infinite word 
code -each letter a generator of G- is reviewed in [3]. 

Let us deal then with the 0' - concentration of Procaccia of infinite words coding for 
elements in n =L( G), when G is minimally generated by zero-trace generators (three 
generators) . 

Generators A, B, and C have zero trace; then no two letters can be repeated in an 
allowed word, i.e. a word with correct spelling. Words WI = ABABAB ... and W2 = 

ABCABC ... are allowed words denoting two different points in the fractal Sl=L(G), 
whereas word AABBAABBAABB ... denotes no point in L(G), and does not have a 
correct spelling. 

The transformations S=AB and T=ABC have Itracel > 2, i.e. they are hyperbolic 
transformations. Therefore words WI and W2 can be written as infinite words WI = 

SSS's ... and W2 = TTTT ... with hyperbolic letters. 
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This paper deals with the a of infinite words written with hyperbolic letters; specifically, 
we will calculate the a of infinite words in L(G), here G is a group generated by two 
hyperbolic operators: two rigid movements in HI. 

The results can be easily extended to groups with any finite member of generators. 

SECTION 2. CONSTRUCTION OF THE LIMIT SET IF OF A FUCHSIAN SEMI
GROUP GENERATED BY TWO HYPERBOLIC 2 X 2 MATRICES. 

SECTION 2.1. GENERALITIES AND NOTATION. 

Let T( z) = az + db be an element ~f the unimodular group U, i.e. - a, b, e, and d are 
cz + 

integers, and ad - be = 1. The transformation T(z) operates on the values 

z E HI = {x + iy/y > o}, T: HI -+ HI , 

Let us recall that the set {z E HI/lcz+dl :::; I} = {z/IT'(z)1 ~ I} is the isometric circle 
of T = T(z). With CT, gT, and rT we will denote the isometric circle of T, its centre, 
and its radius, respectively. 

-d 1 
We have 9 = -;:;- and r = ~ . 

Let us also recall that every hyperbolic T = (: !) (i.e.ltraeeTI = la + dl > 2) has 

two real fixed numbers; one an attractor, the other a repeller. The repeller belongs to 
CT, and the attractor, hereafter denoted as eT, is 8J.ways inside CT-I. Let us recall 
that if A is hyperbolic then HI - CA is mapped, by A, onto Int,CA-I, and that aCA 
is mapped onto ac A-I . 

From now on, A and B will be hyperbolic elements of U such that CA,CA-I,CB and 
CB -' , are disjoint (see Fig.I) 

Let SeA, B) denote the semigroup generated by A and B. Let x E HI - (CA U CB). 
Let IF(x) denote the limit set of {T(x )/T E SeA, B)}. It is not hard to prove that, if 
y E HI - (CA U CB) , y -# x ,we have IF(x) = IF(y). Hence, with IF we will denote 
IF(x) (for any x in HI), and we will call it the limit set of SeA, B). 

SECTION 2.2. 

Let us now construct a fractal F associated with SeA, B). We will construct it in stages, 
following an iterative process similar to the one that yields the Cantor ternary. Let us 
write 

R = {x E IR/x tJ- CAl and S = {x E IR/x tJ- CB} 

STEP 1. We have, then, cl.A(R) = CA -1 n IR and cl.B{S) = CB -' n IR. These 
two segments, disjoint by our assumption on the transformations A and B, will be the 
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analogue of the two segments [0,1/3] and [2/3,1] which constitute the first step in 
the construction of the Cantor ternary. Par abus de langage, and only when there is 
no danger of confusion, we will denote with the letters A and B (the same letters that 
denote the hyperbolic generators), these two sets A(R) and B(S), which are the two 
segments of the first step; see Fig.2. 

STEP 2. In strict analogy to the construction of the Cantor set, we continue with the 
second step of our iterative process, as shown in Fig.3. 

STEP 3. The third step is shown in Fig 4 . 

... and so on ad infinitum. The fractal F is obtained like the Cantor ternary, i.e. it is 
the intersection of all these steps. 

Note. Hereafter, with a word of two letters A and 13,of length N, we will refer indistinctly 
to the corresponding transformation in S(A, B), and to the corresponding segment in 
step N in the construction of F just described. Notice that F is well constructed: 
all segments in step N il-.re disjoint and contained in some segment in step N -1: 

They are disjoint, since C A -1 nCB -1 = 0 by the hypothesis, and since both A and 13 
are one-to-one. 

They are contained in some segment in step N-1: let us prove, e.g., that segment ABA 
is contained in segment AB: 

ABA = AB[A(R)] = AB(CA-l n IR) C AB(S) = A(CB-, n IR) = AB 

The same reasoning holds for every case, as we only use CB -'IIIR C Rand CA-l nIR C 
S. 

Thus, the 2N disjoint segments in step N are a covering of F. 

SECTION 2.3. 

We will prove now that IF = F. 

1) IF C F. The proof is quite easy: Let us first notice that we can associate a semicircle 
. to each segment in any step N of the construction of F, as shown in Fig.5. 

Par un tres grand abus de langage indeed, we will denote, with a word of N letters 
A&B , three things now: the corresponding transformation, the corresponding segment 
in the step N of the construction of F, and the corresponding associated semicircle, and 
we will make sure that there will be no danger of confusion. 

Let us now consider e E IF. e is, then, a point in IR, approximated by elements of a 
convergent sequence {TN(X)} NElN, where TN is a transformation of N letters A and B, 
and x is, as before, in lH - (CA U CB). The reader can infer that ~ is in F by pondering 
on the following facts: 
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a) ~ E IR, 

b) TN(X)---'~ as N---tiXJ, 

c) TN( x) belong to smaller and smaller semicircles TN, like the ones in Fig.5, 
which have to be -for big values of N- one inside the other, due to the convergence 
of {TN(X)} , N E 1N. 

d) The closeness of the segments in step N of the construction of F, and the inclusion 
of the boundary of the semicircles referred to in c) completes what we need to prove 
that ~ E F. 

2) Fe IF is an easy excercise, left to the reader. 

SECTION 3. THE INFINITE WORDS IN F AND THEIR a -CONCENTRATION OF 
PROCACCIA. 

SECTION 3.1. INFINITE WORDS. 

Let us recall that the finite words of length N made up of two letters A and B are a 
covering of F by disjoint closed segments; with C N we will denote this covering. Each 
~ E F will belong to just one such segment IN(~) in CN. For growing values ofN, there 
is a unique sequence of such intervals of decreasing size, one inside the other, associated 
with a growing-in-length word in letters A and B. Therefore, ~ is represented by a 
unique infinite word. 

Such an infinite word in two letters can have a structure analogous to that of a rational 
number written in a binary way, that is,' it can have a period, indefinitely repeated, 
preceded by a finite number of letters which do not necessarily show a periodic ar
rangement. When such is the case, we will say that ~ is represented by a "rational 
word". 

Observation: if the finite word T is the period of a rational infinite word ~, then ~, as 
a point, is the fixed point atractor ~T of the corresponding transformation T. 

Lemma 1: The set of rational word points in F is dense in F with the usual topology of 
IR. This density is also valid if the topology of IR is replaced by the one associated with 

the Hausdorff measure corresponding to the Hausdorff dimension of the fractal set F. 

The proof is left to the interested reader. 

SECTION 3.2. THE a-CONCENTRATION OF PROCACCIA a(~) ASSOCIATED 
WITH A POINT ~ E F. 

Following Procaccia, Hensen and others [4], we consider the set F endowed with a prob
ability measure P, and let us recall that the concentration of Procaccia relates lengths 
of intervals IN -in the covering by intervals CN - to the corresponding probabilities 
P(IN n F) associated with each F n IN, in the following way: 

P(IN n F) = [11 (IN )]",UN), 
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where J-L is the usual measure in IR 1 . 

Hereafter, we will consider all such intervals IN in eN as equiprobable, so that P(IN n 
F) = ~. for any of the 2N intervals in the Nth step of the construction of F. 

If e E F, then there is a unique IN = IN(O to which e belongs. We will define the 
"N-aproximated 0: -- concentration of C' -abbreviated as o:N(O- by the quotient 

We know that [4] 

when the limit exists. 

SECTION 3.3. THE CONCENTRATION 0:(0 OF POINTS e ASSOCIATED WITH 
AN INFINITE RATIONAL WORD. 

We will prove 

Theorem 1: Let e be a point associated with an infinite rational word, in letters A 
and B. Let m E IN be the number of letters in the period of this rational word. Let T 
be the period itself, a finite word of m letters. Then 

0: e _ m ln2 
( ) - 2 lnlautTI' 

where autT indicate.s the largest eigenvalue of T, in absolute value. 

Proof: The author has proved this lemma in [3]. 

SECTION 3.4. THE CONCENTRATION 0:(0 OF POINTS e ASSOCIATED WITH 
ANY INFINITE WORD, RATIONAL OR NOT. 

The following theorem expresses the concentration 0:( e), e an irrational word, in terms 
of the 0: - concentration of different rational words. 

Theorem 2: Let e E F and N E IN. Let IN(e) be the only interval in eN to which 
e belongs. Let TN be the word of N letters A and B associated with the interval IN(~)' 
Let us consider the corresponding transformation TN, and let us denote by ~N its fixed 
point (attractor). 

Then we have: 

lim o:(eN) = 0:(0 
N-+oo 

Proof: We need a 
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Lemma: Under all hypothesis of theorem 2 we have 

Let us suppose the lemma already proved. Let us consider the infinite rational word of 
period TN. Since we saw that the corresponding associated point is precisely ~N (see 
the observation in section 3.1), we will think of ~N also as an infinite rational word, 
with a period of N letters. 

We will show that 

that is, the concentration of ~ will be approximated by concentrations of rational words. 

Now: 

Let to > 0 be arbitrary and fixed. By our lemma, there exists No E IN such that 
N ~ No implies 

N to 
IO:(~N) - 0: (~N)I < 2' 

Next, we observe that IN (0 = IN (~N) for every N E IN. Therefore, o:N (~N )_o:N (~) = 

O. 

Since, by definition, 
0:(0 = lim o:N (0, 

N-+oo 

there exists NI E IN such that N ~ NI implies 

The theorem is proved. 

SECTION 3.5. PROOF OF THE LEMMA IN SECTION 3.4. 

We know that 

Let us follow the three steps shown below: 

Nln2 1 = 
21nlautTNI 
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Claim I 

N clp - ql 
Iln[p(I (~N))ll ~ lnl P N82 I, 

where c, p, q, 8 , and L are constants depending only on A and B, and L > 1. 

Claim II 

IlnlautTNl1 ~ lnILN~I, 
c 

where L,8, and c are the same constants in Claim 1. 

Claim III 

where ]( is a constant not depending on N. 

Proof of Claim I. 

Let p and q be the extremes of the interval C A -1 if TN ends in A; otherwise they are 
the extremes of the segment CB -, . 

Then we have that 

laNdN(p - q) - bNcN(P - q)1 

icNP + dNlicNq + dNI 
(2) 

a) Let us deal next with Ip + ~I and Iq + ~I. In order to fix ideas let us suppose 
that TN ends in B. We can write 

and let u§ c~ecall that __ !!:.1L = gTN is the centre of isometric circle of TN. 
eN 

We have that CTN C C A since TN ends in B, and therefore gTN E C A -see Fig 6. 

Let us define 

8 = min {distances between all extremes of the segments CA, CB, C A-" C B-1} 
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as shown in the same figure. We can clearly observe that 

b) Let us deal now with Ic~12. In order to fix ideas, let us suppose that TN ends in 

A, i.e. let us write 

Let us recall that Ic~1 is the radius of the isometric circle of TN. Therefore 

1 rTN_lrA 

ICN\ = rTN = 19k1 - 9TN-ll' 
(3) 

where 9A-l and 9TN-l are the centres of the isometric circles of A-I and TN-I 

respecti vely. 

We can strengthen this fact by observing Fig.6 carefully and deducing that there exists 
L > 1 depending solely on the value of {j, such that 

Therefore 

Iterating this procedure we can write 

where C is a constant which does not depend on N. Therefore 

(4) 

From equations (2), (3), and (4) we obtain 
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Since J.L([N (e)) --+ 0 as N --+ 00, we can safely work with values J.L([N (e)) < 1 and 
~~).-6\1 < 1. But Ilnxl is a decreasing function for 0 < x < 1, therefore 

which is claim I. 

Proof of claim II 

aN + dN + J( aN + dN)2 - 4 
Let us suppose that 2 is t~e largest eigenvalue of TN In 

absolute value .. Then 
eN= aN-dN +J(aN+dN)2_4 
. . 2CN 

is the fixed point attractor of TN. Then we can writ.e 

= CN(aN - dN + J(aN +dN)2 -4 + 2dN) = 
2CN 

= CN(aN - dN + J(aN + dN)2 - 4 _ (_ dN )}= CN(eN _ 9TN). (5) 
2CN CN 

aN +dN - J(aN +dN)2-4 
The same argument holds if is the largest eingevalue of 

2 
·TN in absolute value. 

Now eN E CA-l or to CB-l, and _!!:.K E CA or to CB, respectively; therefore, we 
eN 

again have 
(6) 

We will next use Eqs. (5), (4), and (6), in order to obtain 

Therefore 
lautTN I --+ 00 as N --+ 00, 

and we can assume that 

from which 

which '~s claim II. 
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From Eqs.(5) and (2) we have 

lautT 12 (J (1:» - Ie 12111: _ 12 Ip - ql = 
N p, N <" - N r."N gTN Ie 121 + !!KII +!!KI 

N p CN q CN 

_ Ip - qlleN - gTNI2 

- Ip+ ~llq+ ~I 
Next, a glance at Fig.6 shows that Eqs. (3) and (6) can be rewritten as 

and 

and from (3) and (6') we have 

Ip - qlleN - gTN 12 < Ip - qlleN - gTNI2 < Ip - ql62 

Ip+~llq + ~I - 82 - 82 

Also, from Eqs.(3') and (6) we obtain 

Ip - qlleN - gTN 12 > Ip - qlleN - gTN 12 > Ip - ql82 

Ip+~llq+~1 - 6 2 - 6 2 

We have estimated the quotient (7) above and below. 

Therefore 

Which is claim III. 

Claims I, II, III, yield 

N In[lautTNI2p,(JN(e»] 
la (eN) - a(eN)1 = Nln2/2 11n[lautTNllln[p,(IN(e»] I ::; 

::; Nln2/2 I In [lautTN12p,(;N(e)] I ::; Nln2/2 11n[lautTNIp,(I;(e»] I::; 
In[lautTNlln[£2~~2~] In[LN 8/G]ln[L2t~~2qJ] 

Nln2/2 I K , I = 
In[LN 8/G]ln[~~N~~I] 

(7) 

K 
= Nln2/2 I (NlnL + In8 /G)( -2NlnL + lnlp _ qlG / 82 ) I - 0 as N -. 00 q~e.d. 
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A MODIFICATION OF THE ERA AND A DETERMINANT AL 
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Abstract 

Recently, a new stability criterion for systems of differential equations with 
complex coefficients has been advanced. It is based on a sequence of polynomials 
associated with the system. This criterion known as the Extended Routh Array (ERA) 
suffers the defect that it gets cumbersome and highly complicated as the dimension of 
the system gets large. In this paper, we propose a modification of the ERA which 
reduces significantly the burden of computations. The modified array requires only 
computations of a set of second order determinants. The new algorithm is then applied 
to produce a determinantal criterion for the stability of the above systems. 
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1. Introduction 

Tests of stability of systems of differential equations are crucial in many areas 
of mathematical analysis. In the case of real coefficients, the classical Routh-Hurwitz 
criterion gives a quite complete solution, among many others see [1,2,3,5]. The case 
of complex coefficients has recently become an active area of research. Different 
approaches to this interesting problem are recorded in the literature, see for example 
[4,6,7,8]. The Extended Routh Array (ERA) introduced in [7] settles the stability of 
systems with complex coefficients. 

However, a large amount of computations will be involved to produce the ERA 
when the dimension of the system becomes high. Therefore, there is a need to work 
towards more simplified versions of the ERA. The establishment of simpler and more 
easily realizable criteria in practice will also further the theoretical development of the 
subject. 

In this paper we address this problem and we propose a modification of the 
ERA which we call the Modified Extended Routh Array (MERA), where much simpler 
arithmetic is performed. At each step of the MERA only the calculation of a second 
order determinant is required. Furthermore, we exploit the MERA towards a new 
determinantal criterion for the asymptotic stability of a system of differential equations 
with complex coefficients. 

In section 2 we give a quick reminder of the ERA and the way it is constructed. 
In section 3, we introduce the MERA and we prove that it is in fact another algorithm 
for testing the stability of complex systems, from which the equivalence of the MERA 
and the ERA follows. A determinantal approach to the stability problem is introduced 
in section 4. We end up in section 5 with some concluding remarks. 

2. The Extended Routh Array 

All the terminology of this section is taken from [7]. Suppose 
I(z) = zn +alzn-I + ... +an_2z 2 +an_Iz +an (1) 

is the characteristic polynomial of a system of differential equations with complex 
coefficients and of arbitrary dimensiort. Consider the rational function: 

h(z) = zn +i Imalz n-I + Rea2z n-2 +ilma3z n-3 + Rea4z n-4 + ..... 
R n-J· I n-2 R n-3· I n-4 ealz +1 ma2z + ea3z +1 ma4z + ..... 

The function h(z) is sometimes referred to as the test fraction associated with the 
system [8]. 

Let II be the· numerator and 12 the denominator of h. Suppose Re a l ~ 0, 
and call 13 the remainder of the division of f. by 12' By induction, define the 

polynomial Ii to be the remainder of the division of li- 2 by Ii-I for j = 3, ... , n+ 1. 

Lemma 4.1 of [7] expresses explicitly the coefficients of Ii in terms of those of Ii-I 

and I j -2' The ERA is the following array in which the j-th row represents the 

coefficients of II for j = 1,2, 3, ... , n+ 1 and where each row is completed by zeros to 

the size of the first row. We assume no zeros exist in the first column: 
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iImal Rea2 ilma3 Rea4 iImas 

Real ilma2 Rea3 ilma4 Reas 

b31 b3.2 b- 3 J, b3.4 

b4,l b42 b4,3 

o 

where 

b3,l =_I_(Real.Rea2 -Rea3 )- iIma2, (iReal.lmal -iIma2 ) , 

Real (Rea,Y 

b3,2 = _1_(iReal.lma3 -iImaJ- Rea32 (iReal.Imal -iIma2 ) , 

Real (Real) 
. 1 b32 • 

b4 ,l = b(b3,1' Rea3 - Real .b3•3 ) - b; (/b3•I .Ima2 - Real .b3.2 ) , 

3,1 3.1 

b4 ,2 = f-(ib3.1' Ima4 - Real .b3,4) - !3;3 (ib3.1 .Ima2 - Real .bJ.2) , 
3.1 3.1 

and so on. 
Theorem 4.1 of[7] states the following: 

Theorem 1. The system with characteristic polynomial (I) is asymptotically stable if 
and only if each tenn of the first column of the ERA is positive, where asymptotic 
stability is as defined in [7]. 

3. The Modified Extended Routh Array 

Consider the following array in which the first and second row are the same as 
in the ERA. We call the new array the Modified Extended Routh Array (:MERA) for 
reasons to become clear later. The c's and the d's along with their respective 
subscripts have been so chosen for technical purposes. 

dOl d02 d03 d04 dos 
d ll d l2 dl3 dl4 dIS 

CII C l2 C 13 C l4 

d 21 d22 d23 d 24 

C 21 C 22 C 23 

d 31 d32 d 33 



where 

and 

d _ {Reak _1 
Ok - ilmak_1 
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k~3 and odd 

k even 

k odd 

k even 

d = d 21 ,C22 - C21 ·d22 d _ d 21 ,C23 - C21 ·d23 d _ d:' J ,C24 - c2J .d24 
3J , 32 - , 33 - , .•• 

d21 d21 d21 

The following theorem implies the equivalence between the ERA and the MERA. 

Theorem 2. The system with characteristic polynomial (1) is asymptotically stable if 
and only if dkl > 0 for all k = 1, ... , n. 

Proof Suppose the system is asymptotically stable, then by [7, theorem 3.2] the test 
fraction h(z) can be expanded in the following continued fraction expansion: 

h(z) =ao +hoz+ 
1 

a J + biZ + -------------
a2 + b2z+ .. ·+-------1-

an_ 2 + bn_2z + ---
an_J + bn_lz 

where Reak == 0 and bk > 0 for k = 0, ... , n-1. 

The proof of theorem 4.1 of [7] makes it clear how the coefficients bk in the 

above expansion relate to the first column of the ERA, namely 
b 

b =~ 
k b ' 

k+2.1 

for k = 0, ... , n-l, where we suppose that hl.l = 1 and b2.J = ReaJ • 

The polynomials II' f2' ... , In+1 forming the ERA are related by the 
recurrence relations: 
Ik+1 = (ak +bk z)/k+2 + Ik+3 , k = 0, ... , n-l, 

1n+2 = O. 
These recurrence relations are simply another version of lemma 4.1 of[7]. 

Upon checking these relations, we see that the terms that arise are exactly those 
contained in the MERA. Therefore, the following continued fraction expansion arises 
out of the terms of the MERA, 

h(z) = Co + doz + ------------
ci + dlz + ---------,1-

Cz +d2z+ ... +---
cn_ 1 +dn_Jz 
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d 
where dk = _k_l_ for k = 0, 1, ... , n-1. 

d(k+l)l 

From the uniqueness of the continued fraction expansion ofh(z) [7, section 3], 
we conclude that hk = d k for k = 0, I, ... , n-1. 

We claim that 

for all k = 0, 1, ... ,n. 

I ~I ~1 
It is clear that ho = do = -- , and the relation hI = d l leads to -' = -. 

Real h3.1 d 21 

Since h2.1 = d ll = Real' we conclude that d 21 = h 3•1 • 

By induction suppose that d(k-I)l = hk,l for some k, 3 :::; k:::; n, then 

d = d(k_I)1 ~nrl h. _ ~ 
-k-l - d _ .. - -k-I 

kl hk +I,l 

By combining the relations d k _1 = h k _1 and d(k-l)l = h k .1 we get d kl ::: h k+1.I which 

proves our claim. 
Since hk+I •1 > ° for all k = 1, ... , n we conclude that d kl > 0 for k = 1, .. " n. 

4. Determinantal approach 

In this section we exploit the results of section 3 to advance a new 
determinant-type algorithm for the stability of the systems described above. 

Theorem 3. The system with characteristic polynomial (1) is asymptotical1y stable if 
and only if 

(_I)k(k-I)/2 ~k > 0 

for k = 1, ... , n and where ~ I ' ~ 2"'" ~ n are the first n principal minors indicated in the 
arrangement 

Reali iIma2 Rea3 iIma4 Reas ilma6 

1 iImal Rea2 iIma3 Rea4 iImas 

0 Real iIma2 Rea3 iIma4 Reas 

° 1 ilma l Rea2 iIma3 Rea4 

° ° Real ilma2 Rea3 iIma4 

0 0 iImal Rea2 iIma3 

where each row is completed by zeros to the size of the first row. 

Proof Suppose the system is asymptotically stable, then by theorem 2 d kl > ° for 

k = 0, 1, ... , n. 
Consider the determinant ~kof order 2k-l for 2:::; k:::; n. Subtract ljRea1 

times the (2j-l)-st row from the 2j-th row, for j = 1,2, ... , k-I, and with the. use of the 
MERA, we find that 
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CII CI2 C\3 

d ll d l2 d\3 

0 CII CI2 
~k = dll·det 

0 d ll d l2 

0 0 CII 

where obviously d ll = Reap d l2 = iIma2 , d l3 = Rea3 and so on. Clearly the new 

detenninant is of order 2k-2. 
Now subtract clI /dll times the 2j-th row from the (2j-I)-st row for j = 1,2, ... , 

k-l and again with the help of the MERA, we obtain 
~ - (_I)k-I d 2 ~(l) 

k - II 1'-1 

for k = 2,3, ... , n, where ~V) denotes the detenninant ~, with both the subscripts of 

all its elements inc~ased by j. From the last relation we find immediately that 
A - (l)k(k-I)/2d 2d 2 d 2 d 
Llk - - II 21'" (k-I)I kl 

or 
( l) k(k-I)/2 A d 2 d 2 d 2 d 

- Llk = II 21'" (k-I)I kl 
for k = 2,3, ... , n. From theorem 2 it follows that dkl > 0 for k = 0, 1, ... , n, therefore 

(_I)k(k-I)/2 ~k > 0 

for k = 1, ... , n. 
Conversely, suppose that (_I)k(k-I)/2 ~k > 0 for k = 1, ... , n. Ifk = 1, then 

~I = d ll > O. In the relation (_I)k(k-I)/2 ~k = dI2Id;I ... d(~_I)ldkl for k = 2,3, ... , n, put 

k = 2, then d ZI > O. 

