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SUBGROUPS OF THE GALILEO GROUP
AND MEASURABLE FAMILIES OF CURVES

A. BERENICE GUERRERO G.

Universidad Nacional de Colombia

ABSTRACT. The one and two-parameter subgroups of the Galileo group of actions on
space-time of spaces dimension one are fully determined. Then, the measurable families
of curves having the Galileo group or one of its subgroups as maximal invariance group
are found.

1. INTRODUCTION**

The search for the Lie subgroups of a Lie group was initiated by Sophus Lie when
he determined all subgroups of the projective group P,. We intend in this work to
obtain all the subgroups of the Galileo group of transformations of space-time of space
dimension one. The one, two and three parameters families of measurable submanifolds
(curves) of space-time will be also determined. The following result ([5]) will be used
throughout:

Theorem 1.1. Let Y7.... .Y, be vectors fields on a manifold M, such that
T
Yi, Y;] =Y _Cf Vi i, j=1,....r (1.1)
k=1

where the Cf] are constants. Then, there is a Lie group G whose Lie algebra has the

C’i’“j as structure constants for some basis Xi,...,X,, and a local action ¢ of G on
M such that X;,, =Y;, i=1...,r

We also mention ([4]) that

Theorem 1.2. Let G be a Lie group. If H is a Lie subgroup of G then the Lie
algebra H of H is a subalgebra of G, the Lie algebra of G. Each subalgebra of G
is the Lie algebra of exactly one connected Lie subgroup of G.

1991 Mathematics Subject Classification. Primary 28D15. Secondary 28C10.

Key words and phrases. Lie groups, Galileo group, r-parameters subgroup of a Lie group, infin-
itesimal transformation, invariance groups of a family of submanifolds, associated groups, integral
invariants, measurable groups, measurable families of submanifolds..

**This work was partially supported by CINDEC U.N.



2. THE GALILEO GROUP AND ITS SUBGROUPS

2.1 The Galileo Group.

As mentioned above, we restrict overselves to the simplest case of the Galileo group G
of actions on space-time of space dimension one.
This group is determined by the equations

{r*=r+vt+c @2.1)

t*=1t 4+ s

Where v, ¢, s are the group parameters. Thus G is a Lie group of dimension three.
Its infinitesimal transformations are

X1=t2 Xy = — X3 =

s (2.2)

with structure equations

(X1, X1] = [X1, X,] = [X2, X]
= [X2, X3] = [X3,X5] =0, (2.3)
X1, X5] = —-X,

2.2 Two-parameter subgroups of G.

These are the subgroups determined by two linearly independent vector fields Y7,Y5
in the linear span of X3, X3, X3 such that their Lie bracket is a linear combination of
Y;,Y2. Thus, equations
Yi= a1 X1+ e Xo +a3X3
Yo= B X1+ B2 X2+ B3 X5 (2.4)
[Y1,Y2] = (a3f1 — a1 fB3) X2

with X;, ¢ =1,2,3 asin (2.2), fully determine the two-parameters subgroups of the
Lie group G. The following possibilities arise:

(i) a1 # 0. We may assume a; =1, §; =0, to get

Yi =X+ a2 X3 4+ a3X3
Y2 = B2 Xy + B3 X3
[Y1,Y2] = =B X2 = 6Y) + ¢Y>
= 0X; + (6az + ¢62) X2 + (baz + ¢83) X

(2.5)

which together with (2.4) ensures that

6 = O’ ¢,H2 :—ﬂ3a ¢:H3 =0



Now, condition ¢ 83 = 0 opens the alternative
- { ¢ #0 This lead to 33 = 8; = 0 which is absurd
¢ =0 Then B3 =0and f(; #0
So, we may assume 3 =1, a; =0 Then
17} 0
Yi= X = t—+az5
1 1+ a3X; o Ty,
2,
or

Now if Y =aY; + bY2 is in the span of Y; y Y its integral curves are determined
by

(2.6)
Y= X, =

dr

oo aYir +bYor = at+b

dn S
dt (2-1)
— = a1t + b¥ot = aas

dn

Integrating this system and determining the transformations seuding (r(0).+(0))
into (r(1),#(1)), we obtain (see [2]) the subgroup H} given by the system of
equations

{r*:r—i—vt—l—c (2.8)
t** = t+ kv %k a constant -
and having
0 0 Jd
t— k— . —_— 2.9
o T e o (2:9)
as infinitesimal trasformations
(1) az #0 We may take as =1, 3y =a; =0. Then:
y'] = .Yg + (13}(3
Yo = 5i1Xa + 43X
(2.10)

[Y1,Y3] = a3 Xy = 6)7 + oY)
=01 X1+ 60X, + (faz + 6/33) X3

which together with (2.4) and (2.5) yields

¢ﬂ1 :O~ 62036], 9_03—*—(&/)’;; =0
so that
a3 b+ By =0, ¢8 =0
Condition ¢8; = 0 raises the alternative
¢ #0 then By =33 =0, Thisis absurd
(13#0&1’1(‘1/3] =0, H';#O
# =0, sothat af 8, =0. Then or

(13:0
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Aséuming az, B3 #0, /1 =0 and letting, as we may, [3 = 1, produces the two
fields

-0 7]
Yi=Xo+a3X3 = 0_+03§
' 5 T (2.11)
Y, A3 ot
and if Y = aYj + bY; its integral curves are determined by
dr dt
bl _— = 2.12

Integrating this system and determining the transformations sending (r(0), ¢(0)) into
(r(1), t(1)), we obtain the subgroup HZ of equations

{ rom e (2.13)
t = t+s
with infinitesimal transformation

15) o

— — 2.14

If a3 =0 and B; =0 the group H? above is obtained. However, if 3, # 0, and we
assume as we may f; = 1, the vectors fields are

vi= X, = 2

or 5 5 (2.15)
2=X1+ﬂ3X3=t57+/33§

and the corresponding group is H3

(iii) as #0. We take a3 =0, a; =0, a3 =1, B3 =0, to get
Yy = 1 X1 + B2 X2

9
[Y17Y'2] = ﬂlXZ = 0)/1 + ¢Y2 (—“16)
=651 X1+ 962 Xo + 0X3
Comparing with (2.4) and (2.5), we get
=0
B2 = P
B1 =P, =0 if ¢ #0 Absurd
= 0,s0 that
P = Oyso tha {ﬂ1=0 if 4=0
Thus 5
Yl = X3 = a
P S (217)
Y2 = (X2 52'5"
"

and the group is H2.

We have proved that
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Theorem 2.1. . The-Galileo group.G determined by the infinitesimal transformations
(2.2) with structure equation (2.3) has the two two-parameter subgroups

2.3 One-parameter subgroups.
These are determined by the fields
Y = a1 X1 + a2 Xy + a3 X3,
where X;, ¢=1,2,3 are the infinitesimal transformations of the Galileo group and
«y, g, a3 are constants.

The different possibilities are:

(i) @1 # 0. Changing variables , if necessary , we may assume a; = 1, so that

0
Y = Xi+aXot+a3Xs = (t + a2) o + a3 e

i.e, with ¢ instead of ¢+ a9,

0 0 v
T = t— — 2.19
Y or + “36t ( )
Ifs integral curve is determined by
Z—T- = a¥Yr = at
d’z (2.20)
d_ﬂ = aYt = aoaz

Upon integration of this system, the group is defined by the transformations sending
(r(0),#(0)) into (r(1),#(1)) and thus we obtain the group H{ determined by

* 2
™ = r+vt+0°k (2.21)
t* = t+ 2vk
or by infinitesimal transformation
19 4wl (2.22)

or ot
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(i) a2 #0. We may assume ay =1 and a; =0, so that

. 0 0
Y = ..Y'z + o3 4Y3 = E + a3 E (223)
with integral curve determined by
(IL = aYr = a,
o (2.24)
dt Yt aa
-_— = = N
dn ’
which yields the group H? defined by
{ r* = r+ca (2.25)
t* = t+ck, k a constant
or by infinitesimal transformatcion
7] 17
— k— 2.26
% 1t kg (2.26)
(ili) a3 # 0. We may assume a; = a; =0, so that
0
Y =X;=—, 2.27
3= 5 (2.27)
and its integral curve is determined by
d
d—r- = aYr = 0,
7 (2.28)
dt
— = a¥t =a
dn
which upon integration yields the group H? defined by
Tk = T
{ » (2.29)
t* = t+c
or by infinitesimal transformation
: 0
— 2
Er (2.30)

Hence

Theorem 2.2.. The Galileo group G determined by the infinitesimal transformations
(2.2) with structure equations (2.3) has the three one-parameter subgroups

H! = {t2 + 21«2}

or ot

0 o
2 _ ) . _ 92
H; _{Br + ki } (2.31)

{3}



7

3. SoME Basic NOTIONS

3.1 Maximal Invariance Subgroup of a family of manifolds.

Let G be a group acting on a manifold M andlet F be a ¢-parameter family of p-
dimensional submanifolds of M. If G* is the subgroup of G leaving globally invariant
the family F, (i.e. s € G* and v € F,implies s(v) € F) and H* is the subgroup
of G* fixing every submanifold in F, (i.e. s € H* andv € F grants s(v) = v),
the quotient group K = G* / H* is called the maximal invariance subgroup
of F' . The subgroups of K are called the invariance subgroups of F. The group K
leaves invariant the family F' and has no other transformations but the identity fixing
all submanifolds in F'.