Continuing by induction we get dkl > 0 for k = 1, ... , n, and by theorem 2 the 

system is asymptotically stable and that completes the proof. 

5. Concluding Remarks 

The complexity of computation in the ERA stability test has been reduced by 
exploiting special features of the continued fraction expansion of the test fraction 
associated with the system. With the introduction of the MERA, this paper contributes 
to ongoing research to finding algorithms which are computationally attractive, 
numerically simple and accurate for assessing the stability of a system of differential 
equations. However, the search for tests with reduced computational efforts is still 
contmumg. We have also applied the new MERA to obtain a determinantal criterion 
for the stability of the system. 
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DE SISTEMAS DINAMICOS SOBRE C*-ALGEBRAS 

Gustavo Piiieirot 

ABSTRACT. 

Let's call SD(G)vI) the space of dynamical systems from an abelian locally compact 

group G over an injective W*-algebra M. Let's consider the natural action from 

Aut(M} over SD(G,M). The first objective of this work consists of, under suitable 

conditions, defining in SD(G,M) a structure of homogeneous reductive space. 

The set U( G, M) containing the unit aries representations of G on M admits a bijection 

with the space of *-representations ofC*(G) on M. This last space will be called 

R(C*(G),M). The second objective of this work consists of answering the following 

question, which it was asked in[ACS 2]: which topology does this bijection induce 

in U(G,M)? The answer will let us define in U(G,M) a structure of reductive 

homogeneous space. 

INTRODUCCION. 

Un sistema dina.mico es una terna (M, G,cx), donde M es una C* -aJgebra, G es un grupo 

localmente compacto (que consideraremos abeliano) y cx es una representaci6n de G 

en el grupo Aut(M) de *-automorfismos de M tal que para cada x E M la aplicaci6n 

9 -t cxg(x) es continua. Si M es una W*-aJgebra entonces la funci6n 9 -t cxg(x) debeni 

ser (T-debil continua. Indicaremos con SD(G,M) al conjunto de los sistemas dina.micos 

del grupo G en el rugebra M. 

Los sistemas dinamicos aparecen de manera natural en el estudio de diversas ramas 

de la Matematica y la Fisica; en particular, por ejemplo, en Mecanica Cuantica son 

estudiados sistemas dinamicos sobre C*-algebras. Paralelamente G. Corach, H. Porta 

t Supported by CONICET (Argentina) 
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y L. Recht desarrollaron con exito una teorla geometrica inspirada en el espacio de 

proyectores en una C*-algebra. Tal teorla, consistente en el estudio de la estrucura 

de espacio homogeneo de dimension infinita, se aplica a una extensa lista de espa-

cios, como las medidas espectrales, representaciones de grupos compactos, operadores ~, 

simetricos, operadores positivos y muchos otros (vease [CPR 1], [CPR 2], [ARS], 
[MR], [ACS 1] y [ACS 2]). 

Es nuestro interes incorporar a esta extensa lista de espacios donde es definible una 

estructura homogenea reduct iva al conjunto SD( G, M) de los sistemas dinamicos de 

un grupo abeliano localmente compacta G en un algebra de von Neumann inyectiva 

M. Con este fin vamos a estudiar la accion de Aut(M) en SD(G,M) definida por 

T*ak = TakT-1 si T E Aut(M), a E SD(G,M) y kEG, 0 tambien esta misma 

accion restringida al conjunto In(M) de los *-automorfismos interiores de M. 

La pregunta basica que nos hacemos, entonces, es bajo que condiciones es posible 

definir en SD(G, M) una estructura de espacio homogeneo. Si pudiesemos ver a 

S D( G, M) en el contexto de un espacio de Banach, entonces habremos dado un paso 

importante en el camino hacia obtener una respuesta a la pregunta; pues los espacios 

de Banach son el habitat natural de los objetos diferenciables. 

Un tal primer paso es llevado a cabo en la primer a seccion, don de se establece la 

inclusion de SD(G, M) en un espacio de Banach conveniente. En particular estepaso 

determinara la topologia a considerar en SD(G, M). 

Nuestra pregunta basica sera respondida para el caso de grupos finitos. Este ejemplo, 

a primer a vista puede parecer de poco interes, sin embargo sera la clave que nos 

permitira estudiar los *-automorfismos de M de orden finito. Una consecuencia de 

este estudio sera una demostracion de que los *-automorfismos de orden 2 admiten una 

estructura de espacio homogeneo y que adem as constituyen un subconjunto abierto 

de Aut(M). 

Algunos de los ejemplos mas import antes entre los sistemas dinamicos ocurren cuando 

el grupo G es el grupo 'll de los numeros enteros. En la segunda seccion nos ocupamos 

de este ejemplo. Estudiamos la accion dada por A ut( M). En esta seccion se demuestra 

que si C1 , C2 E Aut( 1\11) son automorfismos centarles distintos entonces las orbit as de 

los sistemas dinamicos inducidos por C1 y C2 distan en mas de ~. 

La ultima seccion no est a dedicada a los sistemas dinamicos sino a un breve estudio 

de las representaciones unit arias de un grupo G localmente compacta y abeliano 

en un algebra de von Neumann M. El ~bjetivo es responder a una pregunta que 

habia quedado planteada en [ACS 2]. Explicaremos brevemente la naturaleza de la 
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pregunta. El eonjunto U( G, M) de las represent.aeiones unit arias de G en M admite 

una'biyeeeion natural eon el conjunto R( C*( G), Iv£) de las *-representaciones de C*( G) 

en M. La pregunta se refiere a cua1 es la topologia inducida por esta biyecci6n en 

U (G, M); su respuesta permitini considerar en U (G,!vI) una estructura de espacio 

homogeneo. 

Este trabajo consta de cinco secciones; en la primera, dados una C*-aJgebra My un 

grupo G localmente compacto y abeliano, consideraremos el conjunto SD(G,M). El 

objetivo sera determinar para el mismo un contexto adecuado, que permita definir en 

el una estructura de fibrado principal. En particular, responderemos a la pregunta de 

cual es la topologia que corresponde considerar en el conjunto. 

En la segunda parte tomamos el caso particular en que G = 7L y, aplicando a 

SD(7L, M) los resultados de la seccion previa estudiamos las orbitas de los sistemas 

dinamieos de la forma n -t cn donde n E 7L y C E Aut(M) es un automorfismo 

central. Para ella se define en Aut(M) una nueva metrica d' y se estudia el homeo

morfismo resultante entre SD(7L, M) y (Aut(M),d'). 

La tercera sec cion esta dedicada a estudio de SD(G,M) en el caso en que G es un grupo 

finito. Fijado a E SD(G, M) consideramos la aplicacion II", : Aut(M) -t SD(G, M), 

definida por II",(T) = T*a y estudiamos los objetos diderenciales inducidos por ella 

(esta seccion esta inspirada en [MR], seccion 12). 

En la cuarta parte se aplican los resultados obtenidos en la seccian previa para efeduar 

un estudio de la estrudura de los automorfismos de Aut(M) de orden 2; se discutira 

particularmente la existeneia de seeeiones locales eontinuas para la aeeion II",. Una 

conclusion result ante de este setudio sera que el eonjunto de *-automorfismos de orden 

2 es abierto en Aut(M). 

La ultima seccion responde a la pregunta planteada en [ACS 2] acerca de la topologia 

a considerar en el conjunto de representaciones unitariaas de un grupo localmente c~

pacta y abeliano G en una W*-algebra M. El objetivo de obtener un homeomorfismo 

con el espacio R( C*( G), M) de las *-representaciones de C*( G) en M. Este conjunto 

tiene, en virtud de [ACS 2] una estruetura de espaciohomogeneo; el homeomorfismo 

indicado permite llevar esa estruetura a U( G, M). 

1. SISTEMAS DINAMICOS. 

Sean M una W*-algebra con predual separable, Gun grupo abeliano localmente com

pacto. Llamaremos SD(G,M) al conjunto de los sistemas dinamicos de G en M; sea 
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a E S D( G, M) un sistema dinamico. N otaremos M ( G) al conjunto de las medidas 

complejas definidas en G y L(M) al conjunto de los operadores continuos de M. 

Proposici6n 1.1: 

Si a es un sistema dinamico de G en M Y fl E M( G) entonces para cada x E M 

existe un unico elemento de M, que llamaremos ap.( x) caracterizado por la siguiente 

propiedad: 

Queda asi definida una aplicaci6n ap. : M ---t M que verifica las siguientes propiedades: 

i) Para to do f-t E M( G), ap. es un operador (J'-debil continuo de M. 

ii) ap.*11 = ap.a ll Vv,p, E M(G). 

iii) II ap. II ::; II p, II V p, E M( G). 

ivy ap.(x*) = ait(x)* donde ]l(D.) = p,(D.) VD. c G. 

v) a6g+h = a6ga6h para todo g, hE G. 

vi) a6g (xy) = a6g(x)a6g(Y) para todo 9 E G;x,y E M. 

1Jii) fG <P(a6g (x))df-t(g) = <P(ap.(x)) para todo f-t E M(G). 

Los dos primeros puntos pueden resumirse diciendo que a es un homomorfismo de 

algebras de M( G) en el algebra Lu(M) de operadores (J'-debiles continuos de M. 

Reciprocamente si a : M( G) ---t L( M) verifica las siete propiedadeli anteriores Y 

definimos a : G ---t Aut(M) por a g = a69 j. entonces a es un sistema dinamico. 

Demostraci6n: 

Sea a un sistema dimimico de G en M, f-t una medida compleja en G y x EM; 

la demostracion de la existencia de a I' ( x) y de que se verifican las tres primeras 

propiedades, puede encontrarse en [S], Proposition 3.2.2. 

Para demostrar iv basta probar que <P(ap.(x*)) = <P(aitCx)*) cualquiera sea <P E M*. 

En efecto: 

<P(ap.(x*)) = fa <P(ag(x*))df-t(g) = fa <P(ag(x)*)df-t(g) = fa <Pc(ag(x))dfl(9) 

= fa <Pc(ag(x))d]l(g) = <Pc(ait(x)) = <P(aitex )*) 

Donde <Pc(y) = <P(y*) Vy EM. 
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La propiedad v es consecuencia inmediata de iii. Las dos restantes propiedades son 

consecuencia de: 

De donde se deduce que a6. = ago 

Reciprocamente; sea a : M(G) -t L(Af) que verifique i ~ vii, Sl se define G g 

a09 Vg E G; es inmediato que a g es un sistema dimimico .• 

A partir de la proposicion 1.1 podemos definir una aplicacion G que a cada sistema 

dilllimico a Ie asigne un operador 8(a) == a E L(M(G).L~(M)), que verifica i ~ vii, 

segun la siguiente formula: 

4l>(G(a)l'(x)) = L 4l>(ag(x))d/-l(g) para todo /-l E M(G), 4l> E M* 

Reciprocamente, dada una aplicacion a E L(M(G).L~(M)) que verifique i ~ vii de 

la proposicion podemos definir un sistema dinamico e( a) = a segun la siguiente 

formula: 8( a)g = Ot69. 

Veamos que las funciones G y e son una la inversa de la otra. En efecto, si a un 

sistema dinamico, entonces probemos que: eG(a)g = ago 

Para ella hay que verificar que G( a )69 = a g , esto a su vez se deduce de 10 siguiente: 

Para completar la demostracion hay que probar que: Ge( Ot)1' = Otl'" 

Es decir, queremos probar que 4l>(Ge(Ot)I'(x)) = 4l>(OtI'(x)) Vx E M,V4l> E M*. En 

efucto: 

Definicion 1.2: Si an, a E SD( G, M) enionces diremos que an -t a uniformemente 

si y 13610 si Vf > 0 3m E iN tal que II an(g) - a(g) 11< f para todo 11, 2: m , g E G 

donde a(g) = a g Y la norma se entiende tomada en Aut(M) C L(M). 

Veremos a continuacion que la top6logia inducida por esta convergencia es la que 

debemos considerar en SD(G,M) para que la biyeccion sea un homeomorfismo. 

Proposicion 1.3: 
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Con las notaciones anteriores; an --+ a en norma de L( M( G), L( M)) sz y s610 sz 

an ~ a uniformemente. 

Demostraci6n: 

Supongamos que an --+ a uniformemente y sean x E M y <l? E M* tales que II x II::; 1 

y Ii <l? II::; 1. Sea mE IN tal que II an(g) - a(g) 11< E para todo n ~ m , g E G. 

Entonces I<l?((an(fj) - a(fj))x)1 ::; fe II an(g)x - a(g)x II dlfjl(g) ::; E II fj II Vm::; n. 
Redprocamente si an --+ a segun la norma de L(M(G),L(M)) entonces: 

De d()nde se deduce que an --+ a uniformemente .• 

La conclusion que se ext rae de ambas proposiciones es que SD(G,M) es homeomorfo 

al subconjunto de los operadores de L(M(G),L(M)) que verifican las propiedades i -

vii de la proposicion 1.1. Esto nos permite de manera natural considerar a SD(G,M) 

como subconjunto de L(M(G),L(M)). 

De esta manera hemos colocado a SD(G,M) en el contexto de un espacio de Banach 

(que posee una estructura natural de variedad diferencial). 

Queda pendiente el estudio de bajo que condiciones el subconjunto de L(M(G ),L(M)) 

que vcrifica i-vii es una subvariedad en la que puede definirse una estructura de 

fibrado principal. 

La accion natural a considerar en SD(G,M) es la accion dada por los unitarios de M del 

siguiente modo: u*ag = Ad( u )agAd( u*). Donde u E M es unitario y Ad(u)x = uxu*. 

Es posible tambien considerar una accion desde Aut(M); T*a g = TagT- 1 VT E 

Aut(M). 

Cualquiera de ambas acciones se extiende al subconjunto de L(M(G),L(M)) que, segun 

la proposici6n 1.1, es homeomorfo a SD(G,M). 

2. SISTEMAS DINAMICOS ENTEROS. 
Segun las notaciones de la seccion anterior consideremos el conjunto SD(71, M), donde 

7l indica el conjunto de los numeros enteros y M un algebra de von Neumann inyec

tiva con predual separable actuando en un espacio de Hilbert H. Consideremos en 

SD(71,M) la metrica d(a,,B) = sUPnEiZ II an-,Bn IIL(M)' 
Esta metrica esta bien definida ya que, por ejemplo, por la propiedad iii de la 

proposicion1.1 vale que II pn 11=11 POn 11::;11 Dn II::; 1 Vp E SD(71,M); ademas in

duce en SD(71, M) la misma topologfa que la considerada en la seccion anterior para 

los sistemas dinamicos definidos en grupos localmente compactos y abelianos. 
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Definamos ahora en Aut(M} una nueva metrica d'(A,B) = sUPnE71 II An - B n II. 
Existe una aplicaci6n natural r: SD(7.l,M) -+ Aut(M) definida como rea) = al. 

Lema 2.1: 

Adoptemos las notaciones- anteriores y consideremos en Aut(M} la metrica d'. En

tonces la aplicaci6n r : SD(7.l, M) -+ Aut(M) es una isometrza suryectiva. 

Demostraci6n: 

Si a E SD(7.l,M) entonces an = (adn, por 10 tanto d'(ro:,r;3) = sUPnE71 110:1 -
13'1 11= d(o:,f3). La suryectividad result a de que, dado A E Aut(M), si definimos 

O:n = An, entonces 0: E SD(7.l,M) y reo:) = A .• 

De las dos acciones que pueden considerarse en SD(7.l, M) queremos considerar aque

lla definida desde Aut(M); T*O:n = To:nT- l 'iT E Aut(M). 

A fin de dotar a A ut( M} de una estructura diferencial, consideremoslo como el espacio 

de las *-representaciones de M sobre sl mismo. Puesto que M es una W*-aIgebra 

inyectiva, podemos aplicar los resultados de [ACS 1] y [ACS 2], que nos permiten 

definir en Aut(M) una estructura de espacio homogeneo. 

Ademas, como (T*O:)n = To:nT- l = (T0:1T-l)n 'iT E Aut(M),o: E SD(7.l,M),n E 

7.l; entonces la acci6n de Aut(M) en SD(7.l, M) se traduce, vIa r, en la acci6n de 

Aut(M} sobre slmismo dada por la conjugaci6n; T*A = TAT- l 'iT, A E Aut(M). Se 

trata entonces de estudiarla estructura de Aut(M) con la metrica d' y la acci6n recien 

indicada. 

En esta secci6n vamos a dar un primer paso para el estudio de est a estruCtura, es

tableciendo un hecho y una conjetura acerca de las 6rbitas inducidas por la acci6n de 

conjugaci6n. Recordemos las notaciones de la secci6n anterior; si u E M es unitario, 

llamaremos Ad(u) E Aut(M) ala aplicaci6n definida por Ad(u)x = uxu* 'ix E M. 

Lema 2.2: 

Sean i = idL(H), u E L(H) unitario y Ad(u) E L(L(H)) tal que II (Adu)n - ill::; 
~ 'in E 7.l. Entonces Ad(u) = i. 
Demostraci6n: 

Si 'Y = Ad( u) y c pertenece a la capsula convexa cerrada del espectro de u, que 

indicaremo~ co(sp(u)), entonces lei ~ H4- II 'Y - i 112)~ (vease [KRJ, 10.5.67 -

10.5.68 - 10.5.69). Entonces, como II '" - i II::; ~ 'in E 7.l se deduce que lei ~ 4- > 
0,96 'ie E eo(sp(un )) 'in E 7.l. 
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Multiplicando por un numero complejo de modulo 1 conveniente, podemos suponer 

qu~ 1 E sp(u). La condicion Icl > 0,96 Vc E co(sp(u n)) Vn E 'll dice primeramente 

que para todo n E 'll el espectro de un esta contenido en un arco de circunferencia 

de longitud 0,57 simetrico alrededor de 1. 

Supongamos que sp(u) i= {I} y sea A E sp(u) - {I}. Vale que {.An, I} C sp(u n) Vn E 

'll; pero, tomando una potencia de A conveniente, {An, I} quedani fuera del arco de 

circunferencia antes indicado; llegamos aSl a una contradiccion. Luego sp(u) = {I}. 

Como u es un operador normal de L(H) entonces para toda funcion f continua en el 

espectro de u vale que II f(u) 11= sUP>'E8P(u)lf(A)I· Tomando f(t) := t - 1 resulta 

que u = I y entonces Ad( u) = i .• 

Observacion 2.3: Ellema 2.2 es valido aun, si reemplazamos L(H) por M. 

Corolario 2.4: 

La aplicaci6n identidad de M, i E Aut(M), es un punto aislado en (Aut(M),d'). 

Demostracion: 

Sea A E Aut(M) tal que d'(A, i) < ~; luego II An - i 11< ~ Vn E 'll. Como en 

particular II A - i 11< 2, entonces, por [KR], 10.5.730 [P]' Proposition 8.7.9, existe 

u E M unitario tal que A = Ad(u). Por ellema 2.2 se deduce que A = i. Luego 

{A E Aut(M): d'(A,i) <~} = {i}. 

Definicion 2.5: Diremos que C E Aut(M) es central si AC = CA VA E Aut(M). 

Teorema 2.6 

Si C E Aut(M) es central entonces C es punto aislado de (Aut(M),d'). Mas a·un 

{A E Aut(M): d'(A,C) < ~} = {C} 

Demostracion: 

Sea A E Aut(M) tal que d'(A, C) < ~, entonces Vn E 'll: 

II An - Cn 11=11 cn(c-n An - i) 11=11 C-n An - i 11=11 (C- I At - i 11< ~ 
4 

Aplicando el corolario 2.4 se deduce que C- I A = i .• 

Observemosquesi C E Aut(M) es central entonces para todo T E Aut(M) vale que 

TCT- I = C, es decir la orbita de C es exactamente {C}. Si A E Aut(M) llamemos 

Or(A) a la orbit a de A; Or(A) = {TAT-I: T E Aut(M)}. 
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E1 teorema 2.6 puede refrasearse diciendo que si C es central y A E Aut(M), A i= C 

entonces 1a distancia (segun d') entre Orr C) y Or(A) es mayor 0 igual que ~. Nuestra 

conjetura es que existe un numero constante ko > 0 tal· que si A, B E Aut( M) son 

tales que Ore A) i= Ore B), entonces la distancia entre Orr A) y Orr B) es mayor 0 igual 

que un numero constante ko. 

3. SISTEMAS DINAMICOS EN GRUPOS FINITOS. 

Sea G un grupo abeliano finito, indicaremos por IGI al cardinal de G. Sea M un 

algebra de von Neumann inyectiva actuando en un espacio de Hilbert separable H y 

sea 0: : G -4 Aut(M) un sistema dinamico. En particular O:k+j = akaj Vk,j E G. 

N otaci6n: Indicaremos con C( G) al conjunto (.:0, de todas las funciones de G a1 

conjunto fJ de los numeros complejos. 

Qbservaci6n 3.1: Puesto que G es finito entonces es obvio que e(G) = Ll(G) 

tomando en G Stl medida de Haar, En este contexto 1a convoluci6n de dos funciones 

f,g E C(G) queda definida por f * g(j) = ,b, LkEO f(k)g(j - k) Vj E G. 

Tomaremos como norma en C(G) 1a siguiente: II f Ilc(G):= LkEO li(k)l· 

Por razones puramente de comodidad en la escritura ( que seran evidentes en el teorma 

3.8) y sin que esto represente una diferencia esencial omitimos en la definici6n de 

II f Ilc(o) el factor ,b" que era dado a esperar delante de la sumatoria. 

Vamos ahora a seguir una linea argumental similar.a aquella desarrollada en la secci6n 

1, con e1 fin de dotar a SD(C,M) de una estructura diferencial. Esencialmente vamos 

a dar una versi6n finita de las proposiciones 1.1 y 1.2. Dado a E SD(G, M) queda 

definida una aplicaci6n a : C(C) --? L(M) dada por la siguiente f6rmula: af = 
,b, LkEof(k)O:k Vf E C(G) . 

. Proposici6n 3.2: 

Si a E S D( G, M) y a : C (G) --? L( M) es La aplicacion antes definida, entonces a 
verifica: 

i) af*g = afag. 

ii) af(x*) = a7(x)* Vx E M, donde l(k) = f(k). 

iii) aCk E Aut(M) Vk E G. 

ivy ,b, LkEO f(k)li ok = af· 

Reciprocamente si /3 E L(C(G),L(M)) verifica i - iv entonces existe 0: E SD(G,M) 

tal que Ii = /3, expltcitamente a estti dada por La formula ak= /36k. 
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La demostraci6n de la proposici6n es completamente elemental por 10 que la omitimos. 

Queda definida una biyecci6n entre SD(G,M) y el subconjunto de L(C(G),L(M» 

dado por las propiedades i - iv. La proposici6n 1.3 nos dice cual es la topologia 

a considerar en SD(G,M) para que la biyecci6n resulte un homeomorfismo. Esta 

topologia es aquella inducida por la metrica d( a, (3) = maXkEG II ak - (3k II. 

Notaci6n: 

Indicaremos por 1n(M) al conjunto de los automorfismos interiores de M, es decir: 

1n(M) = {T E Aut(M) : T = Ad(u) con u E M unitario }. 

E indicaremos por Der(M) al JR- espacio vectorial de las *-derivaciones de M, esto es, 

.6. E Der(M) si y s6lo si es lineal y para todo X,Y E M vale .6.(xy) = x.6.(y) + .6.(x)y 

y .6.(x*) = .6.(x)*. 

Es bien sabido que toda *-derivaci6n de M es acotada. 

Consideramos sobre SD(G,M) la acci6n de 1n(M) definida por (T*ah := TakT- 1 . 

La acci6n correspondiente sobre & es identica. Es facil probar que T*& verifica i - iv 

y que T*& = T*a. 

Como M es inyectiva entonces In(M) tiene una estructura diferencial natural. Por 

[KR] , 10.5.63; T E 1 n( M) si y s6lo si existe .6. E Der( M) tal que T = e~. Luego 

Der(M) es el espacio tangente natural de 1n(M). En particular existe un proyector 

continuo!P: L(M) -+ Der(M). 

Supongamos que A E L(M) y.6. = !P(A); digamos A = .6. + .6.. Si T E Aut(M) 

entonces T.6.T-l E Der(M), de don de se deduce que !P(TAT-l) =T!P(A)T- 1 • 

Dado un sistema dinamico a indicaremos a partir de ahora con la misma letra a la 

aplicaci6n inducida a E L(C(G),L(M») e identificaremos ak = a6 k • 

Obsel"vaci6n: Los calculos efectuados en gran parte del resto de esta secci6n estan 

inspirados en [MR]. 

Definicion 3.3: Dado G E L(C(G),L(M») definimos ITO': 1n(M) -+ L(C(G),L(M) 

por ITO'(T) = T*a. 

Notacion: Llamaremos 10' al conjunto 10' := {.6. E Der(M) : .6.ak = ak.6. Vk E G}. 

Proposici6n 3.4: 

Si EO' : Der(M) -+ L(M) se define por EO'(.6.) = Ibl I:kEG ak.6.a-k. 

Entonces EO'(Der(M)) C 10' y EO'EO' = EO'. 
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Demostraci6n: 
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Sean .6 E Der(M), vamos a probar que Ea(.6) E la, es decir que Ea(.6) E Der(lI1) 

y que Ea(.6)ag = agEa(.6) Vg E G. 

Para la primera afirmacion basta observar que O!k.6a-k E Der(M) Vk E G y que si 

{.6khEG C Der(M) entonces 2:kEG.6k E Der(M). Veamos la segunda afirmacion: 

Probemos finalmente que EaEa(.6) = Ea(.6). 

• 

Llamemos Q al conjunto de los operadores f3 E L( C( G), L(M» que verifican i - iv 

de la proposicion 3.2; conjunto este que identificamoscon SD(G,M). Fijemos a E Q. 
Asumamos por el momento que se verifican las siguientes hipotesis; que nos permitiran 

suponer en Q una estructura de espacio homogeneo. 

Hip6tesis: 

1) La accion ITa es localmente transitiva y admite secciones locales continuas. 

2) El espacio tangente a Q en a es complement ado en L(C(G), L(M». 

Observaci6n 3.5: 

Supongamos que T E In(M) es tal que ITa(T) = a; esto significa que Tak = akT Vk E 

G. Derivando respecto de T obtenemos que .6ak = ak.6 si .6 pertenece al tangente 

de In(M) en T. 

En otras palabras, si llamamos IIa al conjunto IIa = {T E Aut(M) : ITa(T) = a}; 

entonces vale que TT(IIa) = la. por otra parte este ultimo conjunto, por ser imagen 

del proyector Ea es complement ado en Der(M). 

Observaci6n 3.6: 

Si a E Q entonces af*g = afag, derivando obtenemos que si X E Ta(Q) luego 

Xf*g = afXg + Xfa g. Ademas si identificamos Xk = X Ok (k E G) entonces Xj+k = 
ajXk + Xjak Vk,j E G. Por otra parte, siendo ak(xy) = ak(x)ak(Y), (donde kEG, 
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x,Y EM), Y a(x*) = a(x)* entonces Xk(XY) = ak(x)Xk(y)+Xk(x)ak(Y) yademas 

Xk(X*) = Xk(X)*. 

Finalmente si IT", es la diferencial de IT", se tiene que IT", : De",(M) -t L(C(G), L(M)) 

y IT",(b)f = bat - atb. 

Las formulas que definen a IT", y E", pueden naturalmente extenderse a L(M), indi

caremos estas extensiones con las mismas letras IT", y E", y haremos uso de ell as sin 

mencionarlo explicitamente en el teorema 3.8. 

Definicion 3.7: 

Definimos KO/ : L( C( G), L(M)) -t L(M) po",: KO/(X) = Ibl I:rEG Xra_ r. 

Teorema 3.8: 

De acuerdo con las notaciones anteriores, valen los siguientes hechos: 

i) K",(X) E Der(M) VX E T",(Q). 

ii) IT",(KO/(X)) = X VX E TO/(Q). 

iii) KO/(IT",(A)) = (1- E",)(A) VA E L(M). 

Demostracion: 

Sean X,Y E M; demostremos primeramente la propiedad i. Ya que Xk(X*) = 

Xk(X)* Vx E G entonces basta ver que KO/(X)(xy) = xKO/(X)(y) + KO/(X)(x)y. 

En efecto: 

K",(X)(xy) = I~I L Xk(a-k(xy)) = I~I L Xk(a-dx)a-dy)) 
kEG kEG 

1 
= TGi L(aka-k(x)Xk(a-k(y)) + Xk(a-k(x))aka-dy)) 

kEG 
= xKO/(X)(y) + K",(X)(x)y. 

Para probar ii veamos que ITO/(KO/(X))j = Xj Vj E G. 

IT",(Ka(X))j = KO/(X)aj - ajKa(X) = I~I (L Xka-k+j - L ajXka-k) 
kEG kEG 

= I~I (L XkO'-k+j - L (Xj+k - Xjak)a- k ) 

kEG kEG 
1 

= iGf LXj =Xj. 
kEG 
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Finalmente probemos el punta iii. 

K",(II",(A)) = I~I L ll",(A)lkQ-k = I~I I)AQk - QkA)Q-k 
kEG I kEG 

= A - I~I L QkAQ-k = (1 - Ea)(A) • 
kEG 

Nota: 

Estudiaremos a continuacion la validez de la hipotesis 2 que afirma que el espacio 

tangente T",(Q) es complement ado en L(C(G),L(M)). 

Proposici6n 3.9: 

L(C(G),L(M)) es isomeiricamente isomorfo a L(M)IGI := L(M) EEl •.• EEl L(M) (IGI 
sumandos). 

Demostraci6n: 

Si A E L(M)iGi; A = (AI! ... ,AlGI) entonces definimos: II A 11:= maXkEG II Ak II· 
Sea r : L(M)IGI ~ L(C(G), L(M)) definida por: r(A)f:= I:kEG f(k)Ak. 

Entonces II r( A)f II = II I:kEG f( k )Ak II::; II A II I:kEG If( k) I = II A 1111 f II C( G) . 

Se deduce que II rCA) 11::;11 A II. La igualdad de las norm as result a de considerar 

que II 8k 11= 1 Y que rCA)8k = Ak. Asimismo esta observacion dice que si X E 

L(C(G),L(M)) entonces r-I(X) = (XokhEG .• 

Observaci6n 3.10: 

Existe una inclusion natural de L(M) en L(M)IGI; por 10 que podemos considerar 

a Der(M) C L(M) c L(M)IGI. Ademas el teorema 3.8 nos permite asumir que 

T",( Q) c L(M)IGI. De este modo hemos podido colo car a los espacios tangentes de 

In(M) y SD(G,M) en el contexto de un mismo espacio de Banach. 

Observaci6n 3·.11: 

Diremos que X E L(C(G),L(M) verifica la propiedad Psi valen las tres siguientes 

afirmaciones: 

i) Xj+k = QjXk + XjQk Vk,j E G; 

ii) Xk(XY) = Qk(X)Xk(Y) + Xk(x)ak(Y) Vk E G Vx,y E M; 

iii) Xk(X*) = Xk(X)* Vx E M. 

La observacion3~5 nos dice que Si X E T",( Q) entonces X verifica la propiedad P. 

Veremos que tambien vale la reciproca. 
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Proposici6n 3.12: 

Sea X E L(C(G),L(M)); entonces X E T,AQ) si y ,~6lo si X verifica la propiedad P. 

Adernas si X E ToJQ) entonces existe ~ E Der(M) tal que Xk = ~ak - ak~. 

Demostraci6n: 

Sea X E L(C(G), L(M)) que verifica la propiedad P. Es facil probar que en ese caso 

KcJX) E Der(M) yen consecuencia etK", (X) E In(M) cualquiera sea t E JR. 

Tomemos la curva c : JR --+ Q definida por c(t) = etK,(X)*a. Entonces ~tlt=oc(th = 
K:r(X)ak - akKa(X). 

Como X verifica la propiedad P entonces es facil ver que IIa(Ka(X)) = X; de don de 

se deduce que X E Ta(Q) y que X k = Ka(X)ak - akKa(X) Yk E G .• 

Corolario 3.13: 

Consideremos el caso G = 712 = {O, 1}. Combilland~ la proposici6n 3.9 con el coro-,. 

lario 3.13 tenemos que Ta(Q) se identifica con el subespacio de L(M)2 caracterizado 

pOl' To:(Q) = {(O,~al - al~): ~ E Der(M)}. 

Si A E L(M) entonces 

De don de se deduce que t(A - alAaI) = (1 - Ea)(A). 

POI' otra part.e como Der(M) es complement ado en L(M), con proyeCtor asociado 

IP, entonces Der(M)al := {~al : ~ E Der(M)} tambien es complementado, con 

proyector asociado IP(A) := IP(Aal )al. 

Afirmamos adema.s que IP conmuta con 1 - Ea. En efecto: 

IP(l - Ea(A)) = IP (A - ~(A + a1Aad) = IP(A) - ~ (IP(A) + IP(aJAat)) 

. . 1 . 
= .JP(A) - 2 (IP(A) + aJIP(A)aJ} = (1 - Ea)IP(A) 

Analogamente se prueba que IP(l - Ea) = (1 - Ea)1P y en consecuencia IP(l - Ea) 

es un proyector. 

Ademas si A E L(M) entonces IP(A) = ~Oal para algun ~o E Der(M) y entonces 

IP(l - Ea)(A) = IP(A) - aJIP(A)aJ = ~Oal -- aJ~o. 
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Definamos Eo: E L(L(M)2) por Eo:(A, B) = (0, JP(l - Eo:)(A)); entonces se deduce 

que -Eo: es un proyector sobre To:(Q), que, por 10 tanto, result a complement ado. 

Observaci6n 3.14: 

Hemos visto que en el caso G = '112 se verifica la segunda de las hip6tesis planteadas 

(que 7'a( Q) sea complement ado ). Veremos en la siguiente seccion que en este caso 

tambien se verifica la hip6tesis restante. 

El proyector Eo: nos permite definir en Q una conexion, don de los cspacios horizonta.les 

se definen eomo HCI := Ker'(Eo:) y euya exponencial estani dada por: <l>o:(X)f = 
eKa,(X)o;fe-K,,(X). Luego, las geodesicas de la conexi OIl esta.n dadas por: co.X(t)f = 
etK,a (X) 0; f e - tK" (X). 

Observacioll 3.15: Acerca de las secciones locales. 

Si continwlsemos con la analogia con [MR] podriamos intentar definir una secci6n 
lAr'~l TY'IJJl"l~".:lo-n+D 1".:lo C'~N'l1~£'l'Yl+.o. .rA ..... "1""'Y'O" .. l .. , ,.. fr:J\ - ~ '""" ...... ,- i'.:l - 'G"'., .C'..( ..... :1 .... .,."... .... ~fi ................. ~~~, 
,I, ........ '-'L4J ... .I..I..I.v'-A.J.U>uu,"-, .HAI 1..JJ.5L.lJ.\...J.HJ\.....- .lVl..U.l.U.1a.. ua\fJ J - 101 L..ikEG UkfJ-:-k· D>:'I la.Ll.l VC;l.11 L(l,! yuc 

si la distancia (positiva) entre 0; y ;3 es suficientemente pequeiia entonces 80:((3) es 

inversible y adem as 80:(;3)o;j80:(l-1)-1 = ;3j \;Ij E G. 

Sin embargo no se puede tomar a 80: como secci6n local pues, en general, 8 a tf- Aut(M) 

(no es multiplicativa). Por ejemplo, en el caso G = 'llz; puede probarse que So: E 

Aut(M) ~ 0; =;3. Este hecho muestra una diferencia esencial entre la secci6n 

previa y [MR]. 

4. AUTOMORFISMOS DE ORDEN 2. 

Sea M una W*-a1gebra inyectiva. Denotaremos por Z(M) a1 centro de M, Z(A1) = 

{x EM: xy = yx Vy E .lVI}. Llarnaremos por otra parte 7l 2 (JM) al conjunto de 

los automorfismos de orden 2, es decir 7l 2 (M) = to; E Aut(M) : 0;2 = idM }. 

Es evidente que cada Q E 7l 2 (.lVI) induce de manera nat. ural una representacion 

(i E SD(71 2 , M). Ademas si (i E SD(71 2 , M) entonces (i1 E 'llz(M). Mas aun, la 

aplicaci6n SD(71z,lVI) --t 7l2(M) dada por (i --t (i1 es un homeomorfismo. Podemos 

aplicar, entonces, a '112(M) todos los resultados expuestos en la secci6n anterior. 

Veremos que en este caso la acci6n IIa : In(A1) -+ 7l 2 (M) admite secciones locales. 

Fijemos una rarna dellogaritmo en () y sea run numero racional fijo. 

La funci6n fJ -+ fJ; z --t ZT = eT1og(z) es anaHtica en 1, luego, para todo z en un 

entorno UT de 1 vale ZT = L:~=o an(r)(z - l)n. 

Observaci6n 4.1: 
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Si u E M unitario es tal que sp( u) CUr entonces el desarrollo en serie antes indicado 

nos permite definir el elemento unitario u r E }v! por u r = 2:~=o an (r)( u -1) n . Ademas 

si 0: E Aut(M) entonces sp(u) = sp(o:(u» y vale que o:(ur ) = o:(uy. 

Observaci6n 4.2: 

Si M es una W*-algebra y 0:, (3 E Aut(M) verifican que II 0: - (3 11< 2 entonces existe 

u E M unitario tal que o:(x) = u(3(x)u* \Ix E M y ademas 

sp(u) C {z E (J : Izl = 1 y 1Rz ~ ~(4- II 0: - (3112)~ } 

Para una demostracion de est a observacion puede verse [P], Proposition 8.7.9. 

Lema 4.3: 

Dado E > 0 exi<qte 0 > 0 tal que si 0 < 01 < 0 entonces todo z E fJ tal que Izl = 1 Y 

1Rz ~ t(4 - oD~ ve1'ijica que Iz -11 < E. 

Corolario 4.4: 

De acuerdo con las notaciones anteriores, jijado un numero racional r, existe 0 = 
oCr) > 0 que depende <q6lo de r tal que si 0:, (3 E Aut(M) verijican II 0: - (3 11< oCr) 

entonces existe u E M unitario que cumple las siguientes condiciones 

i) o:(x) = u(3(x)u* \Ix E M; 

ii) sp(u) CUr. 

Las demostraciones del lema 4.3 y del corolario 4.4 son completamente element ales y 

por 10 tanto se omiten. 

Sea ahora 0: E 'lid M) y, segun las notaciones del corolario 4.4, tomemos 0 = o( t). 
Si II 0: - (3 11< 0 entonces existe u EM unitario tal que o:(x) = u(3(x)u* \Ix E My 

adem as oS p( u) C U L . 
2 

Proposici6n 4.5: 

En las condiciones antes descriptas, si v = u~ entonces Ad(v)-lo:Ad(v) = (3. 

Demostraci6n: 

Considerando que o:(x) = u(3(x)u* y que 0:,(3 E '112(M) entonces Vx E M: 

x = (3((3(x)) = u*o:(u*o:(x)u)u = u*0:(U*)0:2(x)0:(U)u = u*o:(u*)xo:(u)u. 

Se deduce que o:(u) = u*c donde c E Z(M). Sea v = u!. Entonces: 
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En consecuencia a(x) == u;3(x)u* = uc-~;3(x)du* = a(v)*v;3(x)v*a(v). Yentonces 

a(v)a(x)a(v)* = v;3(x)v*; de donde se deduce que a:Ad(v)(x) = Ad(v);3(x) .• 

La proposicion 4.5 implica 1a existencia de secciones locales continuas para la acci6n 

ITa : In(M) -+ 'l.l2(lv1). De la demostraci6n anterior se deduce adem as el siguiente 

hecho. 

Observacion 4.6: Acerca de las secciones locales 

Supongamos que a,;3 E Aut( M) verifican que existe u E M unitariotal que a( x) = 
u;3(x}u*. Si existen v E M unitario y c E Z(M) tales que a(v)*v = uc entonces el tal 

v verifica que Ad(v)-laAd(v) =;3. 

Corolario 4.7: 

71dJvI) es un s'ubconjunto abierto de Aut(M). 

5. REPRESENTACIONES UNITARIAS. 

Sea Gun grupo localmente compacta y abeliano; y sea M un algebra de von Neumann 

actuando en un espacio de Hilbert H. Si IT : G --t L(H) es una representacion unitaria 

yrr : C*(G) -+ L(H) es la *-representacion no degenerada asociada a ella, entonces 

el rango de IT esta contenido en M si y s610 si el rango de rr 10 esta. 

Recordemos que dada IT : G --t L( H) 1a representacion 7r asociada queda caracterizada 

por 1a formula: 

7r(f\ - [IT( n) f(gldg \-I f c rl (G) 
•• \J ! - J G ~ \:1 J \! V J '- ~ \ -' 

Reciprocamente dada 7r : C*(G) -+ L(H), la representacion IT esta definida por: 

Donde (cI>'\)'\EA es una aproximaci6n acotada de la identidad en L1(G); 1/ <P,\ Ill~ 

K VA E A. Para mayores detalles vease [ACS 2], secci6n 4.2 y [P], capitulo 7. 

Si R(C*(G), M) es el conjunto de *-representaciones de C*(G) en My S(G,M) es el 

conjunto de representaciones unitarias de G en M; sea p 1a biyecci6n recien definida. 

El conjunto R( C*( G), 1'1'1) tiene una topologia natural dada pOI' 1a norma. La pregunta 

que queda planteada es que top01ogia hay que considerar en S(G,M) para que p resulte 

un homeomorfismo (cf. [ACS 2]). Veremos a continuaci6n la respuesta. 

Definicion 5.1: Si ITn, IT son representaciones 'unitarias de G en L(M) entonces 

diremos que ITn -+ IT uniformemente si y solo si "IE > 0 3no E IN tal que 1/ IIn (g) -

IT(g) 1/< E "In ~ no Vg E G. 
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Proposicion 5.2: 

Segun las notacione.s anteriores; sean lIn' II : G -+ L(H) representaciones unitarias y 

7r n, 7r las representaciones asociadas. Entonces 7r n -+ 7r en norma de L( C*( G), L( H)) 

si y solo si lIn -+ IT uniformemente. 

Demostracion: 

Supongamos que 7r n --+ 7r Y sea (til A)AEA una aproximaci6n acotada de la identidad, 

donde A es un conjunto dirigido y II tIlA 111:::; J( VA EA. 

Entonces para cad a ,¢, 'f/ E H, 9 E G y "In E IN, < II(g),¢, 'f/ > = limA < 7r(Og * 
til ;'')If) , 'f/ > y < IIn(g )4" 'f/ > = limA < 7r n( Og * til A)'¢, 'f/ > . 

Como 7rn --:' 7r en norma, entonces para cada '1/;, 'f/_ E H y para cada A E A : 

Tenemos ademas que si ,¢,'f/ E H, II '¢ II:::; 1, II 'f/ II:::; 1 entonces 

:::; Ii (7r n -- 1f) (0 9 * til A) II II '¢ II II 'f/ II:::; II 7r n - 7r II II 0 9 * til A II II '¢ II II 'f/ II:::; J( II 7r n - 7r II . 

N 6tese que 11:\ acotaci6n anterior es independiente de A. Por 10 tanto si ,¢, 'f/ E H, 

II V' II:::; I, Ii rl II:::; 1; I < (lIn (g) - II(g))'¢, 'f/ > 1= limAI < 7rn (Og * tIl A),¢, 'f/ > -

< 7r(Og *tIlA)'¢,'f/ > I :::; J( II7rn -7r II· 
La conclusion es que "IE > 0 ::lno E IN tal que si n ~ no entonces 

1< (lIn (g) - II(g)),¢, 'f/ > I < E Vg E G V II 'f/ II, II '¢ II:::; 1. 

Recordemos que si B E L(H) es tal que I < B,¢, 'f/ > I < E V II '¢ II, II 'f/ II:::; 1 entonces 

II B 11£(1/):::; IE. 

Aplicando esta observaci6n a B := IIn(g) - II(g) obtenemos que: 

\:IE> 0 ::lno E IN tal que II IIn(g) - II(g) 11< E \:In ~ no \:Ig E G. 

Para probar la reciproca, supongamos que II~ -+ II uniformemente. Dado E > 0 sea 

no E IN tal que II IIn(g) - II(g) 11< E \:Ig E G, n ~ no· Sea f E Ll(G), II f IiI:::; 1. Si 

n ~ no entonces II7rn (.f) - n(.f) II:::; J~ill TIn(g) - II(g) Illf(g)ldg :::; E 10 If(g)ldg = Eo 

Por la densidad de L1(G) se deduce que II7rn - 7r II:::; E "In ~ no· • 
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Observaci6n 5.3: 

A partir de 10 dernostardo en [AC5 2], la proposici6n 5.2 nos permite definir en 

el conjunto de representaciones unit arias de G en M una estructura de espacio ho

mogeneo. 
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ABSTRACT. In this paper, on the space of smooth sections of a SL(2, R)-homoge
neous vector bundle. over the upper half plane we study the SL(2, R) structure for 
the eigenspaces of the Cru;;imir operator. That is, we determine its Jordan-Holder' 
sequence and the sode filttation. We compute a suitable generalized principal series 
having as a quotient a giver} eigenspace. We also give an integral equation which 
characterizes the elements of a given eigenspace. Finally, we study the eigenspaces 
of twisted Dirac operators. 

§ 1. Introduction 

Let G = SL(2, R) and K be a fixed maximal compact subgroup K of G. Let 
( r, V) be a representation of K, we denote 

COO (GjK, V) = {f: G -+ V / f is Coo and f(gk) = r(k)-l f(g) for all k E K} 

L2 (Gj K, V) = {f : G -+ V / f(gk) =r(k)-I f(g) for all k E K, Ilfll~ < 00 } 

where II 112 is computed with respect to Haar measure. On L2 (G j K, V) we fix the 
obvious topology. On Coo (G j K, V) we fix the topology of uniform convergence on 
compacts of the functions and their derivatives. Both spaces are representations of 
G under the left regular action Lgf(x) = f(g-IX) for all g,x EO. 

Let n the Casimir element of the universal algebra U(go) of the Lie algebra go 
of G, n define a G-left invariant operator on Coo (Gj K, V). 'Here, we obtain the 
G-module structure of each eigenspace of the Casimir operator 

n: COO (GjK, V) -+ COO (GjK, V) 

whenever V is an irreducible representation of K. Actually, we prove that whenever 
an eigenspace is irreducible, then it is infinitesimally equivalent to a principal series 
representation, and when an eigenspace is reducible then we have an exact sequence 
0-+ W -+ A~ -+ M -+ 0, where A~ is the .x-eigenspace of n in Coo (Gj K, V), W 
is a Verma module and M an irreducible Verma module. 

19i1l Mathematics Subject Classification. 1980 Mathematics Subject Classification (1985 Re
vision). Primary 22E47. 
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As a corollary we obtain the eigenvalues and eigenspaces of 

From this, it results that if >. is an eigenvalue of n the corresponding eigenspace is 
a proper subset of the respective one of O. We also compute the L2-eigenspaces of 
the Dirac operator D. 

Knapp-Wallach [K-W] obtained an integral operator which sends an adjusted 
principal series onto the K -finite vector of the L2-kernel of the Dirac operator D. 
In this work we obtain a similar result for each L2-eigenspace of D (c.f §4). 

Let 1> >.,n be the Eisenstein function (cf. ***) in C= (G I K, V) that belongs to 
the >.-eigenspace of 0, we prove: 

(i) a continuous function that satisfies the integral equation 

if(gkX)dk = f(g)1>>.,n for all g,x E G 

is smooth and is an eigenfunction of 0 corresponding to the eigenvalue A. 
(ii) Any A-eigenfunction of 0 satisfies the integral equation in (i) . 

. Now, we stablish some notations, 

(.1. 2) 

A+ = {at E A 

A- = {at E A 

sinO) 0 E R} 
cosO 

t E R+} 

1 < t} 

0< t < 1} 

We will use the decompositions G = K AN and G = K AK = K A + K = K A - K 
[K]. If we denote by 

(1.3) Y=(~ ~) H=~(l 0) 
2 0 -1 

the Iwasawa decomposition of the Lie algebra go of G is go = ko EEl ao EB no where 
ko = RX, ao ~ RH, no = RY, We denote by g, k, a, n their complexifications. 

The Casimir operator 0 is an elerpent of the universal algebra U(g) of g, more
over, the center of U (g) is C[ 0) [L). It is 'defined by 

(1.4) 
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If 

(1.5) 1 (1 
E+ = 2 i 

another expression of Casimir operator is 

W, E+ and E_ satisfy the relations 

w=-w E± = Ef' 

i '\ 
-1) E =-. 1 (1 -i) 

- 2 -i -1 

Let e be the usual Cartan involution on go. Therefore, ko is the subspace of fix 
points of e. Let Po be the (-I)-eigenspace of e. 