3.2 Associated Group.

If to each s in an invariance group G of F we associate a transformation # on
the parameter of F, the set H of all such transformations is a group isomorphic to
G which acts on the parameter space of F. The group H is called the associated
group of G relative to F.

In [6] it is shown that

Teorem 3.1. Let G, and H, be isomdrphic groups. A necessary and sufficient condi-
tion for the existence of a g-parameter family Fy of p-dimensional submanifolds V,
having G as an invariance subgroup is that the matrix

(E4(&)s- -, E0(2), mh(a)s (@), h=1,r (3.1)

be of range r1 < n+gq. Where z = (z!,...,2"), a = (a!,...,a?), 7> 1 and
, & (2), ni(a) are respectively the coefficients in the infinitesimal transformations of
the groups G and H.

Under the above circumstances, the family F, is determined by the equations

* (¢! (z,q),..., 4" " (z,a)) = 0, A=1,...,n—p (3.2)
where ¢F(z,a), k=1,...,n+4q—r, are the independent integrals of the system
i OF*z,a) ; OF*(z,a)

and ‘ ‘
FAz,a) =9 (¢'(z,0),...,¢" M " (z,0))

Remark 3.1. For our purposes, A=1 and r =1,2



3.3 Integral invariants of a Lie group.

Let G bean r-parameter group of transformations #(z',...,z", a!',...,a") of R™.
A differentiable function ¥ : R™ — R is an integral invariant of G if

Yt ..., z")det ... dz" = /‘d'(yl,...,y")dy]...dy" : (3.4)
$(U) . U

for any transformation ¢ of G where y* = ¢F(z',....z™a',...,a") and U is
any subset of R™ where the right hand integral exists.

3.4 Families of measurable submanifolds.

Definition 3.1. A Lie group of transformations of R" is measurable if it has a unique
integral invariant, except for constant multiples.

A necessary condition for the measurability of a Lie group G is that G be transitive
(see [6]).

Let F be a g¢-parameter family of p-dimensional submanifolds of R" and let G be
an invariance subgroup of F. Let H be the associated group of G relative to F. If
H is measurable, F' is said to be measurable relative to H (or G ); andif «
is the essentially unique integral invariant of H.

/;;Zv(al,...,aq)dal...(laq (3.5)

is called the measure of the family F for H (or G), and the ¢-form
¥(al,...,a%)da' ... da?

is called the invariant density of F for H

Deltheil [3] has shown that

Theorem 3.2. The integral invariants of a Lie transformation group are the solutions
of the system of partial differential equations

n

Z %[&(I) Y(z)] = 0, h=1,.... r (3.6)

=1

where the .f;, are the coefficients in the infinitesimal transformations of the group.

A sufficient condition for the measurability of a family F of submanifolds of R" is
the measurability of the associated group of the maximal invariance group of F. This
condition is also neecessary for one, two and three-parameter families.
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4. MEASURABLE FAMILIES OF CURVES FOR THE GALILEO GROUP

4.1 Families of one-parameter curves which are measurable for the action
of the Galileo group or of one of its subgroups.

Let F be a family of one-parameter curves determined in space-time (r,t) by the
equation

1/)(T,t,a) =0, (41)

o a parameter. If G is the maximal invariance group of F, its associated group
H actson R, and F is measurable if and only if H is.
As Lie proved, the groups acting on R are the translation, the afin and the projective
group, and only the first of these groups is measurable. Thus, H above is {0/0a},
the translation group, and G is one of the group H},H?, H}. We examine the three
posibilities:

(1) If the maximal invariance group G of F is

g 0 %)
1 _ il il . . . — i
H = {tar + 2k at} and its associated group is H {Oa}
then, in (3.6),
=t & =219 =1
i.e. ¢ must satisfy
oy oy oy
ar + 2k 5t + ER 0 (4.2)
whose solutions are of the form
P(r —ta + ko, t — 2ka) = 0, or, r = ta—ka®+ é(t—2ka) (4.3)
(2) If G = HE,
0 0 0
H? = — 1+ k= = =
{20} w m-[2)
then ¢! =1, €2 =k, n! =1in (3.3), and ¥(r,t,a) must satisfy
o oy O
— b= L = 4.4
A I (44

whose solutions have the form

Y(r—a,t —ka) = 0, or, r=a+ ¢t —ka) (4.5)
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‘ 15} 3}
(3) If G:H?:{E} and H:{%}, then ¢1=0 ¢2=1np'=1

so that

oy oY
Bt + 90 0 (4.6)
whose solutions are of the form
“Y(r,t—a) =0, or, r = §(t—a) (4.7)

summing up, we have shown that
Theorem 4.1. The one-parameter families of curves
Y(r —ta + ka®, t —2ka) =0,
P(r—a, t—ka) =0, (4.8)
P(r, t—a)=0

have, respectively, as their maximal invariance groups, the one-parameter subgroups

Hl = {t—a— +2k-‘2}

or ot
15} o
H’2_
! _{6r+k8t}

0
a2t~ {5}

of the Galileo group in space-time of space of dimension one.