The Killing form in go is 

B(X, Y) = 4Trace(XY). 

Thus {~E+, ~E_} is an orthonormal base of p with respect to the hermitian form 

-B(X, BY) 

The Iwasawa decomposition for E+ and E_ is 

(1.7) 
~ E+ = tw + t (~ ~ 1) + ~ (~ ~) 
JE_=-tW+t(~ ~I)+~(~ ~) 

§2.Eigenspaces of 0 

Since K is abelian, the irreducible representations of K are onedimensional. 
They are (Tn, Vn) with nEZ, where 

for all v E Vn 

Given nEZ, the elements of the center of the universal enveloping algebra of 9 
will be considered acting on COO( G j K, Vn ) as left invariant operators. 

For all .x E C define 

(2.1) A~ = {f E COO(GjK, Vn ) / Of = .x2; 1 f} 
Since 0 is a continuous linear operator·on COO(GjK, Vn ), it follows that A~ is a 

closed subspace of COO(GjK, Vn ). Thus, A~ is a subrepresentation of COO(Gj K, Vn ) 

with infinitesimal character X'x6 , where 6 is the linear functional of ao such that 
6(H) = ~ and X,X6 is the character of C multiplication by ,X2;1. 

We denote by A~[mJ the K-type Tm of A~. 
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PROPOSITION 2.1. 
Given nEZ, ). E C, the representation A~ of G zs admissible and finitely 

. generated. Moreover, 
(i) dimA~[m]:S 1 for all mE Z 
(ii) If A~[m]-=I- {O}, then nand m have the same parity. 

Remark: The converse of (ii) is also true. It follows from proposition 2.4. 

We need some results to prove the proposition 2.1 
Let f E A ~ [m], f is a spherical function of type (m, n) because 

f(kegk,p) = e- ime f(g)e-in,p for all g E G, ke, k,p E I< 

Since G = I< AI< , the values of f me determined by its values on A. Besides, if 
Tn -=I- II then fll\" == o. In fact, the equallity f(k e) = f(k e.l) = e- irne f(l), implies 
that flI; -=I- 0 <=? f(l) -=I- 0, now SillCf~ f is spherical of type (m,n) we have that 
f(k e ) = f(Lk e ) = f(l)c- ine = f(l)e-ime, therefore if fll\" were nonzero we would 
have that m = 11. 

The subgroup A is Lie isomorphic to R+ (positive real numbers with the usual 
product) by the isomorphism Q( (/ I) = t 2 . 

Lenuna 2.2. 
If f E A~ [Tn], the junction F : R + -* C 1I.88ociated to f given by F (o( a)) 

f( a) faT all a E A 8atish; thl: diffcrentia.l r:q'uation 

(2.2) 
_.2 .. 2 2 z(1+z2) ).2_1 

)) (m + n ) + ( 2)2 nTn - 4 = 0 (1--.:-)- 1-z 1 - :;2 dz 

The eq'uation has Teg1tiaT ,~in!Jlf,Ia.Tities at the points 0, ±1, 00. 

A proof of this lemma is ill [Cn-M]. 

Proof of the PToposihon 2,1, Sillce n is an elliptic operator in COO( G / I<, Vn ), if 
f E A~, flA is real analytic, Therefore, the function F : R+ -* defined in (2.2) 
is areal analytic function. Hence there is a holomorphic extension of F to a 
neighborhood of R + in the right half plane. 

On the other hand by the Frobenius theory for differential equations with reg
ular singular points fe-page 1321 the equation (2.2) has an analytic solution on a 
neighborhood of 1 if and only if m and n have the same parity. Moreover, any 
holomorphic solution of (2.2) is a multiple of the power series 

00 

(2.3) (z - l)tlm-nl L Cj(z - l)j Co = 1 
j=O 
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In fact, the indicial equation of (2.2) is 

1 
.L 2 s(s-l)+s--(m-n) =0 
4 

and its roots are ±t(m - n). Thus, as the roots differ by an integer, the exponent 
of the first term of (2.3) is ~Im-nl, ifthis number were not an integer the function 
(2.3) would not be analytic on a neighborhood of 1, this forces the same parity for 
nand m. 

As the other singularities of (2.2) are 0, -1, 00, there is an extension of the 
analytic solution on a neighborhood of 1 to an analytic solution on a neighborhood 
of R+. So (i) and (ii) holds. 0 

Remark. Since A~ has infinitesimal character X>.6 and A~ is admissible by Propo
sition 2.1, A~ has finite length by a known rwsult of Harish-Chandra [V, Corollary 
5.4.16]. 

Corollary 2.3. 
Given nEZ, A E C, the K-type Tn occurs in any subrepresentation of A~. 

Moreover, A~ has a unique irreducible G-submodule. 

Proof. Let W be a nontrivial closed submodule of A~ and denote by W]( the set 
of K-finite elements in W, we consider the map 

HomG(W,A~) ----+ Hom]((W](, Vn ) 

(*) 
T ----+ (v -<tv = Tv(l)) 

This map is well defined. In fact, if v E WK, 

T(kv) = T(kv)(l) = (Lk.Tv)(l) = Tv(k- 1 ) = Tn(k)Tv(l) 

Moreover, it is inyective. In fact, suppose thatT =0, so Tv(l) = 0 for all v E WK. 
As T is a continuous linear transformation, W]( is a dense subset of W [L-page 24], 
and there exists a sequence {vm } in Wi< such that Vm -t W for each w E W, then 

TVm -t Tw ===? 0 = Tv m (l) -t Tw(l) 

that is, Tw(l) = 0 for all w. Now, for w E W, 

Tw(g) = (Lg-1.Tw) (1) = T(g-lw)(l) = 0 for all 9 E G, 

so T = O. If W is a closed sub module of A~, by (*) W[n] of- 0, and by (i) W[n] = 
A~[n]. This concludes the first statement ofthe corollary. The second follows from 
the equality W[n] = A~[nl. 0 
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Fix nEZ, ). E C, let 8 be the linear functional on a o such that 8(H) t, 
log at = t H, and denote by (-I)n the character of M such that ~ 1 ~ -t ( _1)n. 

As usual, define 

(2.4) I~AN(( -It ® eAo ® 1) = 
= {f : G -t C C= such that 

f(xman) = e-(A+l)o(loga)(-lt(m-1 )f(x) for all x E G, man E MAN} 

the representation of G induced by the representation (_I)n ® eAo ® 1 of MAN. 
G acts by left translation. Recall that I~ AN (( _l)n ® eAo ® 1) has infinitesimal 
character XAo and I~AN(( -1)n ® eAo ® 1) is irreducible if and only if ). t= (n + 
1) mod(2) [B]. 

Define linear transformations 

(2.5) 
I~AN (( -1)n ® e±Ao ® 1) 

f 

T 
---+ 

---+ (x -t Tf(x) = iK f(xk)Tn(k)dk) 

Whenever it becomes necessary to sea which is the domain of the operators, we will 
write T±, otherwise we will write T. 

The linear transformation T is well defined because 

Besides, since IttAN ((_I)n ® e±Ao ® 1) has infinitesimal character XAO, T is a left 
G-morphism and left infinitesimal translation by n agrees with right infinitesimal 
translation, (Lo.f = Ro.f for all f E C=(G/J(, Vn )). Hence the image of Tis 
contained in A ~ . 

T is not zero because 

Note that A~ and A~, is the same eigenspace of n if ).2 = (),')2. So, if ). E Z we 
will always assume that). 2: 0 . 

PROPOSITION 2.4. 
Given nEZ, 
(i) If). E C \ Z, or ). E Z and), t= (n + 1) mod(2), A~ is infinitesimally 

equivalent to Itt AN (( -1)n 0 eAo ® 1). 
(ii) If). E Z;::::o , ),+1 == nmod(2) and), > Inl, A~ is infinitesimally equivalent to 

Itt AN (( -1)n ® e- Ao ® 1). 
(iii) If). E Z?O, ). + 1 == n mod(2} and), < n , the (g, J()-module siructnre of 

A~ is the following 

E+A~[m] =1= 0 for all m such thai A~[ml =1= 0 

E_A~[m] =1= 0 for all m =1= ±). such thai A~lm] =1= 0 

E_A~[±)' + 1] = 0 
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(iv) If .A E Z~o, .A + 1 =: n mod(2), n < 0 and .A < -n , the (g, K)-module 
structure of A~ is the following 

E-A~['nl :f: 0 for all m such thatA~[ml :f: ° 
E+A~[ml:f: 0 for all m:f: ±.A + Isuch ihatA~[m]:f: 0 

E+A~[±.A + 1] = o. 

Remark 1: Under the hypothesis (iii) or (iv) we have that A_~ is not a quotient 
of I<ttAN (( _l)n 0 e±>'o 0 1). 

Remark 2: A~ is irreducible if and only if A :t (n + 1) mod(2). 

We need the following lemma to prove (iii) of proposition 2.4. 

Lemma 2.5. 
Given nEZ, lei A E Z>o , /\ + 1 =: n mod2 and A < n, there exist m E Z, 

m < -A such thai A~[ml is-not zero. 

Proof of Lemma 2.5. Let m be an integer such that 

(2.6) m =:nmod2 Hn -- m) IS even 

The conditions on m and n ensure the existence of a smooth solution P of (2.2) 
on the interval (0, (0). In fact, using the Frobenius method for differential equations 
with regular singularities, that (2.2) has a analytic solution in a neighbordhood of 
1 if and only if m and 17, have the same parity. Besides, the singuiarities of (2.2) 
are O,±l, 00. Therefore, this solution extends to a solution on the interval (0, (0). 
Moreover, any smooth solution of (2.2) in the interval (0, (0) is a multiple of the 
power senes 

00 

(z - l)~lm-nl I: Cj(z - 1)1 Co = 1 
j=o 

Therefore, P has a zero of order tim - 17,1 at l. 
\Ve have to prove that P extends to an element of A~[mJ. This will take some 

work. 
Let N K(A) be the normalizer of A on J(. 

Consider C~_m (A) to be the set of smooth funtions on A such that 

(j) ¢(kak--1 ) = 7 n - m (k)¢(a) for all a E A, k E N}((A) 

(jj) <p(l; ) is a smooth function and even on A. 
- 6(loga)2n--m 

Let f: A -7 C given by f(a) = F(a(a)) , with c< the isomorphism between A 
and R+ defined in (2.2). Let's prove that the function f is in C~_m (A). In fact, 
the normalizer of A on K, is exactly . 
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As n - m and tc n - m) are even numbers, 

Tn-m(±I) = Tn-m(k±f) = e±i(n-m)f = 1 

So, f satisfy (j) if and only if f(a) = f(a- 1 ) for all a E A, or equivalently 
F(x) = F(x- 1 ) for all x E R+. Let's prove that F(x) = F(x- 1 ). Let h be 
the function given by h(z) = F(Z-l), we want to prove that h = F. We claim that 
h satisfies the same differential equation that F does. In fact, let w = Z-l, then 

dh (z) = dF ( w ) w' 
dz dw 

2 dF 
= -w dw (w) 

d2F dF d2 F 
dz2 (z) = -2ww' dw (w) + w4 dw2 (w) 

dF d2F 
= 2w3 -(w) + w4 -(w) 

dw dw 2 

and 

2z3 2w-3 2w-1 
----- ---

I - z2 1-w-2 1- w 2 

z2 w-2 w 2 

(1 - z2)2 (1 - W- 2)2 (1 - W 2)2 

z(l + z) w-1 (1 + w-2) w(w2 + 1) 
(1 - z2)2 (1 - w-2)2 (1 - w2)2 

So, 

2z3 dh . 2 d2 h ( ) 
z dz2 zJ . - ---(z)+ 

1 - z2 dz 

= w 2_(w) + 2w - __ w 2 -(w)+ d2 F ( 2w- J ) dF 
dw2 1- w2 dw 

( w2 . 2 2 w(1+w2) ..\2_1) 
+ -(1 __ w 2 )2(m +n)+ (1_w2)2nm--4- F(w) 

The right hand side is exactly the equation(2.2) on F, so it is zero. Both hand F 
are smooth functions on (0,00) and solutions of the differential equation (2.2). So, 
by (2.6) they are multiple of each other in a neighborhood of 1. Hence, we write, 

h(z) = (z - l)tln-ml7jJh(z) 

F(z) = (z - l)il n - m i1j'F(z) 
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with .,ph and .,pF power ~eries, such that C.,ph(Z) = .,pF(Z) for a suitable nonzero 
complex number. Therefore, 

h(z) = Fez-:-l ) = (z-l _1)tln- ml.,pF(Z-I) = (z _1)t(n-m)z-tln- ml.,pF(Z-I) 

Thus, .,ph(Z) = (z - 1)-t(n-m).,pF(Z-I). This imply that 

Hence, F(z) = F(z-l) in a neighborhood of 1. As F is real analytic in (0,00), 
F(z) == F(Z-l) for all z E R+. Equivalently, f(a) = f(a- l ) for all a E A. Thus, f 
satisfies (j). 

We want to prove that f satisfies (jj). The function 8(loga)-t(n-m) is even on 
A because 

8(logat)-t(n-m) = (t 8(H»-t(n-m) 

= (-t 8(H»- t(n-m) 

= 8(log at l )- t(n-m) 

by (2.6) 

Thus, the function f(a)8(log a)-t(n-m) is even. The function f(a)8(log a)-t(n-m) 
is smooth because f is real analytic and has a zero of order !(n-m) at 1. Therefore, 
we have proved that f E C~_m(A). We want to extend f to an element of A~[m] 

Let e OO ( G / K)[T n-ml be the space of smooth complex valued functions on G / K 
such that f(kx) = Tn-m(k)f(x) for all k E K, x E G. 

We need to prove: 

Sublemma 2.6. 
The restriction map from COO(G/K)[Tn-ml to e~_m(A) is biyective. 

Proof of sublemma 2.6. : The equallity G = K AK implies that the restriction map 
is inyective. To prove that is suryective we appeal to a theorem of Helgason. Let 
H be the set of harmonic polynomial functions on Po. We consider the usual action 
of K on H. That is, the one determinated by the isotropy representation of K in 
Po. We now set ourselves in §10 of [H-1], with 8 = Tn-m. Since n == mmod(2), we 
have that Tn-m E Ko. Let degQ6(>..) = p(8). A formula due to Kostant and cited 
on pag 203 of [H-1] says that p(8) = d(8) =degree of the harmonic homogeneous 
polynomials in the 8-isotypic component of H. To compute d( 8) we proceed as 
follow: If el, e2 is an orthonormal basis for Po; we know that k(8)el = cos(28)el -
sin(2B)e2, k(B)e2 = sin(28)el + cos(28)e2' Since (n - m)/2 is a whole number the 
polynomial function on Po, (el +ie2)(n-m)/2 is harmonic and has degree (n-m)/2, 
moreover k(B)(el + ie2)(n-m)/2 = ei (n-m)8(el + ie2)(n-m)/2. Thus, we have that 
·p(8) = (n - m)/2. Therefore, our space e~~m(A) contains the space Vrn-m(A) 
of page 211·in [H-1]. Hence, lemma 10.1 of [H-1] implies that the restricction map 
from Vrn-m(G/K) into Vrn-m(A) is a linear homeomorphism. ·We remark that 
Vrn-m(G/K) C COO(G/K)[Tn_m]: A <lensity argument together with the fact that 
K is compact imply sublemma 2.6. 0 
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We proceed with the proof of lemma 2.5. For this end, we now have that the 
fundion f admits a smooth extension!: exp Po -t C which satisfies 

(2.7) 
j(kak-1) = 1'n-m(k)j(a) 

= 1'm(k )-1 j( a)Tn(k) 

The diffeomorphism between G and exp Po K ensures that the function I: G -t C 
given by 

for all P E exp Po ,k E K 

is well defined and it is smooth. Also, I is in the K-type Tm of C=(GjK, Vn ). In 
fact, for x E G we write x = k2ak:;lk1 with k1,k2 E K, and a E A, hence 

(Ld)(x) = I( k-1 k2ak:;1 k1) = j(k-1 k2ak:;1 k )'1'n(k-1 k1)-1 

= 1'n_m(k-1k2)f(a)1'n(k-1kd-l 

= Tn- m( k-1)1' n-m(k2 )f( a)1' n( k-1 k1 )-1 

= 1'n_m(k-1 )!( k2ak:;1 )1'n( k-1 )-lTn ( kI)-l 

= 1'n(k-1 )1'm(k )j(P)1'n(k~l r· 11'n(kd-1 

= Tm(k)!(P)1'n(k1)-1 

= 1'm(k)l(x) D 

A comutation like the one in tWa] page 280, implies that 

because F satisfies the equation 2.2. 
This concludes the proof of lemma 2.5 

Proof of the Proposition 2.4. (i) As T is not the zero function and since A =j:. 
n+l mod(2) the module I~AN (( _1)n 0 e)"6 01) is irreducible. Thus T is inyective. 
The K -types 1'm which occur in I~ AN (( _1)n ® e)..{j 0 1) are indexed by all the m 
with the same parity as n. Since T is one-to-one they must occur in A ~. By 
proposition 2.1 (i), (ii), they are exaetly the K-types of A~. Thus, T is suryective 
at the level of (g, K)-modules. 

(ii) Since A 2 0, I~ AN (( _1)n 0 e-)..o ® 1) has only one irreducible submodule F 
which is finite dimensional and whose K -types are parametrized by {m : -(A -1) ::; 
m ::; A-I, m == n (2)}. The structure ofI~AN (( _1)n 0 e-)"{j 0 1) is 

~ F :J 0 

where W+ is the G-submodule spanned by the K-types {-("\-1), --(A-3), ... , A-
1,). + 1,. _.} and W_ is the one spanned by the K-types { ... , A - 3, A - I}. As 
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..\ > Inl the K-type Tn occur in F. On the other hand, we have verified that T 
maps non trivially the K -type Tn, SO F is not a submodule of KerT. Since F is 
contained in every nonzero submodule of I~AN ( _l)n ® e->"6 ® 1). Tis 1:1; by a 
similar argument to the one used on (i) we get that T is suryective. 

(iii) Suppose that n, ..\ > 0 ..\ < n, ..\ ¢. n + 1(2). Then the image of T_ is 
the discrete serie H>"6 of infinitesimal character X>..6. We recall that the K-types 
of H>"6 are parametrized by {..\ + 1, ..\ + 3, ... }. In fact, the nonzero quotients 
of I~AN (-l)n ® e-A6 ® 1) are H>"6, H->..6, H>"6 EEl H->..6 or itself. Now, the irre
ducible finite-dimensional submodule occurs in KerT.:.., otherwise T-(F) would be 
an irreducible submodule of A~ and do not have the K-type Tn (..\ < In/! ), that 
contradicts corollary 2.3. This contradiction ensures that T _ is not inyective. By 
corollary 2.3, A~ has only one irreducible submodule, ImT_ -1= H>"6 EEl H->..6. fur
thermore, since the irreduCible submodule contains the K-type Tn ,SO ImT_ = H>..6. 
Therefore H>"6 is the irreducible submodule of A~. . 

The structure of I~ AN ( -1) n ® e>..6 ® 1) is the following 

:=>0 

T+ is not inyective; otherwise T+(H_>'6) is an irreducible submodule of A~ and 
does not have the K-type Tn. Also Ker T+ -1= H>'6 EEl H->.6; otherwise, the finite 
dimensional representation F is a subrepresentation of A ~, contradicting corollary 
2.3. Thus, 

This implies that 

U A~[ml 
m;:::-(>"...,-l) 

m::n(2) 

which is the Verma module of lowest weight -(..\ -1). Thus, 

E+A~[ml f= 0 

E-A~[ml f= 0 

for all m 2: -(..\ - 1) 

for all m 2: -(..\ - 1) and m f= -..\ + 1 

By lemma 2.5 there exists a K-type A~[ml f= 0 for some m < -..\. This en
sure that A~[ml f= 0 for all m < -..\ and m == nmod(2), on the other hand, A~ 
would have a lowest weight submodule with lowest weight less than -..\6. The in
finitesimal chara.cter of this IQwest weight submodule would be different from X>'6, 
giving a contradiction. Following the same argument, E+ acts nontrivially on each 
A~[m], m < -..\. 

For the case ..\ = 0 and ..\ + 1 == nmod(2) the proof is easier. 
(iv) It has the same proof of (iii). This concludes the proof of proposition 2.4. 0 

Remark 1: Given n E Z and ..\ E 'C, the K-types A~[ml are not zero for all m 
with the same parity of n. 



180 

Remark 2: In view of [S] , in cases (i) and (ii) A~ is equivalent to the maximal 
model of I~ AN which is the induced representation with hiperfunctions coefficients. 
In cai'/e (iii) A~ is a quotient of the maximal model of a generalized principal series. 

Remark 9: Given n E Z~o and ,X 2::: 0 as in (iii) of proposition 2.4 , the G-module 
structure of A ~ is 

>,0 

• -(HI) • =: --(A-I) • 

the right arrows represent the action of E+ and the left ones the action of E_. 
That is, we have proved 

Corollary 2.6. 
Let ,X E Z~o and ,X == n + 1 mod(2). A composition series for A~ is 

o -t V -t A~ -t M -t 0 

where V is the Verma module of lowest weight -(,X - 1) and M is the irreducible 
Verma module of highest weight -(,X + 1). 

PROPOSITION 2.7. 
Given n E Z and ,X as in (iii) of proposition 2.4 (i. e. ,X == n + 1 mod(2) and 

,\ 2::: 0 an iniege'r)) then A~ is quotient of a generalized principal series I~ AN(WO ) 

wheTe Wo = R 2 and the representation of MAN is 

± (01 01) (eot 0) (1 x) (,X et 0 1 -t (-l)"expt 0 

Proof· For f = (ft, h) E I~AN(Wo) let 

defined by 

Since I~AN ((_l)n 0 eA6 01) is contained in I~AN(Wo) via the map f -t F = 
(f,0) and S r~stricted to I~AN(Wo) is equal to T+, hence Im(S) contains Im(T+). 
An easy calculation shows that Im( S) contains properly Im( T + ). Now, corollary 
2.6 implies that any K-finite vector in A~ outside of Im(T+) is cyclic in AVIm(T+). 
Therefore, S is onto. D 
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Now, consider the Casimir operator acting on the subspace of compactly sup
ported functions in COO(GjK, Vn ). We denote by n the unique essentially selfad
joint extension of n to a dense subspace of 

(cf [A-S]). 

PROPOSITION 2.8. 
IfW{' = {f E L2(GjK, Vn ) / fif = ,X28- 1 f} , then W,Z' is non zero if and only if 

A E Z - {O} , A + 1 == nmod(2) and IAI < Inl. Moreover, W{' = W~,X is isomorphic 
to the discrete series of Harish-Chandra parameter Ab. 

Proof. Suppose that A E Z-{O}, A+1 == nmod(2) and IAI < Inl. As niselliptic, a 
Connes-lvloscovici result [C-M] ensure that l-V,\' is a sum of discrete series, actually, 
it is irreducible by the Frobenius Reciprocity. The K-finite elements of L2(Gj K, Vn ) 

are in the set of K-finite elements of COO(GjK, Vn ), so W{'[m] C A~[m] for all 
m E Z. By proposition 2.4, A~ has subspaces infinitesimally equivalent to a discrete 
series for A such that 

A == n + 1 mod(2), 0< 1,\1 < Inl 

This "discrete series" subspaces are really contained in L2 ( G / K, Vn ). In fact, 
if f E A~[m] and it belongs to a "discrete series", then f satisfies the differential 
equation (2.2) or the one which results from the identification of A+ with R>o via 
at f-? t. Then the theory of leading exponents as in [K] says that feat) e-(,X-l)t 

at t = 00 . Now, the integral formula for the Cartan decomposition together with 
A > 0 imply that f is square integrable. For negative A we have a similar proof. 

For the converse we use the structure of the discrete series, Frobenius Reciprocity 
together with proposition 2.4. This concludes proposition 2.8. D 

§3.L2 and COO-eigenspaces of the Dirac operator 

Let go = ko EEl Po be the Cartan decomposition of go, then Po is the subspace of 
symmetric matrix of go. 

lf we fix a minimal left ideal S in the Clifford algebra of Po, the resulting represen
tation ofso{po) brakes downin two irreducible representations. Such representation 
composed with the adjoint representation of ko restricted to Po lift up at a represen
tation of K called the spin represent&tion of K. Let {X}, X 2} be an orthonormal 
base of Po, let c be the Clifford multiplication and fix an integer n. The Dirac 
operator 

D: COO(Gj K, Vn +1 &> S) -t CCO(Gj K, Vn +1 &> S) 
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is defined by 

2 

(3.1 ) D = L (1 ® c(X;))Xi 
;=1 

where Xi act as left invariant operators for all i. The spin representation S de
compose into a sum of two irreducible subrepresentations S = S+ EB S- (c.f. 4.2 
bellow). If X E Po, then c(X)S± = S":f, so 

(3.2) D± : Coo (G/K, Vn ® S±) -+ Coo (G/K, Vn ® S":f) 

are well defined. 
We also consider 

Some properties of the Dirac operators D and D are: both are elliptic G-invariant 
differential operator. As the Rimannian metric of G / K is complete, D and D2 are 
essentially selfadjoint in L2(G/K, Vn+1 ® S) [W], that is, the minimal extension is 
the unique selfadjoint closed extension over the set of smooth compactly supported 
funtions. Thus, we consider D equal to this extension which coincides with the 
maximal one [A]. The eigenvalues of D are defined as the eigenvalues of the unique 
selfadjoint extension. 

The following proposition is a corollary to proposition 2.8. 

PROPOSITION 3.1. 
If a is an eigenvalue of D, then the a-eigenspace W (\'(D) is irreducible and it 

is a proper s11.bspace of the a-eigenspace W (\'(D) of D. The eigenvalues of Dare 
a E R such that a 2 = k(n + 2)2 - A2 with A integer and 0 < IAI::; n + 1. 

Proof. For G = SL(2, R) The Parthasarathy equality [A-S] is 

(3.3) 

D2 = -[2 + (n + 1)2 - 1 Id 
8 

D2 = -0 + (n + 1)2 - 1 Id 
8 

If a is a non-zero eigenvalue of D, 

(3.4) 

(cf [G-V]). Because of (3.3), the left hand side of (3.4) is the _a2 + (n + 1)2 -1 = 
HV - 1) eigenspace of the Casimir operator. Now, since S = V-I EB VI, 

~,. 
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Hence proposition 2.8 implies that 0 ::; A ::; n + 1 and 

"Moreover, 

Thus, W",2 (D2) is equal to the sum of two copies of the discrete series H)"6. 

Since, W ",(D) is isomorphic to H)..o we get that W",(D) is properly contained in 
W",(D). 0 

Corollary 3.2. 
(Tn, Vn) and (Tn+2' Vn+2) are K-types ofWOI(D) for every non-zero eigenvalue 

a ofD. For the case a = 0, (Tn+z, Vn+2) is contained in KerD and (Tn, Vn) is not. 

§4. Szego kernels associated to the eigenspaces of D 

In [K-Wl Knapp and Wallach gave an integral operator to explicitly obtain a 
discrete serie as the" image of a nonunitary principal serie when the discrete serie 
is realized as the kernel of Schmid operator. In §3 we have obtained that each 
eigenspace of the Dirac operator 

is a discrete serie. The purpose of this section is to give an integral operator for 
each non zero eigenvalue a of D which will realize the eigenspace W OI(D) as a 
quotient of an appropiated principal serie. From §3 it is easy to deduce which will 
be the principal serie corresponding to each eigenspace W",(D), the problem is to 
obtain the G-invariant integral operator onto W",(D). Let G = SL(2, R) and K 
the maximal compact subgroup defined as in (1.2). 

Let Vn+1 be the n + 1 irreducible representation of K, we assume that n + 1 > o. 
In §3, given an orthonormal base of Po it was defined the Dirac operator D. If we 
take {Xi H=l an orthonormal base of the complexification p of Po, another expresion 
of Dis 

2 

( 4.1) D = L (10 C(Xi))X; 
i=1 

where bar is conjugation with respect to go. 
One form to obtain the representations S± is choosing the left minimal ideals of 

the Clifford algebra of p, 
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where the product is Clifford multiplication. In CliJJ(p) the following set of rela
tions holds: 

(4.2) E 2 - E2 - 0 + - --
Hence S = V-I EI1 VI. Thus, we have that 

Vn+1 ® S = Vn EI1 Vn+2 

The set of K-finite elements of a principal serie I~AN(€ ® eA6 ® 1) defined in 
(2.4), is the representation of K induced by € of M, hence 

I}.5(€) = EI1 Vi ® HomM(Vi, €) 
iEK 

So, if the representation € occur at Vn and Vn+2 as M-submodule, then € = (_l)n. 
We denote by ij the inclusions 

ij:(€,W,) -+ (Tj,Vj) j=n,n+2 

As W, and Vj are one dimensional 

W, =Cw Vj=CV®U 

where wE W, , v E Vn+1 and U E S±. 
Then the inclusions ij are determined by the constants aj such that 

{ 
E+ j = n 

(4.3) ij(w)=ajv®u whereu= E E· 2 
- +J = n + 

If 8g a is the sign of the real number a, fix 
1 

an = ( A + n + 1 ) 2" 8g a con 0 =f. A E Z, IAI ::; n 
-A+n+1 

an +2 = 1 

Let G = K AN be the Iwasawa decomposition of G. According to this decom
position we write an element of G by 

x = li:(x)eH(x)n(x) 

Let Sex, t) be the function on G x K defined by 

(4.4) Sex, t) = e(A-I)6H(x- 1 t) (Tn(li:(x-It))i n + Tn+2(Ii:(x- It))in+2) 

Let T = Tn + Tn+2 on Vn EI1 Vn+2, so (4.4) implies 

(4.5) S(xk,t) = T(k)-IS(X,t) for all k E K 

We will call Sex, t) the Szego kernel associated to the parameters (A, n + 1). If 
J E I~ AN ( -l)n ® eA6 ® 1), the Szego map associated to the parameters (A, n + 1) 
IS 

S(J)(x) = [ Sex, t) J(t) dt 

= iK e(A-1)6H(x- 1t)T(K(x- It))(in + in+2) J(t) dt 
(4.6) 

The equation (4.5) ensure that the image of the Szego map is in COO( G / K, Vn EI1 
Vn+2). 

Let f> defined as in §3 
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PROPOSITION 4.1-
Given n °E Z , a a non zero eigenvalue of 6, and A a negative integer which 

sati3jies the equality 

Then, the Szego map of parameters (A, n + 1) is a G-invariani operator onto the 
eigenspace W",(D). 

Before proving this result we will see that Szego map is not the zero map. Let 
f E C=(KjM, We) where € = (-l)n, given by 

Extend f to G so that f E !~AN ( _l)n 0 e>.6 0 1). 

(S(f)(l),inw) = r (T(t)(i n + in+2)(i;;-I Tn(t)-I inw),inw) dt 
. JK . 

= L (in W + Tn+2(t)in+2 (i-I Tn(t)-I inw),inw) dt 

= JK lIinwII 2 dt 

#0 

because Tn+2(t)in+2 (i-I Tn(t)-l inw) E Vn+2 which is orthogonal to Vn. 
To see that the Szego map is G-invariant we need next lemma 

Lemma 4.2. 
Let S be the Szego map with parameters (A, n+1). Iff E I~AN ( _l)n 0 e>.6 01) 

then 

S(f)(x) = JK T(t)(i n + in+2) f(xt) dt 

Proof of Lemma 4-2. Using the change of variable 

for h(k) = T(k)(in + i n+2)f(xk) the following equality holds 

JK T(k)(i n + i n+2) f(xk)dk = 

= JK T(K:(x-lt»)e-26H(x-lt)(in + i n+2) f(XK:(x-It»)dt 
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As A normalize N, 

x-It = lI:(x-1t)eH(X- 1t)n(x-1t) 

XII:(X- 1t) = tn(x-1t)-l e-H(x-1t) 

with n' EN 

So, J (XII:(x-1t)) = J (te-H(X-1t)n') = e(A+l)6H(x-1t) J(t). And 

iK r(k)(in + in+2) J(xk)dk = iK r(lI:(x-1t))e(A-l)6H(x- 1t)(in + in+2) J(t) dt 

= 1 Sex, t) J(t) dt 0 

ProoJ oj the Proposition 4.1. By the lemma 4.2 the Szego map is G-equivariant for 
left regular actions. As D also commute with the action of G, it is enough to see 
that if J E I~AN ((_l)n 0 eA6 01) 

D(Sf)(l) = aSJ(l) 

If J E I~AN ((_l)n 0eA6 6$)1) , the image of J is in WE = Cw with f = (_l)n, 
then J(t) = h(t)w with /J, d. complex valued function. So, 

SJ(x) = 1 Sex, t)wh(t) dt 

DSJ(l) = L D(S(x,t)wh=lh(t)dt 

from which we only need prove that 

D(S(x, t)w ).,,=1 = as(l, t)w 

= ar(t)(inw + in+2w) 

Let Xl, X2 be an orthonormal base of p. Then, 

D(S(x,t)W)X=1 = 

~ (I0c) (t,(X;S(X,t)W)'~' o X;) 

~ (I 0 c) (t, :u I.~o e( A-')6H ( •• p( -uX;)') r(.( exp( -UX;)t)) (i. + i.+2)w 0 X; 

~ (I 0 c) (t, :'I.~o e(A-')'H( •• " -.Ad(r' )X')r( « t exp( -uAd('-' )X;))) 

(in + in+2)w 0 Xi 

= (I 0 c) (r(t) 0 Ad(t) t,(Ad('-' )X; )S(l, l)m 0 Ad(t-' )X;) 
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As {Ad(t- 1 )Xdi=1,2 is another orthonormal base of p, and 

r(t)(I ® c) = (I ® c)(r(t) ® Ad(t)) 

then 
D(S(x, t)W)X=l = r(t)D(S(x, I)W)x=l 

So we must prove 
D(S(x,I)w)X=l = aSCI, I)w 

= a(in + in+2)W 

Let tE_, tE+ be the orthonormal base of p given in §I, then 

D(S(X,t)W)X=l = 

= (1 ® c)( dd I e(A-l)6H(eXP(-utE-))r(~(exp(-utE_)))(in + in+2)w ® tE+ 
u u=o 

+ dd I e(A-l)6H(eXP(-utE+»r(~(exp( -utE+»)(in + in+2)w ® tE+) 
u u=o 

By (1.7) 

D(S(x, t)W)x=1 = (1 ® c) (-(A - I)8t (~ ~1) (in + in+2)w ® t E+

_n.._nJ:l(l 0 \(; +; '2 Iw tO.1E+-
, .. -lu 4 0 _l}"n "nT! '6'2 

( 1 (0 -i)) (. . ) IE - r 4' i 0 Zn + Zn+2 W ® 2' +-

( 1 (0 -i )) (. . ) 1 E ) -r -4' i 0 Zn + Zn+2 W ® 2' -

By (4.2) and (4.3) applying 1 ® c, the following holds 

and by (4.4) 

So that 

D(Sex, t)W)x=l = 

= -t( -A + 1) L inw + t( -A + I)ani n+2w + ten + 2) aI" inw + t nani n+2w 

= t<>, + n + 1) a1n inw + t( -:A + n + I)anin+2w 
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because 

6 (~ ~1) = 1 
Tj(~ ~')V=JV sivEVj6 

The co.efficients o.f inw and in+2w are 

=a 

=a 

That is, 

j = n,n +2· 

D(S(x,l)w)X=l = a S(l, l)w 

No.w, we will prove that the Sezgo map o.f parameters (>',n + 1) fo.r negative 
>. maps o.nto. W O'(D). We kno.w by pro.Po.sitio.n 3.1 that W O'(D) is irreducible. 
As Sis no.n zero., if Im(S) is square integrable, then Im(S) = W O'(D). Im:(S) is a 
subset o.f the eigenspace W O'(D) o.f the Dirac o.perato.r D. But WO'(D) is a subset o.f 
W O'2(D2). Acco.rding with the no.tatio.n o.f §2, as D2 differ with the Casimir o.perato.r 
n by a co.nstant, W O'2(D2) is iso.mo.rphic to. AA EB A~+2. But the o.nly quo.tient o.f_ 
I~lAN ((-:-l)n ® e>..6 ® 1) iso.mo.rphic to. a subspace_o.f AA EB A~+2 is infinitesimally 
equivalent to. a discrete serie. Let tP E Im(S) in a no.n zero. K-type, as the actio.n o.f 
this K -type is o.ne and the set o.f K -finite elements o.f the square integrable functio.n 
space is a subset o.f the K -finite elements o.f the Coo, then tP is square integrable. 
So. Im(S)is a subset o.f WO'(D). The irreducibility co.ncludes the pro.o.f. 0 
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Abstract: In this work two versions of weak Orlicz spaces that appear in the 
literature, MA and MA, are analyzed. One of those include the weak Lebesgue 
spaces for 1 :5 p < 00, while the other version gives these spaces only for p > 1, 
resulting the stronger space L1 in the extrem case p = 1. Necessary and sufficient 
condit.ions about t.he growth function A in order that. both spaces coincide arc 
given. Moreover we prove that these same conditions characterize the normability 
of the MA space. . 

I.INTRODUCTION. 
We shall denote by MA the weak Orlicz space associated to A, defined as in 
the work of O'Neil, [0], where he makes use of this kind of functions to obtain a 
generalization of the Hardy-Littlewood-Sobolev's theorem on fractional integration 
into the context of Orlicz spaces. This version of weak Orlicz spaces generalizes 
the weak LP spaces, L~, but only for p > 1. In fact the class MA for A the identity 
function gives a proper subspace of L!. 
Our aim in t.his work is to present an alternative definition of a weak Orlicz space 
associated to the function A, denoted by MA, in order to include allL~ for 1 ::; 
p < 00. In this way our spaces MA give L! for A the identity function and they 
coincide with MA for A(t) = t P , p > 1. Moreover we shall prove that both spaces 
are exactly the same as long as A keeps a "little bit away" from the identity. In 
fact we establish in theorem (4.8) the necessary and sufficient conditions on A to 
guarantee the equality MA = MA. 
We would like to point out that the spaees MA are easier to handle since they 
are defined in terms of a norm while in turn, MA is given by means of a quantity 
which is not necessarily a norm. It is well known that the weak LP spaces are 
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normable for p > 1 while L! is not. Following this line we shall give in theorem 
(4.11) the necessary and sufficient conditions on A for MA to be normable. 
As . a last remark we may say that the usefulness of one version or the other it 
would depend on the type of problem we are dealing with. On one side the spaces 
MA seem to be the appropriate ones when generalizing the Hardy- Littlewood
Sobolev's theorem, while on the other side the spaces MA would fit better for a 
theorem on interpolation of operators for example. 

2.THE ORLICZ SPACES. 

(2.1)Definition: Along this work, for a Young function A we shall mean a non
negative, convex and non decreasing function defined on [0,00] with A(O) = 0, 
A( 00) = 00 and such that it is neither identically zero nor identically infinity. We 
notice that A may have an jump at some Xl > 0, but in this case lim - A( x) = 

J X--+Xl 

00 and A(x) = 00 for X ~ Xl . Under these assumptions the inverse function A-I 
is well defined and it is also increasing and continuous. 

We introduce now some notions related to the role of growth of non-negative 
functions as above. 

(2.2)Defillitions: We shall .~ay that two non-negative functions are equivalent if 
and only if their ratio is bounded above and bellow by two positive constants. 
A non negative function A defined on 1R+ is of lower type p (upp er type p) if 
A(st) ::::; CsP A(t) for any s ::::; 1 (s ~ 1). 

We notice that lower and upper types are preserved by equivalence of functions 
and also for any function we may choose another for which the definition of type is 
satisfied with C = 1. In particular A is oflower type zero if and only if is equivalent 
to a non decreasing function. 

(2.3)Definition: For a Young function A we define the Drlicz space LA = LA(X) 
as the linear space of those measurable functions acting on the measure space (X, f-l) 
for which there is a finite number ]{ > ° such that 

1 A (~. )I)d ,< 1 
T/" f-l -

X .It 

The infimun of such ]{ is a norm which will be denoted by IlfiIA. 

3.WEAK ORLICZ SPACES. 

For a complex or real valued and measurable f, defined on a measure space (X, f-l), 
we will denote by f-l J( t) the distribution function of 1 given by 

f-lJ(t) = f-l( {x : Il(x)1 > t}). 

Then for t E [0,00), f-l J(t) i.~ a non increasing function taking non-negative values. 
Therefore we may define its inverse 1* by 

1*(s) = inf{t: f-lJ(t)::::; s} 
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where s ~ O. This function f* usually called the non-increasing rearrengement of 
f, has the of property being equimeasurable with I in the sense that they shar:e the 
distribution function. 

'By 1** we shall denote the average of f* over the interval [0, x], that is 

1 1x 

j**(x) = {-; 0 j*(t)dt 

j*(0) 

x>O 

x =0. 

Given a Young function A, it is possible to define a class of functions MA in terms 
of the size of the 1**, wider than the Orlicz space LA. The following definition of 
a version of weak Orlicz spaces is taken from the work of O'Neil [0], where the 
author used this class in connection with the boundedness of convolution operators 
on strong Orlicz spaces. 

(3.1)Definition: For a Young function A we will say that f defined on (X, f.L) 
belongs to MA if and only if there exists a real number), large enough so that for 
x>o 

j* (x) ~ )'A -1 (~) . 

We define IIfllMA as the infimum of such),. Therefore 

In [0], O'Neil shows that the quantity ii/liMA is indeed a norm wich makes Iv.fA a 
Banach space. 

For A(t) = tP with p > 1, it is well known that MA agrees with the space L~ or 
weak LP, defined as those functions satisfying 

Ilfll; = supt1/ p j*(t) < 00 
t>o 

since for 1 < p ~ 00 both quantities 11111; and IIIIIMtp, are in fact equivalent. 
Moreover it is known that for p ~ 1 the Lebesgue spaces LP(lRn) are proper 
subspaces of L~(lRn) (see for example [SW]. However the situation changes for 
A(t) = t, that is for p = 1. In this case the O'Neil version of weak Ll is no longer 
the same that L~; it rather coincides with the strong Ll space. In fact if A(t) = t, 
f E MA if and only if for some ), 

j**(x) ~ ),.! 
x 

which means 
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This is equivalent to f* being integrable, that is, f in L1. 
At this point it appears in a natural way another version of weak Orlicz spaces as 
to include all the L~ spaces for p ~ 1. 

(3.2)Definition: We will My that a M-measurable function f defined on X beJongs 
to the weak Orlicz space MA if and only if there is a constant C so that for t > 0 ~ 

A(t)M({X : If(x)1 > t}) ~ c. 
This definition implies that the quantity 

IIfIIMA = inf {A> 0/ sup Mf(At)A(t) ~ I} 
t>o 

is finite. Moreover the following properties hold 

a) IIcfllMA = lei IIJIIMA 
b) Ilf + gllMA ~ 2(lIf11MA + IlgIIMA) 

We notice that the factor 2 in b) does not allow to say that II liMA is a norm. 

The proof of a) is immediate. On the other hand we observe that b) will follow if 
we are able to prove the inequality 

({ If(x) + g(x)1 . }) 
M c(lIfllMA + IlgIIMA) > t A(t) ~ 1 

for all t > O. But 

({ Ifex) + g(x)1 }) ({ If(x)1 + Ig(x)1 }) 
J.l c(llfllMA + IIgIIMA) > t A(t) ~ M c(lIfllMA + IlgIIMA) > t A(t) 

< ({ If(x)I}) ({ Ig(x)1 }) 
- M cllfliMA > t A(t) + M cllgllMA > t A(t) 

since 81 + 82, = 1. The convexity of A implies A(st) ~ sA(t) for 0 ~ s ~ 1. Then, 
if c ~ 1, we can bound the above sum by 

({ If(x)1 }) A(ct) ({ Ig(x)1 }) A(ct) 
M IIfllMA > ct -c- + M IIgliMA > ct -c-

1 1 <-+- c c 
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which in turn is bounded by one as long as we take C ~ 2.-

4.RELATIONSHIP BETWEEN THE TWO DEFINITIONS. 

As we already apointed out Ll(JRn ) is a proper subespace of L!(mn ). Consequently 
the spaces MA and MA are not always the same. Indeed when A is the identity 
function there are functions on mn for which 

c 
f.l({x: If(x)1 > t}) S t 

for some finite constant C, even though they are not integrable. Such is the case 
of for example f(x) = Ix1l n. However MA is always a subspace of MA. In fact we 
have the following result. 

(4.1)Lemma: For any Young function A, we have 

Moreover we have the inequality 

First we will find an expression for IlfllMA in terms of the non increasing rear
rengement of f. From this lemma (4.1) will be an obvious consequence. 

(4.2)I.Jemma: If f is a measurable function and by f1f(t) and f*(s) we denote it" 
distribution and rearrengement function, then the following identity holds 

SUPf.lf(>.t)A(t)=supsA ---!- , ( 1*( Y) 
t>o 8>0 A 

and hence 

Proof: 

First, let us assume that f is a non-negative simple function. Then it may be 
written as 

n 

f = LCjXEj, 
j=l 

where f.l(Ej ) > O,Ej nEk = 0 if j i- k and Cl > C2 > ... > Cn > O. Set dj = 
f.l(Ed + ... + fJ,(Ej), 1 S j S n, and let us define do = O,Cn +l = O. Then, if we 
set f.lf(t) = I{x : If(x)1 > t}l, this function and its inverse f* are given by 

C'+l c· _J_<t<2. 
>. - ,\ 

t ~ Cl 
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dj - l ~ S < dj 

s 2:: dn . 

Therefore, using that A is non-decreasing we have 

supA(t)j.tf(At)=supA : dj=supA -,- s. ( CO) (f*(s)) 
t>o J>O A 8>0 A 

Now, for a general measurable function f, we can find a non-decreasing sequence 
of non-negative simple functions fn such that limn-+co fn(x) = If(x)l, for each x in 
the domain of f. Therefore, for each t > a, the sequence {j.tn(t)} is non-decreasing 
and limn-+co j.tn(t) = j.t(t), where j.tn and j.t denote the distribution functions of fn 
and f respectively. Likewise, for each s > a we also have that f~(s) increases to 
f* (s) and the first claim of the lemma follows immediately. -

As for the second equality we just notice that 

1lfilMA = inf {A > a/ sup j.tf(At)A(t) ~ I} 
t>o 

(4.3) 
= inf {A > a/~~~sA (f*?)) ~ I} 

f*(s) 
= sup 

8>0 A-l(I/s) 

where in the last equality we have used that sAC ris )) ~ I is equivalent to f*( s) ~ 
AA-l(i) .• 

Proof of lemma (4.1): 

From of definition of f** it follows that for any s > a we have f*(s) ~ f**(s). 
This observation together with lemma (4.2) give the desired conclusion .• 

As we shall see the difference between the spaces M A and M A may appear in other 
cases besides A( t) = t. In fact if for x > a we denote by log + x the maximum 
between log t and zero and for x E mn we take the function 

ge2 

f(x) = I Inc 1 +( 1 ))2 
Wn x 3 + og wnlxl n 

then f belongs to the space MA for A(t) such that A -let) = ge2t(3 + log+ t)-2. 
I:irst, A(t) is a Young function because we have chosen the eonstants in sueh a 
way that A-I is increasing, continuQus and concave on [a,oo]. Also,it is not hard 
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to check that ACt) behaves at infinity like t(1og+ t)2. Second, for any increasing 

function A-I, the function defined on mn by f(x) = A-I (w"jzln) is such that 

f* (s) = A-I (1 Is) proving our assertion that f E M A. Finally let us see that f is 
not in MA. If it were, there would be a constant). > 0 such that 

But then, for any s < 1 We have 

-------:::-dt = _ge2 du i s ge2 i-lOgS 1 

o t(3+log(1It»2 ··00 (3+u)2 

This together with our assumption would lead to 

for some ). > o. But this impossible because it would imply that -log s is a 
bounded function on (0,1). 
This example shows that when X = IRn and Jl is the Lebesgue measure there are 
other Young functions different from A(t) = t for which the space MA is strictly 
contained in M A. In our next step we will characterize all the Young functions for 
which both spaces are exactly the same. In what follows we shall restrict ourselves 
to the case of X = IRn with Jl the Lebesgue measure. Nevertheless the main 
results contained in theorems (4.8) and (4.11) could also be derived working in 
more general measure spaces. 

We start by giving two real functions lemmas; the first can be found in [M], and 
the second is an stronger version of a result proved by Viviani in [V]. This last 
result will be an essential tool in looking for necessary and sufficient conditions on 
A to ensure that MA = M A . 