4.2 Two- parameters families of curves which are measurable for the action
of the Galileo group or one of its subgroups.

Let F be the two-parameters family of curves
p(r,t,a,B) = 0 (4.9)

where «, B are the parameters and- (r,t) the space-time coordinates.

Let G be the maximal invariance group of F and H its associated group. Since F
is measurable, also H is measurable, and therefore transitive. Then dim H = dim
G > 2 and G has to be one of the groups H3i, H2, or the full three-parameters
Galileo group.

(1) G=Hj] ={Y,Y,} where

gr (4.10)

= o



i1

with structure determined by [Y;, Y2] =0, then H is a two parameters group with
infinitesimal transformations

0 N
Al = 7/11(O‘a ﬂ)__ + Tllz(aa /))53

65‘ 5 (4.11)
=nl - 2v(‘1‘ =
Az—ﬂz(avﬂ)aa‘knz( 7/3)06
and structure equation [A;; Ap] = 0. Then, the corresponding coefficients for
equation (3.6) are
{5{ =t, =k & =186=0
m=a, ni =0, 1=0,15=4
and F' is determined by the equations
(i)ta—¢+ka—¢+aai =0
or ot Oa
(4.12)
) 2 4 2%~
Or B
The solution to (4.12),(¢)) is the family of curves implicitly given by
Wlae ™k B —t2)2k) = 0 (4.13)
ie by ¥(r, t, a, B) =0 where
U(r, t, a, B) = 1 —t*/2k — ¢(ae" 'k, B) | (4.14)
since (r,t,a) must verify (4.12),(i7), and
o o 0¢
P, % 4.15)
o ~ 7 98 B (415
we get
¢ =l + flac™F) (4.16)
and
Y(r t, o B) = r—t*/2k—1nf — fla e tky =0 (4.17)

is the measurable family of two-parameter curves having H,] as maximal invariance
group.

(2) If G= H?

0
2_ )9 O —Jda— B—
Hz—{ar, at} then H {aaa, ﬂaﬂ}
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is as before the associated group of G, and the corresponding coefficients for (3.6) are

6}21, 5?20, 77}2017 7712:0

so that (3.3) becomes

0
—1’[) + aa—w =0
Or Oa (4.18)
% 4 52 o '
ot op
whose solutions are implicitly given by
Ylae™ ™ Be ) =0 (4.19)
i.e, F is the family of curves determined by
Y(r,t,a,pf) =r—Ina— ¢(t —1np) (4.20)
So far, we have proved that
Theorem 4.2. The two parameters families of curves :
r=12/2k +1n 8 + ¢(aeF)

(4.21)
r=Ilna+ ¢(t—1np) .

have, repectively as their maximal invariance groups, the two parameter subgroups

o 0 8
1 __ —_ —_— —
H, = {tar MLF ar}

6 0
2 _
HZ_{@T’ at}

of the Galileo group in space-time of space dimension one.

(4.22)

M. Stoka [6] shows that the two-parameter family of measurable curves having as
invariance group G the full Galileo group (2.1), are family of straight lines. He also
proves that the measurable three-parameter family having G as maximal invariance
group is given by '

Yt —yr—pB,r—a)=0 (4.23)

Acknowledgements.
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version of the manuscript.
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ON THE STRUCTURE OF THE CLASSIFYING RING OF
SO(n,1) AND SU(n,1)

JUAN A. TIRAO

Presentado por R. Panzone

ABSTRACT. Let G, be a non compact real semisimple Lie group with finite center,
and let U(g)® denote the centralizer in U(g) of a maximal compact subgroup K,
of Gs. By the fundamental work of Harish-Chandra it is known that many deep
questions concerning the infinite dimensional representation theory of (G, reduce to
questions about the structure and finite dimensional representation theory of the
algebra U(g)”, called the classifying ring of Go. To study the aigebra U(g)X, B.
Kostant suggested to consider the projection map P: U(g) — U(¢)®U(a), associated
to an Iwasawa decomposition Go = KoAocN, of Go, adapted to Ko. When P is
restricted to U(g)™ P becomes an injective anti-homomorphism of algebras. In this
paper we use the characterization of the image of U(g)%’, when Go =SO(n,1) or
SU(n,1) obtained in Tirao [11], to prove that U(g)™ ~ Z(g) ® Z(¥), where Z(g) and
Z(%) denote respectively the centers of U{(g) and of U(¢). By a well known theorem
of Harish-Chandra these two centers are polynomial rings in rank(g) and rank(€)
indeterminates, respectively. Thus the algebraic structure of U(g)¥ is completely
determined in this two cases.