(4.4)Lemma:. Let h(t) be a non negative and non decreasing function on [O,j] for 
which there exists a constant D such that for 0::; s ::; j/20, J: h(t)dt ::; Dsh(s). 
Then if 1::; r < DI(D -1), 

(4.5) 
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(4.6)Lemma: Let." be a non negative function such that !ll.fl is non increasing. 

Then .,,(t) is equivalent to ij(t) = Jot Tllfds if and only if." has a positive low.er 
type. 

Proof 

Since !ll.fl is non increasing the inequality 'T}(t) ~ Jot 1/(88) ds is always true no matter 

what the lower type of 'T} is. Also, the fact that the inequality J; 1/(88) ds ~ e.,,( t) 
holds whenever 'T} is of pOllitive lower type is proved in [V]. Conversely the equiva

lence between." and ij implies that J; h(s)ds ~ eth(t), for h(t) = !ll.fl and Vt > O. 
This allows us to use (4.5) from Muckenhoupt lemma for any finite interval in or
der to obtain that." is of positive lower type. In fact, if r > 1, as in the conclusion 
of the previous lemma, 0 < u ~ 1 and s > 0 we have 

Therefore 
1 

h( us) ~ C (~) r h( s ) 

1 

'T}(us) .~ c (!) r .,,(s). 
us u s 

Since r > 1 we arrive to the desir~d conclusion .• 

Nmv we make an useful remark on the relationship between the types of a Young 
function and its inverse. 

(4.7)Lemma: Let A be a Young function. Then A has a lower type m if and only 
if A-I has an upper type 11m. 

Proof; 

The Young function A has a lower type m if and only if there is a constant e > 0 
such that 

A(st) ~ etm A(s) for any 0 < t ~ 1 . 

Now taking a pair t ~ s the latter inequality can be written 

t t m 
A(t) = A(s;) ~ e(J A(s) 

which is equivalent to say 
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for any t ::; s. Setting a = A( t) and f3 = A( s ), by the continuity of A the above 
inequality can be written 

Since A is non decreasing we get that the inequality 

holds for any a ::; {3, but this is to say that A -1 has an upper type ~ .. -

Now we are in position to state and prove the anounced characterization. 

(4.8)Theorem: Let A be a Young function. Then the following statements are 
equivalent 

i) MA = M A, 
ii) ~ Jos A-1 (1/t)dt is equivalent with A-1 (1/s), 

iii) A has a lower type greater than one 1. 

Proof: 

Let us assume i) is true. Since by (4.1) MA C MA always holds, we must obtain 

ii) from MA C MA . Take the function f(.T) = A -1 (wn jxln ); since it is radial and 

non increasing it is easy to check that its rearrengement is f*( s) = A-I (~) and 
hence j E MAo Now, our hypothesis implies that f belongs also to JVIA which 
means that for some ,.\ > 0 the inequality 

holds for any s > 0 giving one of the inequalities in Ii). Finally, the- other inequality 
follows using that A-1 (I/t) is a non increasing function. 
To check that Ii) => iii) we set 'fI(t) = tA-l(l/t) and we make use of lemma (4.6) 
to conclude that 'fI has a positive lower type, say a. Therefore we have 

'fI(ut) = utA-1 (:t) ::; CuatA-1 (~) (0 < u::; l,t > 0 Y Y a> 0) 

which implies 

X-I (:t)::; Cua- 1A-1 (~) (0 < u::; l,t > 0 and a > 0) 

setting a = ~ and z =. t the above eXp'resion is equivalent to 
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which means that A-I has an upper type less than one. By using now Lemma 4.7 
we may conclude that A has lower type greater than one. 
In order to prove iii) => ii) we use again lemma (4.7) to conclude that A-I has 
an upper type, say b, less than one and that, in consequence, the function .,,(t) = 
tA-l(l/t) has a positive lower type. In fact, if 0 < u::; 1 and t > 0 we have 

Since 1 - b > 0 we may apply lemma (4.6) to get ii). 
It remains to prove that ii)=>i). First we observe that by lemma 4.1 it is enough 
to check MA C MA. Let us assume f E MA, that is f*(8) ::; .\A-1 (~). Then we 
have 

f**(x) =.! r f*(t)dt ::; ~ . r A-I (.!) ds. 
x 10 x 10 8 

But, using ii) we get 

f**(x)::; KA-1 (~) 

and hence f E MA.-

(4.9)Corollary: If A has a lower type greater than one, then there exists a con
stant C such that 

holds' for any f E MA and moreover MA is normable. 

Proof: 

f**(x) = .! i x 
f*(t)dt 

x 0 

1 i x f*(t) -1 =;; 0 A-l(l/t) A (l/t)dt 

::; CllfllMA - A-1(1/t)dt lix 

x 0 

where we have used iii) => ii) from theorem (4.8). Taking supremUIil over all x, we 
get 
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Finally, since by lemma (4.1) the reverse inequality between IlfllMA and IlfllMA 
always holds; our space MA is normable so that the proof of the corollary is 
complete .• 

(4.10) Remark: As we have just seen the space MA is norrnable, with the norm 
II.IIM.~, whenever A has a lower type greater than one. For A a Young function 
without this property (i.e. A has lower type one and no greater than) we already 
know that our space MA is much bigger than ]vIA and consequently the quantity 
II.IIMA is not longer equivalent to the norm II.IIMA. A natural question then arises: 
is there a norm on the space MA equivalent to the quantity II.IIMA? In other 
words we would like to know whether or not this spaces MA are normable for 
Young functions A without a lower type greater than one. It is known that the 
space L! is not normable. Our next result shovvs that this situation extends to all 
MA with A having a lower type at most one. 

(4.11) Theorem: Let A be a Young function. Then the weak Orlicz space MA 
is normable, with a norm equivalent to II.I! MA if and only if A has a lower type 
greater than one. 

Proof: 

By corollary (4.9) we only have to show that MA normable implies that A must 
have a lower type greater than one. For simplicity we will work out the proof only 
in the one dimensional case. For higher dimensions it follows the same lines. For 
given s > 0 and N E IN we define the function 

If we call ik,s(x) = A-I Ci'x~~ ,) it is easy to check that they all belong to }AA 

for any 1 ::; k ::; Nand s > 0 and moreover we have Ilfk,s liMA ::; 1 since all of 
these functions sheare the same distribution A(t). Therefore, if by 11.11 we denote a 

norm equivalent to the quantity 11.11 MA' we get 

N N 

Ilfll ::; L Ilik,sll ::; G1 L Ilfk,s liMA::; GlN 
k=l k=l 

However, elementary computations show that the derivative of f is negative on 
[0, s + ~ 1 which implies that f(x) ::; f(O) for x E [0, s + N], . Then if we set 

lIN. lIN 111 
HN,s=f(O)=A- (i-;)+A- (i2)+···+A- (i:;) 

we obtain 
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Thus 

and 
N 1 N N N I N(k+ 1) 1 

HN,s = ~ A-1 ( __ )::::: - ~ A-1(-)du. 
L.t 2 ks s L.t 'k 2u 
k=l k=1 N 

Since A -1 is non decreasing we obtain 

Letting N go to infinity we get that for any fixed s > 0 

Changing variables v = 2u we get 

Finally since A -1 is non negative we arrived to the inequality 

r A-1(1/v)dv ~ CsA- 1(1/s) 
./0 

which by theorem (4.8), implies that A has a lower type greater than one.-
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MOLECULAR CHARACTERIZATION OF HARDY-ORLICZ SPACES 

Claudia Fabiana Serra * 

Presentado por Carlos Segovia Fernandez 

Abstract: We give a molecular characterization of the Hardy-Orlicz spaces Hw(iRn) 
(Theorem 2.18), which generalizes similar results for the Hardy spaces HP(JRn) for 
p:S; 1. This result is applied to provide a proof of the boundedness of singular integral 
operators on Hw(JRn ). (Theorem 3.10). 

INTRODUCTION. The purpose of this work is to study the Hardy-Orlicz spaces 
Hw. The usual Hardy spaces HP can be obtained as particular cases taking w( t) = 
t P • In [V] Viviani gives an atomic decomposition of H w' The molecular theory 
can be found in [GC-RF]. Several authors have used this technique to deal with 
operators defined on Hardy spaces, see for instance [C], [C-WJ, [MJ, [M-S], [T-W), 

In this paper we obtain a molecular characterization for H w with a general w, 
see section 2, Theorem (2.18). Then, in section 3, we apply this result to study 
the boundedness of singular integral operators on Hw(Uln). One of the main 
difficulties is to define it suitable gauge, .that is a notion of molecular "norm", in 
the context of Orlicz spaces. The one we introduce in (1.41) it is not the same as 
that considered in the papers above when wet} = t P • However, in view of Theorem 
(2.18), they turn out to be equivalent. In the first section we give the notation, 
definitions and some properties that we shall use in the sequel. We introduce the 
maximal spaces H w, the atomic spaces H Nj, 1 < q :::; (X) and the molecular spaces 
M(p,q,E)' 1 < q:::; (X) , c > O. 

1. NOTATION AND DEFINITIONS 
Let w be a positive function defined on 1R+ = {x E IR; x > O}. We shall say that 
w is of lower type l (respectively, upper type 1), if there exists a positive constant 
C such that 

for every 0 < t :s; 1 (respectively, t ~ 1). It is easy to see that if w is of positive 
lower type I, then limt->o+ w(t) = 0, therefore we define w(O) = o. 

* The author was supported by: Consejo Nacional de Investigaciones Cientificas 
y Tecnicas de la Republica Argentina. 

Keywords and phrases: Molecular, Hardy-Orlicz spaces. 

1991 Mathematics Subjects Classification: 42 B25. 
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We shall say that a positive function w defined on IR+ is quasi-increasing (respec
tively, quasi-decreasing) if there exists a constant C such that 

w(s) :s; Cw(t) 

for every s :s; t (respectively s 2: t). 

We shall understand that two positive functions are equivalent if their quotient is 
bounded above and below by two positive constants. 

Let 'W be a function of positive lower type l such that w( s) / s is non-increasing. 
Then the following functions are well defined 

(1.1 ) 

(1 ')) \ .~ 

(1.3) 

(1.4) 

(1.5) 

w-1(s)=sup{t:w(t):S;s} , 

wet) = t w(s) ds , 
Jo s 

w-1(s) = sup{t: wet) :s; s} and 

vVe stat.e the basi.c properties of these functions, the proofs can be found in [V]. 
(1.6) The lovver type l is less than or equal to one. 
(1. 7) w is of upper type 1 with constant C = 1. 
(1.8) w-1 is of lower type 1 and of upper type l/l. 
(1.9) w is a continuous function equivalent to w. 
(1.10) w is strictly increasing. 
(1.11) w is subadditive. 
(1.12) w(s)/s is non-increasing. 
(1.13.) w is of lower type 1 and of upper type 1 with constant C = 1. 
(1.14) w-1 coincides with the ordinary inverse function of wand is equivalent to 
w-1 . 

(1.15) p is a function of upper type 1/1 - 1 equivalent to the non decreasing 
function 

p. 
(1.16) p(t)/tP is quasi-decreasing for p 2: 1/1- 1. 
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In order to introduce the atomic spaces HP,q and the molecular spaces M(p,q,e), 1 < 
q ~~, c > 0, we need the following definition. 

(1.17) DEFINITION. Let w be a function of pO.'Jitive lower type 1. A.'J.'Jume that 
b= {bj } i.'J a .'Jequence of function.'J in U(JRn ), 1 ~ q ~ 00, and c= {Cj} i.'J a 
.'Jequence of pO.'Jitive con.'Jtant.'J .'Juch that 

(1.18) 

We define 

L cjw(llbj ll qcjl/q) = A < 00. 

j 

(1.19) . { (1Ibjllqc-:l/Q)} 
Aq(b,c) =mf oX> 0: ~CjW Al/~· / ~ 1 . 

We observe that 

(1.20) Aq(b, c) = 0 if and only if bj == 0 for every j. 

If L is the lower type constant of w, then 

(1.21) o ~ Aq(b, c) ~ max(LA, 1) . 

If we also assume that w( s ) / s is non-increasing, we have 

(1.22) o ~ Aq(b,c) ~ max(LA, A') 

and 

(1.23) 

Moreover, arguing in the same way as in the proof of Lemma (4.7) in [V], we can 

show that if Otj = Ilbj llqcjl/q /w-1 (c,;-t), then 

(1.24) 
j 

with C independent of b and c. If Aq(b, c) ~ {3 > 0, we get 

(1.25) 
j 

. where C fJ depends on {3 but not on b and c. 

REMARK. In the following we .'Jhall a.'J.'Jume that 



206 

(1.26) w is ao function of positive lower type 1 such that w( s) / s is non increasing 
and 

pet) is defined by {1.2}. 

Given G E IN, we define the G-maximal function of a distribution f on S by 

fa(x) = sup If(~)I, 

where the supremum is taken over all functions ¢ belonging to C;:O(IRn) satisfying 
di.st(x,supp(~)) < Isupp(~)1 and 

J 1~(x)1 dx + Isupp(~)IG+l L J IDa~(x)1 dx = 1. 
lal=G+l 

(1.27) DEFINITION. Let G E IN such that Gl > 1. 

We define 

and we denote 

ilfllHw = inf { A > 0 : J w (ffl~~)) dx ~ I} . 

It is easy to verify that if f E H w, then 

(1.28) 0 ~ IlfllHw ~ max(LA,Ai), 

(1.29) IlfllHw = 0 if and only if f == 0 and 

(1.30) J w (1Ij~(X) ) dx = 1. 
. I H:J' 

It is easy to see that H w is a complete topological vector space with respect 
to the quasi-distance induced by II IIHw' Moreover Hw is continuosly included 
in S'. Clearly, when wet) = t P , 0 < P ~ 1, w satisfies (1.26) with I = p and 
Hw(JRn ) = HP(IIC). 

In this work we shall denote N = [n(1/1 - 1)], where [x] stands for the biggest 
integer less than or equal to x. 

(1.31) DEFINITION. A (p, q) atom, 1 < q ~ 00 is a real valued function a on IRn 
satisfying: 

(1.32) J a(x)x,B dx = 0, 

jor every multi-index 13 = (131,' .. ,f3n) such that 1131 = 131 + ... + f3n ~ N J where 
xf1 = X~l • X~2 •••. x~n J 
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(1.99) the support of a is contained in a ball Band 

(1.34) 
( IlallqIBI-l/q :::; [iBlp(IBI)]-l 

{ lIalloo 00 IIBlp(IBI)I-' 

if q < 00, or 

if q = 00. 

Clearly, when wet) = tP, P E (0,1], we have that pet) = t;-l and a (p, q) atom 
is a (p, q) atom in the usual sense. 

Let us observe that, in view of (1.24), if {b j } is a sequence of multiples of (p, q) 
atoms such that there exists a sequence of balls {B j} satisfying supp( bj ) C B j and 
(LIS) with Cj = IBjl, then the series 2:bj converges in S'. 

j 

(1.35) DEFiNiTiON. We aep,ne 111',· = HP,q(.ll(n), 1 < q ::; 00, as the linear 
space of all distributions f on S which can be represented by 

(1.36) in Sf, 

where {bj } is a sequence of multiples of (p, q) atoms such that there exists a 
sequence of balls {Bj } satisfying supp(bj ) C Bj = B(xj,rj) and (1.18) with 
Cj = IBjl. We denote b = {bj}, B = {IBjl} and let 

IlflIHp,q = inf Aq(b, B), 

where A g(·,·) is as in {1.19} and the infimum is taken over all possible represen
tations of f of the form (1.36). 

(1.37) REMARK. It can be proved that Hw(IRn) == Hp,q(IRn), 1 < q :::; 00. More
over, if we define HP,q,k, k ~ N, as in (1.35) but taking atoms satisfying (1.32) 
for alllf31 :::; k, we also have Hw == HP,q,k, 1 < q :::; 00. In particular, this implies 
that definition (1.27) does not depend on G. The atomic descomposition of Hw 
and the density of L2 in H w will be important tools in this work. 

The Remark can be proved following the lines of [V]. However, in our case, since 
the space of homogeneous type involved is IRn , it is possible to consider Hardy
Orlicz spaces for a larger range of p, q, by using atoms with vanishing moments as 
in (1.32). The necessary modifications can be carry out. 

We are now in c.onditions to introduce the main object of study of this work, the 
(p, q, €) molecules and the molecular Hardy-Orlicz spaces. 

(1.38) DEFINiTION. Assume tha.t € > O,xo E IRn and 1 < q :::; 00. A (p, q, €) 
molecule centered at Xo is a real valued function M on IRn satisfying 

(1.39) 
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where q' = q(q - 1)-1, and 

(1.40) 

for every multi-index f3 such that 1f31 ~ N. 

Given M, a (p,q,€) molecule centered at Xo, and B, a ball with the same center, 
we denote 

MB = MXB and 

CB MXCBP(I· -xoln)(I· _xoln(e+-:r) 
M = 1 

p(IBI)IBle+q;-

(1.41) DEFINITION. Assume 1 < q ~ 00 and 0 <c. We define M(p,q,e) = 
M(p,q,e)(IRn ), as the class of distributions f on S which can be represented by 

(1.42) in S', 

where {Mj} is a .~equence of (p,q,€) molecules centered in {Xj}, such that there 
exists a sequence of balls {B,il = {B(xj,rj)} satisfying 

j j 

where A q (·, .) is as (1.19) and the infimum is taken over all possible representations 
of.f of the form (1·42). 
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2. MOLECULAR CHARACTERIZATION OF Hw 

In order to prove the molecular characterization of Hw (Theorem 2.18), we need 
some previous lemmas. Let us observe that, in view of the equivalences stated in 
(1.9) and (1.14), we can assume, without lost of generality, that w satisfies (1.9) 
through (1.13). . 

(2.1) LEMMA. Assume that J.L is a Borel meas'ure on JRn and E is a bounded set 
such thai J.L(E) = 1. Suppose that {x"'}j",l::;m is linearly independent on E and V 
is the linear space generated by {xaXE(x)}lal::;m' If u E U(E), 1 ::::; q ::::; 00, then 
there exists a unique v E V such that 

(2.2) j(u(X)XE(X) - v(x))xP dJ.L(x) = 0, for every 13, 1131::::; m. 

In addition 

veX) = L J U(y)XE(Y)Y'" dJ.L(Y)· va(X), 
lal::;m 

where Va is the unique element of V which satisfies 

(2.3) for every 13, 1131::::; Tn. 

PROOF. Let vex) = I:lal::;m CaXaXE(X), Ca E JR. Clearly, v satisfies (2.2) if and 
only if 

for every 13, i13i:S Tn. 

Then, since {xa}lal::;m is linearly independent on the bounded set E, there exists 
a unique v E V which satisfies (2.2). On the other hand, arguing as before, we 
have that for each a, lal ::::; Tn, there exists a unique Va E V which satisfies (2.3). 
Thus, if I:lal::;m dav", = 0, d", E JR, we have 

dp = L d", J v",(x)xP dJ.L(x) = 0, 
lal::;m 

for every 13, IPI::::; Tn. 

Therefore, {va}lal::;m is a basis of V and we can write v = I:jaj::;m a",va , a", E JR. 
Finally, in view of (2.3) and (2.2), it follows that 

ap = L aa J va(x)xP dJ.L(x) = J v(x)xP dJ.L(x) = J V.(X)XE(X)XP dJ.L(x) 
lal::;m 

for every p, IPI ::::; Tn. 

(2.4) LEMMA. Suppose thatM is a (p,q,e) molecule centered at Xo, with 1 < q::; 
00 and EO > t - 1. Let a be a positive constant and Bk = B(xo,2ka), with k a 
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non-negative integer. Then there exists a sequence of multiples of (p, q) atoms 
{bd, supp(bk) C BkJ such that 

(2.5) in S', 

(2.6) if k = 0, or 

(2.7) if k ~ 1, 

where C i.~ a constant independent of M and a. When w(t) = tP,p E (0,1], we 
have J without restriction for E > OJ (2.5) J (2.6) and 

(2.8) Ilbkllq ~ CIIMCBollqTn(g+~-t)k, for k ~ 1.' 

PROOF. Clearly, we can suppose that M is a (p, q, E) molecule centered at 0. Let 
Eo = Bo,Ek = Bk - Bk-l,k ~ 1, and Mk = MXEk • Let Vk be the linear space 
generated by {XaXEk}\a\S;N' From Lemma (2.1), with E = Ek,dp, = \ik \ dx,m = 
Nand u = }dk, there exists a unique Pk E Vk which verifies 

(2.9) 

for every (3, IPI ~ N. Moreover, 

(2.10) Pk = L I~ 1 jMk(x) xa dx. Qak , 
\a\S;N k 

where Qak is the unique element of Vk such that 

(2.11) 

If we denote Tnak = \ik \ J Mk(X)X a dx, then we can write 

Since I:r>O IE,~lmar = J M(x)x a dx = 0, applying summation by parts, we obtain 

L L makQak(X) = L L(makIEkl)(IEkl-1Qak(X)) 
k~O \a\S;N \a\S;N k~O 

= L 2)IEk+1I-1Qak+l(X) -IEkl-1Qak(X)) L marlErl 
\a\S;N k~O . r~k+l 

= I:: I::1fakR<>k(X) , 
\a\S;N k~O 
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where T/o:k ~ I: mo:rlErl and RO:k(X) = IE k+ll-1 Qo:k+l(X) -IEk\-lQO:k(X). 
r~k+l 

Then, since SUpp(Jdk - Pk) C Ek and sUpp('Tjo:kRo:k) C Ek U Ek+l, it follows that 

(2.12) locally in L q • 

Clearly, by (2.9) and (2.11), Mk - Pk and "Io:kRo:k are multiples of (p, q) atoms. 
Furthermore, by (2.11), we get . 

(2.13) 

Thus, by using (2.10) and Holder's inequality, we have 

which inmediately yields 

(2.14) for every k 2: o. 

Then, for k 2: 1, since p is increasing and of upper typet - 1, we obtain 

(2.15) 
IIMk - Pkll q ::; CIIMkll q ::; cIIMXCBop(I·ln)I·ln(e+7~llq 

p((2 k - 1 at' )(2 k - 1a t(e+qT) 

::; CllMcBo Ilq2-n(e+~)k . 

On the other hand, applying Holder's inequality, (2.15) and the restriction on c:, 
we have 

IT/o:kl::; L J IMr(x)lxI1o:l dx 
r~k+l 

(2.16) 
::; L IIMrllq(2T a)lo:IIErI7 

From (2.13), we get 

and, applying (2.16), we obtain 
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Hence, since S71PP ('flo:k Ro:k) C BHI, it follows that 

(2.17) 

Finally, if we define bo = Mo - Po, bi = Elo:l~N 'flo:oRo:o, bk = M k- I - Pk- I + 
E1al::;N 'flo:k-l Ro:k- I , k 2:: 2, by (2.12), (2.14), (2.15) and (2.17), we get (2.5), (2.6) 
and (2.7). When wet) = tP,p E (0,1], we can improve (2.15) and get 

Thus, arguing as before, but without restriction on c, we have 

which proves (2.8). 

(2.18) THEOREM. Assume that w is a function of positive lower type 1 such that 
w(s)/s is non increasing. Let pet) be the function defined by pet) = CI/w-I(t-I). 
Then Hw == M(p,q,e) with 1 < q :S 00 and c > t - 1. When wet) = tP ,p E (0,1]' 
'we have Hw == M(p,q,e) for 1 < q :S 00 and every c > O. 

PROOF. By (1.37) is sufficient to prove that Hp,q == M(p,q,e)' 
Pir'st incl7Lsion: HP,q C M(p,q,e)' Let f be a distribution in HP,q. Assume that 
b = {b j } is a sequence of multiples of (p, q) atoms such that f = E j bj is a 
representation of f as in (1.35). Clearly, bj is a (p,q,c) molecule centered at Xj. 