1. INTRODUCTION

Let G, be a non compact real semisimple Lie group with finite center, and
let K, denote a maximal compact subgroup of G,. If £ C g denote the respective
complexified Lie algebras, let U(g) be the universal enveloping algebra of g and let
U(g)® denote the centralizer of K, in U(g).

By the fundamental work of Harish-Chandra it is known that many deep ques-
tions concerning the infinite dimensional representation theory of G, reduce to
questions about the structure and finite dimensional representaton theory of the
algebra U(g)K, called the classifying ring of G, (cf. Cooper [2]). Briefly, the reason
for this is as follows: To any quasi-simple irreducible Banach space representation
7 of G, there is associated an algebraically irreducible U(g)-module V' which is
locally finite for K, and which determines 7 up to infinitesimal equivalence. In fact
one has a primary decomposition V = € V5, where the sum is taken over the set
K, of all equivalence classes & of finite dimensional irreducible representations of
K, and the multiplicity of 6 is finite for any § € K,. Then, in particular, any V;
is finite dimensional and hence, a finite dimensional U(g)®-module. The point is
that V itself as a U(g)-module is completely determined by V; as a U(g)¥X-module

1991 Mathematics Subject Classification. Primary 22E46; Secondary 17B35.
Key words and phrases. Semisimple Lie group, universal enveloping algebra, classifying ring,
Lepowsky anti-homomorphism.
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for any fixed 6 when Vs # 0. See Lepowsky and McCollum [10] and Lepowsky [9]
for a nice exposition of this. See also Dixmier [3] and Wallach [12].

When Vs, # 0, where §, is the class of the trivial representation of K,, then
m is called spherical. The approach above has been quite successful in dealing with
spherical irreducible representations of G, (see e.g. Kostant [7]). Indeed, we may
take § = §, and thus we have only to consider a quotient U/(g)* /I instead of
U(g)X. Here I is the intersection of U(g)K with the left ideal in U(g) generated
by £. Now by a theorem of Harish-Chandra, U(g)¥ /I is not only commutative but
also isomorphic to a polynomial ring in r variables, where r is the split rank of G,. _
More precisely one has an algebra exact sequence

(1) 0—1—U(@X/12U@" -0

where a is the complex abelian Lie algebra associated to an Iwasawa decomposition
Go = Ko,A,N, of G, adapted to K,, and U(a)" is the ring of W-invariants in
U(a), W being the translated Weyl group.

To investigate the general (not necessarily spherical) case along these lines one
must look at U(g)¥ itself, not just U(g)X/I. It is known (see e.g. Kostant and
Tirao [8]) that the map (1) may be replaced by an exact sequence

0—U@X L Uu®MeU(a)

where U(8)M denote the centralizer of M, in U(t), M, being the centralizer of A,
in K, and U(¢)™ ® U(a) is given the tensor product algebra structure. Moreover
P is an antihomomorphism of algebras. In order to generalize (1) it is necessary
to determine the image of P. Towards this end we introduced in Tirao [11] a
subalgebra B of U(8)™ ® U(a) defined by a set of equations derived from certain
imbeddings among Verma modules and the subalgebra BY of all elements in B
which commute with certain intertwining operators. Such operators are in a one to
one correspondence with the elements of the Weyl group W and are rather closely
related to the Kunze-Stein intertwining operators. In fact the relation of BY to B
may be taken as the generalization of the relation of U(a)¥ to U(a). In Tirao [11]
it is proved that the image of P lies always in BY | and that when G, =SO(n,1) or
SU(n,1) we have P(U(g)X) = BW.

In this paper we use this result to exhibit the structure of U(g)¥ in this two
cases. In fact we shall prove that U(g)X ~ Z(g) ® Z(¥), where Z(g) and Z(¥)
denote respectively the centers of U(g) and of U(t). By a well known theorem
of Harish-Chandra these two centers are polynomial rings in rank(g) and rank(t)
indeterminates, respectively. Thus our work 1s finished.

Nowadays there are several proofs that U(g)¥ is a polynomial ring (Cooper
[2], Benabdallah [1], Knop [6]), nevertheless our approach should prove to be useful
to attack the general case, or at least the case when G, is any real rank one group.