Moreover, if we denote M j = bj , in view of (1.35), (1.38) and (1.41), we have 

Thus, we have that f E M(p,q,e) and 

Second incl-usion: M(p,q,e) C Hp,q. Let f be a distribution in M(p,q,e)' According 
to definition (1.41) suppose that {Mj } is a sequence of (p, q, Eo) molecules centered 
at {Xj} and {B j } is a sequence of balls, B j = B(xj,rj), such that 

(2.19) f = LMj in S' and 0 < Aq(MB, B) + Aq(McB , B) < 00. 

j 

In view of (1.20), we can assume that Aq(MB, B) > 0 and Aq(MCB, B) > O. 
Applying lemma (2.4) to each Mj with cr = rj, from (2.19), we have 

(2.20) f=LLb~ in S', 
j k;:::O 

where b{ is a multiple of a (p, q) atom, supp (b{) C Bi = B(xj, 2krj), and Ilb~llq :S 
CIIMtj liq if k = 0 or Ilb{llq :S CllMjCBj Il q2- n (e+-;r)k if k 2:: 1. Let'fl 2:: 1 be a 
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constant to be determinated later. Since w is an increasing function of lower type 
I and of upper type 1 we have 

( 1I M CBj II IB'I-I/q)] +~~2kn(I-(e+I)1)IB'1 j q J 
L L J W \ A (MCB B)I/I ' 

j k2:I q , 

¥!hich, by the restriction on £, is less than or equal to 

Choosing 'T/ = 2C, we get 

(2.21) 

From (2.20), (2.21) and the observation above (1.35), we obtain 

(2.22) 

Then, since we have (2.22) for every possible representation of f in the form (2.19), 
we get 

Note that the restriction c > t - 1 was only used in the proof of the inclusion 
M(p,q,e) C HP,q. When wet) = tP ,p E (0, ll, we 'can apply (2.8) and, following the 
same lines as above, we get Hw == M(p,q,e) with c > ° and 1 < q ::; 00. 

3. APPLICATION OF THE MOLECULAR CHARACTERIZATION OF Hw 
In this section we shall assume that T is a singular integral operator in IRn with a 
kernel K of class CHI outside the origin with k a non-negative integer, satisfying 

(3.1 ) 11 K(x) dxl ::; c, 0< r < R, 
r<lxl<R 

(3.2) lim 1 K(x) dx exists, and 
r--O r<lxl<l 
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(3.3) 

for every multi-index f3 such that 1f31 ::; k+1, and every x i= O. It is well known that, 
under these conditions, T is a bounded operator on Lq, 1 < q < 00. Moreover, if 
we define the maximal operator -'I 

where 

T* f(x) = sup IT6f(x)1 , 
6>0 

T{jf(x) = 1 I«y)f(x - y)dy , 
6<IYI 

we have that T* is bounded on Lq, 1 < q < 00 and 

(3.4) Tf(x) =limT6f(x) a.e. x 
6--+0 

The purpose of this section is to show the boundedness of T on H w' The main tool 
will be the molecular characterization obtained in section 2. In [H-VJ, Harboure 
and Viviani, using another technique, proved a similar result in the context of the 
spaces of homogeneous type. In that work, the cancellation property of the kernel 
I< is stronger than (3.1). Moreover, since in our case the space involved is IRn , 

we can impose more regularity to the Kernel and by using atoms with vanishing 
moments as in (1.37), it is possible to consider Hardy Orlicz spaces for a larger 
range of w. 

(3.5) LEMMA. Let wand p be as in theorem (2.18). Let T be a singular integral 
operator with a kemel I< satisfying (3.1), (3.2) and (3.3) with k + 1> net -1). 
Assnme tha·t b i.q a function belonging to Lq, 1 < q < 00, with vanishing moments 
'up to the order k and supp(b) C B = B( Xo) r). Let 0 < E < 1 - t -+- k';:I, then Tb 
is a (p, q, E) molecule centered at Xo and 

where C is a constant independent of b. 

PROOF. Since T conmutes with translations we may assume that b is supported 
in a ball B = B(O~ r). Clearly Tb satisfies (3.6). Let iJ = B(O,2r), then 

IITb p(l· In)(I' Int+;"II~ 

= (k + laB) ITb(x) p(lxnlxln(C:+;")lq dx = h -+- 12 . 

Since p is increasing and of upper type, applying (3.6), we have that II is bounded 
by 
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On the other hand, if x E C iJ we have 

r 
Tb(x) = iB (K(x - y) - P(x - y))b(y) dy, 

where P is the Taylor polynomial of K at x of degree k. The typical estimate for 
the remainder in Taylor's formula for this function, (3.3) and Holder's inequality 
yield 

(3.8) ,x E CB. 

From this estimate and (1.16) we have that 12 is bounded by 

Then, since c < 1 - t + ktl, 12 is less than or equal to 

which completes the proof of (3.7). In order to prove that Tb has vanishing 
moments up to the order k we shall use the following partition of unity. Take 
functions <pj(t), j = 0,1,2, ... ,C= in (0,00) satisfying <Pj ~ 0, "£i=o<Pj(t) = 1 
for every t in (0,00). Moreover, we can assume that supp( <Po) C [0, 2rJ, SllPp( <Pj) C 
[2j~lr, 2i+lrj for j ~ 1 and l<pjk)(t)1 :S CkCk for every t > 0, every k = 0, 1,2, ... 
and every j, with Ck depending only on k. Now, we define for each j,Kj(x) = 
K(x)<pj(lxl), and observe that all the Kj's satisfy the same estimates as K with a 
uniform constant. Moreover, we have 

Then we can write 

LXsupp(Kj*b)(X):S 4, at each x E JRn . 

j'?O 

(3.9) jTb(x)x f3 dx = j LKj * b(x)x f3 dx, for every (3,1(31 :S k. 
">0 1_ 

Clearly, 

n n n 

1 LKj *b(x)xf3 1 :S L IKj *b(x)lIxjlf3I Xh(x)+ L IKj*b(x)lIxllf3IXCh(X) = Al +A2 
j=O j=O j=O 

For j ~ 1, by Holder's inequality, thete exists a constant C, independent~f j, such 
that 
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On the other hand, arguing as in (3.8), for x E eE, we get 

II II I 1!±!+l/ql 
IK.*b(x)l<e b qB n 

J - Ixln +k+1 
for j ~ 0, 

where e is again independent fo j. Thus, since the overlap of the supports of 
Kj * b is uniformly bounded we have that . 

and 
IlbllqIBI~+l/ql 

A2 ~ e Ixl n +k+l-I,81 XCB(x). 

Then, by (3.9) and the dominated convergence theorem, we obtain 

J Tb(x)x,8 dx = 0, 1131 ~ k, 

since K j * b has vanishing moments up to order k. 

(3.10) THEOREM. Let wand p be as in theorem (2.18). Let T be a singular integral 
operator with a kernel K satisfying (9.1), (9.2) and (9.9) with k + 1 > 2n( t - 1). 
Then there exists a constant e .~uch that 

PROOF. By (1.37) and (2.18) it is enough to show that 

(3.11) 

for everv f E [} n HP,q,k where 1 - 1 < c: < 1 - 1 + !±1. and 1 < q' < 00 Let 
.' 'I In' 

f E L2 n H p,q,k and b = {b j } be a sequence of multiples of (p, q) atoms with 
vanishing moments up to the order k, sup(bj ) C Bj = B(x;.rj), such that 

(3.12) 

From the pr,evious lemma we have that Tbj is a (p, q, c:) molecule centered at x j 
satisfying (3.6) and (3.7). Let M j = Tb j . Arguing in a similar way as it was done 
in the proof of Theorem (2.20) in [H-V], it can be shown that 

(3.13) in S'. 

Let." a positive constant to be determinated. In view of (1.35), (1.38) and (1.41), 
applying (3.6), we have 
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Then taking TJ = C' we obtain 

In a similar way, from (3.7), we get 

Then, by (3.13), we have 

IITfll(p,q,e) :::; CAq(b, B), 

which completes the proof of the Theorem. 

fQ 1A) REuARK Tifn.~ ( .. \ tP - ~ (0 l' -: f:------ (21 nl TT - ,.1 \ \ ....... ,. 'v,,,, . • ".",nw bJ = , pI::: \ , J,lnnce rurn . 0), flw = .IVI~p,q,c), 

with c > 0, we have that T is a bounded operator in Hw with the only restriction 
k + 1 > net -1). 
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Abstract: We give a very simple proof of the caracterization of Lipschitz regu
larity of a function by the size of its Haar coefficients. 

It is well known that given a real function I periodic with period 27r satisfying 
a Lipschitz 0: condition for 0 < 0: ::::; 1, its kth Fourier coefficient is bounded by 
Ikl-a . More precisely, the following result holds (see for example Chapter 12 of 
[9]). 

(A) Let I be a 27r periodic real function satisfying a Lipschitz 0: condition for 0 < 
0: ::::; 1, i. e., there exists a positive finite constant M such that, I I( x + h) - I( x ) I ::::; 
Mlhl a , for every pair of real numbers hand x. Then, there exists a constant C 
such thai, for every k E LZ, ICd!ll::::; Clkl- a , where Cd!] = 217r J0271: I(x)e-ikxdx. 

The result is an easy consequence of the fact that J027r e-ikxdx = 0, for k f. 
O. Nevertheles, it does not constitute a characterization of Lipschitz 0:. This 
fact can easily be observed by t.aking the Fourier coefficients of the char~cteristic 
function of a subinterval of [0, 27r]. Moreover there is no way to characterize the 
regularity of a function in terms of the size of its Fourier coefficients, this is a 
very deep fact implied by the results in the article "Sur les coefficients de Fourier 
des fonctions continues" by J.P. Kahane, Y. Katznelson and K. de Leeuw, see 
[4]. On the other hand, we can easily obtain an analogous of (A) for the Haar 
coefficients. VIe define the Haar coefficients of a locally integrable function I as 
Ca,b = JIRJ(X)Ha,b(X)dx, where Ha,b(X) = a-1 / 2 H( x-;.b), a> 0, bE 1R and H is 
the Haar function i.e., H is defined by 1, for ° ::::; x < 1/2; by -1, for 1/2 ::::; x < 1 
and 0 otherwise. More precisely we get the following result 
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(B) Let f be a Lipschitz a function for 0 < a ::; 1. Then, there exists a constant 
C such that ICa,bl ::; Cal / HOI , for every a > 0 and bE IR. 
Proof of (B): 

ICa,bl =1 fIR Ha,b(x)f(x)dxl 

=al / 2 11l 
H(u)[f(au + b) - f(b)]dul 

::;Cal / HOI .• 

Clearly we have the following general version of (B): 

(B') Let ep : IR+ -t IR+ be a non-decreasing function and let f be a function 
satisfying a Lipschitz (ep) condition, i.e., there exists a constant C such that If(x)
f(y)1 ::; Cep(lx - yl), for every x, y in IR. Then, there exists a constant C such 
that 

(1) a> 0, bE IR. 

The aim of this note is to give a very simple proof of the converse of the preceding 
result, moreover, we shall prove the Lipschitz ('ljJ) regularity of a function whose 
Haar coefficients Ca,b satisfy (1), with 'ljJ(t) = Jot ep(s)/s ds. Notice that if 'ljJ(t) ::; 
Cep(t), condition (1) is equivalent to Lipschitz (ep) regularity, which is certainly 
the case for ep(t) = t Ol , 0 < a ::; 1: The proof of this converse can be extended 
to get a characterization of Lipschitz spaces with some non-isotropic metrics in 
higher dimensions. 
By using the inversion formula for the .continuous wavelet transform, Holschnei
del' and 'I'chamitchian prove in [3] that Lipschitz a regularity of a function is 
completely characterized by the size of the wavelet coefficient, see also [2]. The 
inversion formula itself relies on the Fourier transform. Nevertheless the notion 
of Lipschitz regularity can be naturally extended to metric spaces and generally, 
wavelet coefficients can be computed for functions defined on spaces of homoge
neous type where Fourier transform is not available. Since the work by Campanato 
[1], Meyers [.5], Spanne [6] among others it has become classical the integral char
acterization of pointwise regular functions such us Lipschitz 0: or more generally 
Lipschitz (ep). A simple proof of these facts for one dimension as can be found 
in the book [8], can be adapted to give a direct proof of the desired result. The 
advent age of this approach is that it can be used to get an analog of this result 
fpr some families of non-isotropic dilations in dimension higher than one whithout 
an explicit inversion formula. 

Let us first observe that the inequality ICa,bl ::; Ca1 / 2 ep(a) can be.rewritten as 

(2) 

where I = [b, b + al, 1-' is the left half of I, 1+ is its right half, m( J) = 
I~I JJ J($) dx, and IJI is the measure of the interval J. 
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(3) Theorem: Let ep : IR+ -+ 1R+ be a non-decreasing function such that 

11 ep(t)/tdt < 00. 

Let f be a locally integrable function. If the Haar coefficient8 of f satisfy (1), then 
f is Lipschitz (tP), with 1/J(t) = J; ep(s)/s ds. 

Proof: Let x and y be two real numbers with x < y. Let us now construct two 
sequences of subintervals {I;} and {It} of 1= [x,yj in the following way: Tl is 
the left half of I and It its right half, I; is the left half of 11' It the right half of r:. And so, I; is the left half of 1;-1 and It the right half of It-I' Notice now 
that 

k 

If(x) - f(y)1 slf(x) - m(I;;)1 + L Im(Ii) - m(Ii-:.. 1 )1 + Im(Il) - ~(It)1 
i=2 

k-l 

+ L Im(It) - m(I41)1 + Im(It) - f(y)l· 
i=1 

By an application of (2) with b = x and a = y - x we get that the central term 
Im(Il) - m(It) I is bounded by Cep(111). In order to estimate the general term of 
the first sum Im(Ii-) - m(Ii-:"I)1 with 2 SiS k, notice that 

Im(Ii~) - m(Ii=-I)1 = Im(Ii) - 1/2m(Ii-) - 1/2m(Ii=-1 \ Ii-)I 

= 1/2Im(Ii) - m(Ii-:"1 \ Ii)l· 

Since r; and 1;"1 \ Ii are contiguous intervals with the same length, we apply (2) 
to the last term in the above equality to obtainlm(Ii) - m(Ii-:..1 )1 S Cep(IIi=-ll). 
In a similar way, we can estimate the general term of the second sum by ep(IIt!). 
Therefore 

k k-i 

·If(x) - f(y)1 slf(x) - m(I;)1 + CLep(IIi=-ll) + Cep(II!) + C"Eep(IItl) 
i=2 i=l 

+ Im(It) - f(y)1 

slf(x) - m(I;)1 + 2C fep( I~I) + Im(It) - f(y)l· 
i=O 

Now by Lebesgue Differentiation Theorem, when k tends to infinity, and the prop
erties on ep we get 
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for almost every x and y. So that, after redefining f on a null set, we have a 
Lipschitz ('IjJ) function .• 

To ilustrate the applicability of this method to the regularity problem in the 
parabolic setting, even when our method applies to more general situation, we 
shall restrict ourselves to the case of dilations T>..x = eA1og>..x with>' > ° and 
A the diagonal matrix with eigenvalues 1 and 2 in two dimensions. Actually 
T>..x = ()..Xl,.\2 x2 ), for x = (Xl,X2)' The associated translation invariant metric 
p(x) on JR2 is the only solution of IT1/p(x)xl = 1 (see for example [7]). Let us 
introduce the following two wavelets in IR? 

'f/l(X,y) = X(x)H(y) 

'f/2(X,y) = H(x)X(y), 

where X is the characteristic function of the one dimensional interval [0,1). Per
forming the usual translations in JR2 and the parabolic dilations induced by A 
we get an L2-normalized family of functions 'f/f,b(x) = a-3 / 2'f/i(T1/a (x - b») = 

a-3/2rJ.f~ ~) for a> 0 and bE JR2. 'f', .a , a 2 , 

( 4) Theorem: Let 'P : JR+ --+ m+ be a non- decreasing function such that 

11 '{J(t)/tdt < 00. 

Let f be a locally integrable fu.nction on JR2. Assume that there is a constant C 
such that 

(5) a> 0, bE JR2, i = 1,2 

then f satzsfie.~ the Lipschitz N) condition with respect to p, i.e., If(x) - f(y)1 ~ 
C'IjJ(p(x - y)). 

Proof: Let us first notice that the inequalities in (5) can be written as follows 

(5.a) 

(5.b) Im(r X J) - m(l+ X J)I ~ C'{J(a), 

where 1 and J are two real intervals conforming a parabolic rectangle, i.e. 1112 = 
IJI, 1- is the left half of 1, while 1+ is its right half. Similar notation applies 
to J. Given x = (Xl, X2) and y = (Yl, Y2) two points in the plane, in order to 
estimate If(x) - f(Y)I, we introduce the point z = (Yl, X2) which satisfies both 
p(x - z) ~ p(x - y) and p(z - y) ~ p(x - y), so that we look for the following 
inequalities 

(6) If(x) -- f(z)1 ~ C'IjJ(p(x - z) and If(z) - f(Y)1 ~ C'IjJ(p(z - y». 
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We shall work out with some detailthe proof of the first inequality in (6) and we 
shall only sketch the similar proof of the second. Let us assume that Xl < Yl, 
call I = [Xl, Yl]. As in the proof of Theorem 3 we are lead to two subinterval 
sequences of I, {Ii-} and {It} with ki = IIi-I = IItl. Let J i = [X2,X2 + (2k i )2], 
Ri = Ii x Ji and R; = It X J; for i E IN. For each k E IN we have 

k 

If(x) - f(z)1 :::;If(x) - m(R;)1 + L Im(Ri) - m(Ri_l)1 + Im(R~) - m(R!)1 
;=2 

k-l 

+ L Im(Rt) - m(R7+1)1 + Im(Rt) - f(z)l· 
i=l 

By ( 5. b) the central term in the right hand side above satisfies the desired bound. 
For the general term in each of the sums, for example for Im(Ri) ---'- m(Ri_l)!' we 

proceed in the following way: decompose Ri-l into eight equal parabolic rectangles 

Rl , ... ,Rs with Rl = Ri, so that 

Clearly we may assume that the Rj's are indexed in such a way that Rj shares 
one side with Rj+l. Now, since 

7 

Im(Ri) - m(Ri_l)1 :::; L Im(Rj ) - m(Rj+l)l, 
j==l 

we only need to show that each ofthe terms Im(Rj )-m(Rj+1 )1 satisfies the desired 
inequality. Let us first observe that if R j and R j +1 have a commOll vertical side we 
can apply again (5.b). On the other hand, when Rj and Rj+l share a horizontal 
side the rectangle defined by the union Rj U Rj +l of both is not a parabolic 
rectangle, so that we divide both of them in eight equal parabolic rectangle by 
dividing only the vertical sides of Rj and Rj +1 in eight equal intervals. Let us 
write Rr, Ri, ... ,Rr6 to denote these new rectangles and assume that they are 
indexed from top to bottom. Hence 

S 16 

Im(Rj ) - m(Rj+l)1 = 1/81 L m(R,.) - :L m(Rk)1 
k=l k=9 

7 

:::; 1/8 L Im(R;_i) - m(R;+i)1 
;=0 

7 2; 

:::; 1/8 L L Im(R;-i+k) - m(R;_i+k)l· 
i=o k""O 

Now, sin~e each Rj is parabolic, the general term in the last sum can be bounded by 
(5.a). Finally, by the Differentiation Theorem, which is still valid in the parabolic 
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setting, we may obtain the first inequality in (6). The proof of the second follows 
the same lines provided we change the iteration of the diadic decomposition on the 
x-axis by the iteration of the procedure of dividing in four equal parts the vertical 
intervals containing X2 and Y2' • 
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XLV REUNION ANUAL DE COMUNICACIONES CIENTIFICAS DE LA UNION 
MATEMATICA ARGENTINA Y xvm REUNION DE EDUCACION MATEMATlCA 

En la Universidad Nacional de Rio Cuarto, desde el lunes 16 de octubre hasta el viernes 20 
de octubre de 1995, se realizaron la XLV Reunion Anual de Comunicaciones Cientificas y la 
XVIII Reunion de Educacion Matematica, con el auspicio de las Universidad Nacional de la 
Plata, Universidad Nacional del Litoral, Universidad Nacional de la Patagonia "San Juan 
Bosco", Universidad Nacional de Rosario, la Municipalidad de la ciudad de Rio Cuarto y del 
Consejo Nacional de Investigaciones Cientificas y Tecnicas. 

En el marco de estas se efectu6 adem as el VII Encuentro de Estudiantes de Matematica. 
Rubo un total de 672 participantes de los cuales 162 fueron estudiantes. 

Las actividades de ia XVIII Reunion de Educacion Matematica comenzaron el Junes 10. 

Durante su transcurso se dictaron 10 cursillos sobre temas variados, dos talleres sobre los 
Contenidos Basicos Comunes del E.G.B. y la Educacion PolimodaL Del 18 al 20 de octubre 
se expusieron 11 Posters sobre Ia Enseflanza de la Maternatica y se presentaron 37 
Comunicaciones. 

La XLV Reunion Anual de Comunicaciones Cientificas se inici6 el miercoles 18 de octubre 
con la inscripci6n de los participantes, efectuandose por Ia tarde el acto inaugural en el Aula 
Mayor, en la oportunidad hicieron uso de la palabra el Decano de la Facultad de Ciencias 
Exactas Fisico-Quirnicas y Naturales, el Presidente de la Uni6n Matematica Argentina y el 
Rector de la Universidad Nacional de Rio Cuarto 
Tambien se entregaron send as plaquetas recordatorias por su trayectoria a los socios 
honorarios de la Union IVlatematica i~Jgentina Dr. Felix Herrera e Ing. Roque Scarfiello. Se 
realiz6 la entrega de los premios del concurso "Rodolfo Ricabarra" a las mejores monografias 
sobre el tema "Teorema del Punto Fijo." 

A continuaci6n actu6 el Grupo Instrumental de la UN.R.C. Despues de un cuarto 
intermedio el Dr. Rafael Panzone pronunci6 la conferencia " Dr. Julio Rey Pastor" sobre el 
tema " Conjuntos y curvas notables del plano". Luego los participantes y autoridades fueron 
agasajados con un vino de honor. 

Los dias jueves 19 y viernes 20 se expusieron 106 Comunicaciones, distribuidas en los 
siguientes temas: Geometria Diferencial y Grupos de Lie, Ecuaciones Diferenciales y 
Modelos, Ecuaciones Diferenciales Parab6licas, Analisis Numerico, Control, Optimizacion, 
Teoria de Juegos y Convexidad, L6gica, Analisis Real y Arm6nico, Conjuntos Borrosos, 
Grafos y Topo\ogia, Algebra y Teoria de Numeros y Analisis FuncionaL Ademas se dictaron 
6 cursos para estudiantes de Matematica. 
Se realiz6 una mesa redonda en la que se discutieron los planes de estudio de las licenciaturas 
en matematica. 
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EI viernes 20 a las 16:30 hs. tuvo lugar la Asamblea Anual de socios de UM.A., en cuyo 
transcurso se elegieron nuevas autoridades. 

EI congreso se clausur6 el viernes 20 a las 19 hs. con la conferencia "Alberto Gonzalez 
Dominguez" sobre el tema " Mejor Aproximaci6n de funciones", a cargo del Dr. Felipe Z6 
Para terminar, el presidente de la Uni6n Matematica Argentina Dr. 1. Tirao hizo uso de la 
palabra y el Rector de la UN.RC. entreg6 al presidente de la Uni6n Matematica Argentina 
Uila medalla recordatoria. 

Posteriormente se agasaj6 a los participantes. 
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NOMINA DE LAS COMUNICACIONES PRESENTADAS A LA XLV REUNION 
ANUAL DE LA UNION MATEMATICA ARGENTINA 

NOTA: Las comunicaciones que van precedidas por un asterisco no fueron expuestas. 

Geometria Diferencial - Grnpos de Lie 

Jorge Lauret. (FaMAF. UNC.) "Grupos de isometrias de una nilvariedad homogenea. " 

Cristian Sanchez, Walter Dal Lago, Alicia Garcia, Eduardo Hulett. (FaMAF. UNC.) 

"Algunas propiedades que caracterizan a los R-espacios. " 

D . .LAJekseevky, I. Dotti. -< F~v1AF. Ll1'.rC. ) "J7aiiedades de Einstein hornogeneas". 

Alfredo O. Brega.( FaMAF. UNC.) " Sobre el dual unitario de Spin (2n, C)." 

'C-a..rina Boyallia..fl. (F~,,1l~~. lJNC.) "D-m6dulos}' Operadores diferenciales G-invariantes". 

Jorge Vargas.( FaMAF. UNC.) "Restricciones de representaciones." 