2. THE ALGEBRA B

Let t, be a Cartan subalgebra of the Lie algebra m, of M,. Set h, = t, B a,
and let h = t® a be the corresponding complexification. Then h, and h are Cartan
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subalgebras of g, and g, respectively. Now we choose a Borel subalgebra t & m*
of the complexification m of m, and take b = h ® m* @ n as a Borel subalgebra
of g. Let At be the corresponding set of positive roots, put g* = m* & n and
87 = sea+ 8-a- Also put p = %EaeA+ a. Set (,) denotes the Killing form of
g and (i, @) = 2(p, @) /{a,a). For a € A% let H, € h be the unique element such
that (u, ) = p(Hy) for all p € h*. Also set Hy, = Yo + Z, where Y, € t and
Zy €a. Let PT = {a € At : Z, # 0}.

Let g = £ ® p be the complexified Cartan decomposition, associated to K,
and let @ denote the corresponding Cartan involution. Also let M/ denote the
normalizer of A, in K,. Let o € Pt be a simple root such that Y, # 0. Set
Ey=X_o+0X_, where X_,is a non zero root vector corrresponding to —c.

When G, = SO(n, 1), (n # 3) there is only one simple root a; € Pt (if n =3
there are two simple roots ay; a2 € P*). When G, = SU(n,1) (n > 2) there are
exactly two simple roots a1, a, in Pt. Set Ey = E,, (n # 3) and E; = E,,, Eq,
when n = 3 in the first case, and Fy = E,,,F3 = E,, in the second case. We
shall also use E to designate any one of the vectors E;,E3 or F3 and « for o,
(a1 or ag), a1 or ay,, respectively. Moreover Y, # 0 if G, = SO(n,1)e n > 3 or
G, =SU(n,1) n > 2. From now on we shall take for granted that we are in one of
these cases.

From (8) and (9) of Tirao [11] we know that the algebra B is the set of all
be U(t)M ® U(a) such that for all n € N

(2) E"b(n—Yy—1)=b(—n =Y, - 1)E" mod (U(8)mt)
holds for (F,a) = (E1, 1) and (F,a) = (E2, a1), (E3, ), respectively. Also
(3)  BW ={be B:6,xb(\—p)=b(w()) = p) 6, for all w € M., \ € a*}.

The algebraic structure of U(g)¥ when -G, =SO(n,1) or SU(n,1) n > 2 will be
determined by induction on n. The case SO(2,1) is quite simple and will be con-
sidered later. Thus we shall take up now the case G, = SU(2,1). If u is any Lie
algebra z(u) will denote the center of u and Z(u) will denote the center of U(u).

Lemma 1. If G, = SU(2,1) set Y = Y,, = —Ya,. Also let 0 # D € z(¥) and let
¢ denote the Casimir element of [¢,¥]. Then {{'DiY*}, ; ¢>o is a basis of U(€)M.
Moreover the canonical homomorphism p : Z(¥) @ Z(m) — U(8)M is a surjective
isomorphism. '

Proof. The set {E3, Es,D,Y} is a basis of £. Therefore the monomials EELDIY*
form a basis of U(¥). Now m is one-dimensional and ¥ € m. From Lemma 29
of Tirao [11] it follows that [Y, E2] = —(3/2)E, and [Y,E3] = (3/2)Es. Hence
{EéEéDjyk}iyj’kzg is a basis of U(E)M Now ( = aEy2Fs + bY?2 +¢D?+dYD +
eY + fD, a,bc,d,e,f € C, a# 0. Thus {(!DIY*}; j k>0 is a basis of Ue)M.

Since {¢*D?}; j>o is a basis of Z(t) and {Y*};>¢ is a basis of U(m) = Z(m)
the first assertion of the lemma implies the second.

Proposition 2. For j = 2,3 let

B; ={be U®M @U(a) : E}b(t — (~1)'Y — 1) = b(—t — (-1)Y — 1)E},t € N}.



18

Then Bj, as an algebra over C, is generated by the algebraically independent
elements (®1,D®1,(Y ®1+(-1Y ® Z+(-1))2,Y ® 1—3(-1¥ ® Z and 1.
Proof. If b € U(t) ® U(a) then by Lemma 1 b can be written uniquely as b =
S ai;kiCtDIYF @ Z', a;jx1 € C. Since [(-1)Y,E;] = —3E; (j = 2,3) from
Lemma 18 (vi) of Tirao [11] we get

Eib(t— (1YY = 1) = Y aij 1 DEYH(t — (-1YY — 1)
5,4,k
D aij e DY + (1) 3)F(—£ — (-1yY - 1)'E}.
54,k
Thus b € B; if and only if for all 4,5, € N we have

D aigaY + (-1 305 (=% — (1YY =)' =) ai ik Y H(—t — (1Y — 1)\
K, ’ k1

Hence the problem of characterizing all b € B; is equivalent to determine all f €
Clz1, 22] such that
(4) Fly+ (=173, -4 = (-1Yy—1) = f(y,—t = (-1Yy — 1)
for all ¢,y eC.
For j = 2,3 let f; € C[zy,zo] be defined by
(5) f(zy,22) = fi(er + (=1 (22 + 1), 21 — 3(=1) (22 + 1))
Then f satisfies (4) if and only if f;((—1)7t,4y + 3(=1)'t) = f;(—(=1)7t,4y +
3(—1)t) for all t,y € C. Equivalently if and only if

(6) F=ari(er + (—1) (22 + 1)) (21 — 3(—1) (22 + 1))".
k,l

From this it follows that B; is generated by (® 1,D® 1,(Y @ 1 + (-1) ® Z +
(-1))%Y ® 1 — 3(~1) ® Z and 1. Clearly these elements are algebraically inde-
pendent.

Now we want to determine the algebra B = By N Bz. Given f € Clzy, 23]
let a(f) € C[z1,z2] be defined by a(f)(z1,22) = f(v3z1,29 — 1). Also let Tj
(4 = 2,3) be the automorphism of C[zy, ;] induced by the linear map: Tj(z1) =

—3(21+ (=1¥V3e2), Tj(x2) = —5((~1 V321 — ).
Lemma 3. An element f € Clxy, z,] satisfies (4) if and only if T;(a(f)) = a(f)
(G =2,3). '
Proof. First of all for j = 2,3 we compute T (v3z14+(—1) 23) = —(v/3z14+(—=1) 25)
and T](\/?::cl —3(=1)z) = V3z1 — 3(—1) z,. If we use the notation introduced
in (5) we get
a(f) (21, 22) = f;(V3z1 + (1Y z2,V3z1 — 3(=1) 22),

T;(a(£))(w1,22) = fj(=(V3e1 + (=1Y 22), V321 = 3(~1) 22).

Therefore Tj(a(f)) = a(f) if and only if f; is even in the first variable. This is the

same as saying that f has the form stated in (6), which was shown to be equivalent
to (4).
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Proposition 4. Let W denote the group of automorp}nsms of C[z1, zo] generated
by Tz, T3 Then:

(i) W is isomorphic to the Weyl group of su(2,1).

(ii) The algebra C[z1,z5]" of all W-invariants is generated by the algebraically
independent polynomials z? + z3, z1(z? — 3z%) and 1.

Proof. Let us consider on Rz; @ Rzs the inner product defined by requiring that
r1,z3 be an orthonormal basis. Then the restriction of T; to Rz @ Ry is the
reflection on the line generated by %(:cl - (—1)j\/§x2) (j = 2,3). Moreover, if we
identify b} with Rz; @& Ry by the linear map ¢: hg — Rz & Ry defined by
ag) = %(\/gzl +z3), t(ag) = %(—\/gxl + 23), then the simple reflections s,, and
Sq, correspond respectively to 73 and T3. This establishes (i).

To prove (11) we just need to recall how one gets the Weyl group invariants
on hr. Let e1,eq,e3 be the canonical basis of R® and let H be the orthogonal
complement of R(e; + e; + e3). Then the inclusion map j: hx — R? defined by
J(ar) = e1 —eq, j(az) = ez — e3 identifies hf with H. Also the action of the Weyl
group on hg corresponds to the restriction to H of the action of the symmetric
group S3 on R? defined by o(e;) = eo(i), 0 € S3; 1 = 1,2,3. If y1,y2,y3 denote
the coordinate functions on R3 then it is well known that the Ss-invariants on
R3 are generated by the elementary symmetric polynomials p; = y1 + y2 + vs,
p2 = ¥+ y2+y2, ps = ¥y +y3 +v35 and 1. Moreover the restrictions of ps and ps to
H together with 1 generates all Sz-invariants on H. Since j(z1) = (61—262+e3)/\/§
and j(z2) = e; — ez we get

(p2 0 j)(uzy + vae) = 2(u? +v?), (p3oj)(uz; + ves) = —2u(u® — 307)/V3.
But W is contained in the orthogonal group of Rz; @ Ruxy therefore 27 + 3,

z1(2? — 3x2) and 1 generate C[z;,z5]" .

Theorem 5. If G, = SU(2, 1) then the algebra B is generated by the alge
independent elements ( ® 1,D ® LY?®14+30(Z+1)4Y301-9Y @
and 1. Moreover BY = B.

ebr alcaHy
(Z+1)°

Proof. From Proposition 2 and Lemma 3 we know that all elements b of B are
precisely of the form b=}, , (¢DIRL)fi;(Y®©1,1®@Z) where a(f; ;) € Clzq, 2]V
Now Proposition 4 tells us that a(z2+3(z2+1)%) = 3(z?+22), a(z? -9z (z2+1)%) =
3V3z1(z? — 3z2) and 1 generates C[zy, )" . The first assertion is proved.