Leandro Cagliero, Juan Tirao (FaMAF. UNC). "Los residuos de los operadores de 

.entrelazamiento de Kunze-Stein. " 

Jose I. Liberati. (Fa MAP. UNC.) "Propiedad biespectral y la Grassmanniana Gr rat," 

Guillermo Keilhauer, M. del Carmen Calvo (FCEyN. UBA). " Tensores del tipa (0,2) sabre 

fibrados tangentes (I) " 

Cristian Sanchez (FaMAF: UNC.) " E1I-numero de un R-espacio. " 

Marcos Salvai (FalvIAF. UNC). "Geodesicas asint6ticas en el cubrimiento universal de SI 

(2, R)" 

Mirta S. lriondo ( FaMAF. UNq " Superficies de curvatura media constante en espacios 

Lorentzianos. " 

Ana Forte Cunto, Maria Piacquadio ( FCEyN. VBA.) " Continuidad de fa funcian de 

visibilidad en R". " 

Alejandro Tiraboschi ( FaMAF. lJNC.) " Algebras reales nilpotentes matabelianas 

regulares. " , 

Javier Fernandez, Marcela Zuccalli (FCEyN. VBA- UNLP) "Grupos de Loops y fa Orbita 

Coa4Junta del O. " 

1. P. Rossetti, P. Tirao (FaMAF. UNC.) " variedades compactas planas can grupo de 

holq1omia Z2 (]) Z2 
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Walter Dal Lago, Alicia Garcia, Cristian Sanchez (FaMAF. UNC) " Espacios proyectivos en 

la variedad de secciones normales. 

Graciela S. Birman (U.N. del Centro de la Pcia. Bs. As. - CONICET) " Metrica para un 

modelo homegeneo, isotropico, 5-dimensional. " 

Liliana Gysin, M. Cristina Lopez ( FC EyN. UBA). "Esperanzas de junciones definidas 

sobre el transporte paralelo. " 

(*)Salvador Gigena ( UNR - UNC) " La curvatura escalar Riemanniana de 

hipersuperjicies descomponibles. " 

Sergio Console, Carlos Olmos ( FaMAF. UNC) " Subvariedades que admiten. un campo 

normal paralelo isoparametrico. " 

Carlos Olmos, Adrian L. E. Will ( FaMAF. UNC.) " Subvariedades Homogeneas del 

Espacio HiperbOlico. " 

Maria 1. Druetta ( FaMAF. UNC) "Metricas invariantes en el ejemplo generalizado de 

Pyatetskii-Shapiro. " 

Guillermo Keilhauer (FCEyN. UBA) "Tensores del tipo (0,2) sobre fibrados tangentes 

(II). " 

Bernardo Molina, Carlos Olmos (FaMAF. UNC. ) " Rango y Simetria de· Variedades 

Riemannianas. " 

Ecuaciones DiferenCiales v Modelos 

E. Lami Dozo, M. C. Mariani (FCEyN. UBA. - lAM. CONICET) " Soluciones al problema 

de Plateau para la ecuacion de curvatura media prescripta via el Lema del Paso de la 

Montafia. " 

M. Mariani, D. F. Rial (FCEyN. UBA- lAM. CONICET) "Soluciones de la ecuacion de 

curvatura media prescripta mediante tecnicas de punto fijo. " 

T. Godoy, E. Lami Dozo, S. Paczka. ( lAM. CONICET- UBA- FaMAF. UNC) "El 

problema parabOlico periOdicos de autovalores con peso L "' ... 

Marcela C. Falsetti (U.N. Gral Sarmiento) "Aplicacion de un nuevo modelo juncional al 

dnalisis de imagenes. " 
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Maria E. Torres, Lucas Gamero, Carlos D' Attellis (U.N. Entre Rios Fac de lng. y 

Bioingenieria- UBA- Fac. de lng.) "Detecci6n de pairones en senales no lineales mediante 

eniropia multirresoluci6n. " 

Monica Bocco (FCA UNC) "Antilisis y Medida de la Mortalidad a traves de los Ailos de 

Vida Perdidos. Su relaci6n con la Esperanza de Vida. " 

Graciela A Canziani ( UN Centro de la Pcia. Bs. As.) "Modelo matematico de dinamica 

poblacional para copepodos calanoides. " 

(*)Nora E. Muler ( FCEyN. UBA) " Cota Uniforme para una discretizaci6n de una 

ecuaci6n parab6lica jon1-'ard=bac!n,vard " 

Maria A Dzioba, Juan C. Reginato, Domingo ATarzia (FCEFQyN. lJNRC- UAustral -

PRO~A.-R) "Efectos de cineticas de Sorcion-desorci6n sabre el crecimiento de raices de 

cultivos a traves del metodo del balance integral. 

Adriana M.Gonzalez, Juan C. Reginato, Domingo A Tarzia (FCEFQyN. UNRC- U Astral 

PROMAR) " Soluciones de los casos longitudinal y radial del problema de aereaci6n de 

raices. 

L. T.Villa, G. V. Morales, 0. D. Quiroga ( CIUNSa- INIQUI. CONICET ) " Sobre un 

modelo matematico en procesos convecci6n-reacci6n quimica-tran:f!erencia de calor en 

reactores tublliares. " 

Pedro Morin, Ruben D. Spies (INTEC- PEMA. CONICET) "Parameter Continuity of the 

Solutions of Mathematical Model of Thermoviscoelasticity." 

Gabriel Acosta Rodriguez (FCEyN. UBA) " Un modelo para "Junctions" en elasticidad 

lineal. " 

Enrique G. Banchio, Luis AGodoy, Dean T. Mook (FCEFyN lJNC- Virginia Pol. Ins and 

State University) " Un metodo de menor degeneraci6n para problemas de perturbaci6n 

singular. " 

Ecuaciones Diferenciales ParabOlicas 

Diego F. Rial, Julio D. Rossi (FCEyN. DBA) "Localizacion de los puntos de blow-up para 

una ecuacion parab6lica con condiciones de bordes no lineales. " 
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Lucio-Berrove, Domingo A Tarzia, Luis T. Villa (PROMAR- CONlCET. VNR. U. Austral -

INIQUI. CONlCET) "Comportamiento asintotico de problemas de conduccion del calor 

no ciasicos para materiales semi-infinitos. " 

Julio D.Rossi, Noemi Wolanski (FCEyN. UBA) " Existencia global 0 blow-up para un 

sistema de ecuaciones parab6licas con condiciones de bordes no lineales. " 

Julio D. Rossi (FCEyN. UBA) "Existencia global 0 blow-up para un sistema N-dimensional 

de ecuaciones del calor con condiciones de bordes acopladas. " 

Domingo A Tarzia, Cristina V. Turner ( U Austral. FaMAF. UNC.) " Condiciones 

Svficientes para un cambio de Jase en coordenadas esJericas. " 

(*)1. I. Etcheverry (FCEyN. UBA) "Sobre la solucion perturbativa de un sistema de 

ecuaciones de difusion con Juentes singulares. " 

L Caffarelli, C. Lederman, N. Wolanski (lAS. Princeton.- FCEyN . UBA) Soluciones 

viscosas de un problema de frontera libre de evolucion ados Jases. '.' 

Adriana C. Briozzo, Domingo ATarzia (FCE. U. Austral) "Solucion esplicita de un 

problema de frontera libre para un medio saturado- no saturado con difusividad no 

lineal" 

Marialme K. Konen (FCEyN. UBA- IAN CONICET) "Un teorema de Fatou para la 

ecuacion U t - L1 (u-1)+ 

Adriana C. Rriozzo, M. Fernanda Natale, Domingo ATarzia ( FCE, U. Austral) 

"Determinacion de coeficientes termicos desconocidos en materiales de tipo Storm a traves 

de un proceso de cambia de Jase. " 

Amilisis N umerico 

(*)Ricardo G. Duran (FCEyN. UBA-.) "Estimaciones de error para la interpolacion lineal 

de Junciones en R3 . " 

Ricardo Duran, Elsa Liberman (UN.LP) " Sabre la convergencia de un elemento finito 

triangular de tipo mixto para el modelo de plaea ... de Reissner-Mindlin. " 

Domingo A Tarzia ( FCE. U. Austral) "Anahsis Numerico de condiciones suficientes para 

obtener un cmo estacionario del problema de SteJan-Signorini ados Jases a traves de 

inecuaciones variacionales". 
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Dirce Braccialarghe, Elina M. Mancinelli ( FCEIyA UNR) "Sobre un problema de 

optimizacion termica. " 

M. P. Beccar Varela, M. C.Mariani, AJ.Marzocca ( FCEyN. OBA - Lab. de propiedades 

mecanicas de polimeros y materiales compuestos) "Determinacion de propiedades termicas 

en distintos compuestos. " 

J. Alvarez Julia, A L. Maestripieri, M. C. Mariani (FCEyN. UBA) "Resolucion numerica de 

la ecuacion de curvatura media prescripta. " 

J. C. Cesco, C. Denner, A Rosso, J. Perez, F. Ortiz, R. Contreras, C. Giribet, M. Ruiz de 

AzUa ( CREA IMASL- UNSL. FCEFQyN . UNRC. FCEyN. UBA) "Un cOfljunto completo 

defunciones como herramienta para calcular cierta clase de integrales. " 

Control, Optimizacion. Teoria de Juegos V Convexidad 

. R. L. V. Gonzalez, P. A Lotito ( FCEIyA UNR) " Control de sistemas con informaciOn 

incompleta y control adores con memoria jinita. " 

(*)L. S. Aragone, R. L.V. Gonzalez (FCEIyA. UNR) "El principio de maximo de 

Pontryagin para problemas de control optimal de tipo minimax. " 

Silvia C. Di Marco, Roberto L. V. Gonzalez (FCEIyA. UNR): "Problema de controloptimo 

de tipo minimax con horizonte infinito." 

Luis Quintas, Jorge A. Oviedo (IMASL. UNSL): "!mplementacion de cooperacion en 

juegos estrictamente competitivos lineales. " 

Juan C. Cesco, Nelida Aguirre ( IMALS. UNSL. CREA FCEFQyN. UNRC) "Una 

aplicacion del modelo de Gale-Shapley a un problema de asignacion de aulas. " 

Nestor Aguilera, Graciela Nasini ( UNL. PEMA. CONICET- FCEIyA. UNR) "Diseiio de 

redes. Un nuevo problema combinatorio y su complejidad 

(*)Telma Caputti (FI. U. Austral) " Sobre la monotonia de ia multiaplicacion 

subdiferenciaL " 
• 

Juan C. Bressan ( FF y B. UBA.) "Construccion de fa capsula conexa en espacios de 

conexidad" 

Mabel A Rodriguez, Fausto A Toranzos ( Inst. Ciencias. U.N. Gral. Sarmiento - FCEyN. 

UBA) "Estructuras de conjuntos jinitamente estrellados. " 
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Mabel Rodriguez ( Inst. Ciencias. U.N. Gra!. Sarmiento) ''Teorema tipo-K para rayos 

salientes. " 

Luiz F. Monteiro, Manuel Abad, Sonia M. Sabini, Julio Sewald (INMABB- UNS

CONICET) "Q-algebras de Tarski libres. " 

Manuel Abad, Jose P. Diaz Varela (UNS.) "Free Double Ockham Algebras" 

Hector Gramaglia (FaMAF.UNC.) " Representacion por Haces de Estructuras 

Reticulacias. " 

Aldo V. Figallo, Alicia Ziliani (UNS) " Una nota sabre reticulados distributivos 

monadicos. " 

Alicia Ziliani (UNS) " Dualidad de Priestley para las algehras monadicas modales 4-

valuadas. " 

(*)Diego Vaggione (FaMAF. UNC) " Variedades confibras de Pierce indescomponibles." 

Estela Bianco, Susana Orofino, Alicia Ziliani (UNS) " Semirreticulados modales 4-

valuados. ,. 

Amilisis Real y Armonico 

Hector H. Cuenya, Miguel M. Marano (FCEFQyN: UNRC.) "Una Propiedad Minimizante 

que caracteriza los espacios LP 

Miguel Iturrieta, Felipe Z6 (U.N del Comahue- UNSL - IMASL) "Mejor aproximacion 

monotona en varias variables. " 

(*)G. Oleaga, S. Pernice ( lJBA. Univ. Pitsburg) " Un metodo de sumacion para series 

asintoticas. " 

Eleonor Harboure, Oscar Salinas, Beatriz Viviani ( PEMA- CONICET - FIQ. UNL. ) " La 

integral jraccionaria sobre espacios de Orlicz pesados. " 

Gladis Pradolini, Oscar Salinas (PEMA- CONICET. FIQ UJ'.JL.) "Acotacion de la integral 

Fraccionaria entre espacios LP debiles y fuertes con un peso v y Lipschitz con peso w". 
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Claudia F. Serra (PEMA. CONICET. FIQ UNL) "La integraljraccionaria sobre espacios 

de Hardy-Orlicz. " 

Hugo Aimar, Bibiana Iaffei, Liliana Nitti ( PEMA. CONICET. FIQ. UNL) " Espacios de 

tipo homogeneos: Topologia, Dimension y Medida. " 

L. de Rosa, C. Segovia ( FCEyN. UBA. - lAM. CONICET) " Estimaciones en norma con 

pesos de las clases laterales Ai> + (J 5 P < 00) de E. Sawyer, para la juncion g A.. + .. " 

Bibiana R. Iaffei ( PEMA. CONICET. FIQ. FaFODOC). "Caracterizacion de junciones 

Lipschitz-T/ en terminos de sus integrales de Poisson. " 

Hugo Aimar, Raquel Crescimbeni (pEMA. CONICET. FIQ. UNL). " Funciones Lipschitz 

laterales y operadores de integracion jraccionaria lateral". 

Cados C. Pena ( U. N . del Centro Pcia. Bs. As.) "Operadores de desviacion 

Fraccionaria . " 

Hugo Aimar, Ana Bernardis (pEMA. CONICET- FIQ. UNL) "Analisis de espacios 

BMO( 0) con bases de Wavelets. " 

Hugo Aimar, Ana Bernardis (PEMA. CONICET - FIQ. UNL) " Una prueba elemental de la 

caracterizacion de espacios Lipschitz por medio de los coeflcientes de Haar. " 

Carlos A. Cabrelli ( FCEyN . UBA.) " Autosimilaridad y la construccion de bases de 

Wavelets. 

E. Ferreyra, T. Godoy, M. Urciulo (FaMAF. UNC) "Algunos operadores de convolucion 

con medidas singulares. " 

Eduardo Serrano ( FCEyN. UBA) " Una nueva Familia de Funciones Spline peri6dicas. " 

Marcela Fabio, Eduardo Serrano( FCEyN. UBA). " Aplicacion de Wavelets Spline 

periodicas para el Analisis de Curvas Parametricas" 

Logica, Conjuntos Borrosos, Grafos y Topologia 

AIdo V. Figallo, Ines Pascual ( UNS. - ICB. UNSJ) "Una nota sobre algebras de 

Lukasiewicz n-valentes monOdicas." 

Elda Pick ( DCB- FI - UNSJ) "1M I n+ 1 - Algebras. " 

(*)Adriana Galli, Marta Sagastume (FCEx. UNLP) "Algebras de Nelson monOdicas. " 
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Renato C. Scarparo, Armando Godon Cabral ( FCEIyA - UNR) " Caracterizacion de 

Grupos Borrosos. " 

Renato C. Scarparo, Armando Godon Cabral ( FCEIyA - UNR) " Caracterizacion de 

Conjuntos Borrosos. " 

Ruben 1. Succhello ( FCEx . UNLP) "Compatibilidad de un grafo con un orden aciclico. " 

Raul A. Chiappa (UNS) "Enumeracion de caminos elementales y de I-factores. " 

Renato C. Scarparo (FCEIyA. UNR) " Sobre los espacios topolOgicos borrosos." 

Algebra y Teoria de Numeros 

Ingrid Schwer, Eleonora Cerati. (FIQ- UNL) "Homologia ciclica de K[x / <x p >." 

Flavio B. Coelho, Maria Izabel Martinis, HeCtor MerIden, Eduardo Marcos, M. Ines 

Platzeck ( IME. UNP. Brasil.- INMABB- UNS) "MOdulos de dimension proyectiva finita 

sobre algebras con ideales idempotentes proyectivos. " 

Martin Sombra (FCEyN. UBA.) " Una cota para la funcion Hilbert de un ideal x-

dimensional. " 

Eduardo Cattani, David Cox, Alicia Dickenstein (Dpto. Math. U. Massachusetts-Dpt. Of 

Math. Amherst College- FCEyN. UBA) "Residuos en variedades toricas. " 

Guillermo Matera (FCEyN. UBA) "Cotas superiores de complejidad de espacio para la 

Eliminaci6n. " 

1. P. Rossetti, P. Tirao ( FaMAF. UNC.) "Un teorema restringido de Krull-Schmidt para 

representaciones enteras de zl 
1. O. Araujo, 1. L. Aguado (FCE. U. del Centro de Pcia. Bs. As.) " Sobre Representaciones 

de Grupos Lineales. " 

Fernando Levstein, Alejandro Tiraboschi ( FaMAF. UNC) "Algebra de Heisemberg y sus 

generalizaciones. " 

Nicolas Andruskiewitsh, Hans-Jiirgen Schneider (FaMAF. UNC.- U. Munchen) " Hopf 

Algebras of orden p2 and braided Hopf algebras of orden p. " 

N. P. Kisbye, R. 1. Miatello (Fa MAF. UNC) "Residuos de Series de Poincare en r = o. " 
R. Bruggeman, R. 1. Miatello (FaMAF. UNC) " Estimaciones de Salie-Weil para Sumas de 

Kloosterman generalizadas" 
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Amilisis Funciona) 

M. Aguirre Tellez ( FCE. U.N. del Centro de la Pcia. de Bs. As.) "EI producto 

. . . 8(xo -I~) 8(xo + I~) " 
dlstnbuclOnal Ixl (n-2)/2 • Ixl (n-2)12 

Graciela Carboni, Angel R. L'arotonda (FCEyN. UBA) "Limites proyectivos. " 

(*)Martin Argerami, Demetrio Stojamoff (UNLP) "Un grupo surgido de fa Orbita Unitaria 

del proyector de Jones en inclusiones de Algebras de Von Neumann. " 

E. Cesaratto, M. Piacquadio (FCEyN. UBA) " Sobre la existencia y finitud de fa a 

concentracion de Procaccia. Aplicaciones al estudio del espectro mult~fractal 

correspondiente. " 

A. Maestripieri, M. Mariani (FCEyN.UBA. lAM) "Superficies de revolucion con curvatrura 

media dada. " 

(*)Gustavo Pineiro (FCEyN. UBA) " Geometria Diferencial de Sistemas Dinamicos sobre 

C*- algebras. " 

Julio H. G. Olivera (FCE. UBA) " Conjuntos acotados de distribuciones: categoria y 

dimension. " 

Eduardo J. Dubuc, Jorge Zilber (FCEyN. DBA) "Espacios de fimciones entre e~pacios 

complejos. " 
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RESENA DEL LIBRO ALGEBRA 
DE MICHAEL ARTIN 

NICOLAS ANDRUSKIEWITSCH 

Algebra, M. Artin. Birkhiiuser, Basel, 1993,720 paginas.lSB1't3-7643-2927-0 

Important though the general concepts and propositions may be with which the 
modern and industrious passion for axiomatizing and generalizing has presented 
us, in algebra perhaps more than anywhere else, nevertheless I am convinced 
that the special problems in all their complexity constitute the stock and core of 
mathematics, and to master their difficulties requires on the whole the harder 
labor. 

HERMANN WEYL 
Este libro, una introduccion al algebra diseiiada para los primeros cursos universitarios 

de esta materia, est a basado en notas de clases dictadas por el autor a 10 largo de veinte 
MOS. La fuente de esta reseiia es la edicion en aleman de Birkhiiuser (1993), traduccion 
de la version original en ingIes publicada por Prentice Hall en 1991. 

El enfoque adopt ado para la eleccion de los temas y su presentacion se sus tent a, como 
10 expresa el autor en el prefacio, en los siguientes principios: 

1. Los ejemplos fundament ales deben preceder a las correspondientes definiciones. 

2. El libro no es una obra de consult a, de modo que puntos tecnicos son desarrollados 
unicamente si son necesarios. 

3. Los temas tratados deb en ser significativos para todo matematico. 

En este espiritu, ilustrado por la cita de H. Weyl que sirve de epigrafe al Prefacio del 
libro- y a esta reseiia-, se privilegia el estudio de temas particulares, como simetrias, grupos 
lineales y extensiones cuadraticas de Q. 

Ellibro consta de catorce capitulos y un apendice, donde se present an algunos resultados 
y nociones de uso en el texto principal. A continuacion se describen someramente los 
contenidos del Ii bro. 

Los primeros cuatro capitulos ("Matrices" ,"Grupos", "Espacios vectoriales", "'I'rans
formaciones lineales") cubren definiciones y resultados basicos. 

La segunda parte del libro ataiie a los grupos y sus relaciones con la geometria. Asi, 
en el capitulo quinto (" Simetrias") se estudian las acciones de los grupos ortogonales en 
dos y tres dimensiones, y sus subgrupos discretos. Por ejemplo, se clasifican los subgrupos 
discretos de S03. EI capitulo sexto ("Mas sobre grupos") incluye, entre otros topicos, los 
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teoremas de Sylow, la elasificaci6n de los grupos de orden 12, los grupos simetricos y la 
presentacion de un grupo por generadores y relaciones. El capitulo septimo esta dedicado 
a lasformas bi1ineales: elasificacion de las form as bilineales simetricas y antisimetricas, 
formas hermlticas, teorema espectral. En el capitulo octavo ("Grupos lineales"), se de
finen los grupos cbisicos y se estudia en detalle la estructura geometrica del grupo especial 
unitario SU2 • Se discuten los subgrupos monoparametricos y las algebras de Lie de los 
grupos elasicos. El capItulo novena conticne los elementos basicm; de la teoria de repre
sentaciones de dimension finita: caracteres, relaciones de ortogonalidad, lema de Schur. Se 
elasifican las representaciones irreducibles del grupo del icosaedro y de SU2 . 

La .tercera parte del libro concierne a la aritmetica y al algebra conmutativa. En el 
capItulo deeimo se introducen nociones basicas de la teoria de anillos; se esboza la relacion 
entre algebra conmutativa y geometria algebraica. En el capitulo undecimo se considera 
la factorialidad, a traves de ejemplos- anillos de enteros en extensiones cuadraticas de 
los racionales- y de condiciones axiomaticas- domip.ios de ideales prineipales, dominios 
euelfdeos. Se discute la factorizacion en ideales primos y el grupo de elases. En el capitulo 
duodecimo ("Modulos") se parte de la definicion y se llega ala clasificaci6n de los grupos 
abelianos finitamente generados; la prueba de este result ado es adapt ada para obtener 
las form as racional y de Jordan de un endomorfismo de un espacio vectoriaL El capitulo 
decimotercero esta consagrado a la teor{a de cuerpos e incluye, pOl' ejemplo, la clasificacion 
de los cuerpos finitos, una prueba del teorema fundamental del algebra y 10, determinacion 
de los puntos del plano constructibles can regIa y compas. El capitulo decimocuarto y 
ultimo ("Teoria de Galois") aborda el teorema de Galois y aplicaciones: ecuaciones solubles 
por radicales, ecuaciones de quinto grado, extpnsiones de Kummer y ciclotomicas. 

Cada capitulo coneluye con una largo, lisia de ejercicios; aqui tambien, como en el texto 
principal, se enfatiza 1a consideraci6n de ejemplos y casos particulares. 

EI estilo del autor es claro, amenD y abundante en motivaclones. Asf, por ejemplo, 10, 
definicion de grupo en el capitulo 3 ocupa las paginas 40 a 42. La exposici,!m de algunos 
temas se compJementa con enunciados de teoremas mas avanzados, sin demostracion, 

Hay una permanente intencion de desarrollar en el estudiante una adecuada intuicion 
mediante ejemplos e interpretaciones geometricas, asi como de relacionl'lr al algebra con 
otras ramas de la matematica; pOI' caso, en 10, seccion 7 del capitulo 4 (Transformaciones 
lineales) se explica la resolucion de sistemas lineales ( diagonalizables) de ecuaciones diferen
ciales. En contrapartida, se minimiza deliberadamente el empleo de metodos axiomaticos; 
as{ por ejemplo, el principio de induccion es present.ado en 1a pagina 397, capitulo 10. 

Indudablemente este libro es un aporte valioso ala ensenanza del algebra en el inicio del 
cielo universitario y su uso, de provecho para el docente como fuente de ejemplos, permite 
acceder a las definiciones fundament ales del algebra moderna a traves de importantes 
problemas pa.rticulares de enunciado sencillo. Sin embargo, el autor de esta resena vacila 
en sugerir cenirse estrictamente a1 punto de vista. mantenido en esta obra; a su juicio, un 
matematico mocierno precisa tambien manejar con soltura las tecnicas axiomaticas y no es 
desdenable 10, idea de familiarizar al estudiante con ell as desde su ingreso ala Universidad, 
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