It is well known that there is an element w in the center of K, such that
Ad(w)|s = —I. Then (3) implies that BY = {b € B : b(XA — p) = b(-X —
p) for all A € a*}. Using Lemma 29 of Tirao [11] we obtain: «1(Zq,) = a1(Ha,) —
a)(Ye,) = 2-3/2 = 1/2, thus p(2Z) = 2a1(Ze,) = 1. If b= 32 b; 027 € U(t)@U(a)
let b = Y b; ® (Z —1)). Then b(A — p) = b(=A — p) if and only if b(A) = b(=))
(X € a*). Now B = BW is a direct consequence of the first assertion. The theorem
is proved.

3. THE STRUCTURE oF U(g)¥
Proposition 6. If u € Z(g) then P(u) € Um)M™ @ U(a).
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Proof. Let g = n@m @a®n, wheren = )7, ogr and 0 = 3, 59-x. We
enumerate A(g,a)t as {Ar,..., A}, Let Xj1,..., Xj m() (resp. Yii, ..., Y m(i))
be a basis of gy, (resp. g_»,). Then set XE = (X0 (X m(j))fm0) and
Y:’-I = (Y}',l)il ...(Yj’m(j))i"'(j), where K = (kl)"'km(j)) and I = (il,...im(j)).
Then the Poincaré-Birkhoff-Witt Theorem implies that u € U(g) can be written in
a unique way as

(M u=) ()" (%5 P g (X)) (X)), wjp €Umaa),

LK
where [ = (I1,...,I,) and K = (K1,...,K,). If u € Z(g) then Hu — uH = 0
for all H € a, therefore the sum (51) is restricted to all pairs I, K such that
2 iI1A; = 2 |K;|A;, which clearly implies that P(u) = ugg € U(m @ a) or more
precisely that P(u) € U(m)™ @ U(a). The proposition is proved.

Sincem =m~ &t H m™ we have
Um)=U(t)® (m~U(m)® U(m)m*).

Let ¢ denote the projection of U(m) oato U(t) corresponding to this direct sum
decomposition and set Q@ = ¢®id : U(m) @ U(a) — U(t) @ U(a). Since t ® a is
abelian, we shall use U(t) @ U(a) and S(t) ® S(a) = S(t ® a) interchangeably.

Recall the following notation: if @ € P* is a simple root such that Y, # 0
(Hy =Yoa+ 74, Yo €L, Zy €a) set B, = X_o+60X_, where X_, #0in g_,.
Also we put

By ={becU®M @ U(a): EPb(n — Yy —1) = b(—n — Yy — 1)E? ,n € N}.

Let ;o € (1@ a)* be defined by o], = a|, (Z4) = —a(Yy) and oy = 0, 0(Z,) = 1.
Lemma 7. An element b € U(m)M @ U(a) belongs to B, if and only if

(8) QU)(to + i+ 17 — 0) = Q)(~to + ji — o)

for all fi € (t @ a)* such that i(Zy) = —fi(Y,) and all t € N.

Proof. We enumerate A(m,t)* = {f;,...,8,} and choose a basis Xi,...,X, of
m* with X; € mg,. Alsolet Y1,...,Y, be a basis of m~ with ¥; € m_p,. Moreover
let Hy,...,H; be a basis of t. If I, K € N{ then set XX = (X;)k1 ... (X )k,
YI = (V) (Y,)«. If J € N! then put ' = (Hy)’*---(H;}". Then the
Poincaré-Birkhoff-Witt Theorem implies that the elements Y/H/ XK @ Z$ form a
basis of U(m) ® Ul(a).

Now if b € UmM @ U(a), b = Saryx Y H' XX ® Z5 then ar yxs # 0
and I # 0 imply K # 0. Therefore b € B, if and only if for all t € N

> ar sk EEYTH XKt - Yo = 1) = ar sk, YT H XK (—t = Yo - 1)°E}
which is equivalent to

(9) Y 050 ELH (6= Yo = 1) =Y ags0:H (—t = Yo = 1)°Ef,
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because [m*, E,] = 0. Using Lemma 18 (vi) of Tirao [11] repeately (9) can be
written as '
(10)

EL aos0.H t—Ya—l)’_Etzaoms

x (Hy — ta(Hy))* - (Hy — ta(H))" (= t — Yo + ta(Ya) = 1)°.

By Lemma 20 of Tirao [11] E, can be cancelled in both sides of (10) and then
clearly the equivalence sign can be replaced by an equal sign. Thus

(11) .
ZaoJosH (t—Yo—1)° =3 aos0,s (Hy — ta(Hy))™ - (H — ta(H;))"
x (=t=Yatto(Yo)=1)".

If we evaluate both sides of (11) at u € t* we get

ZGOJosH (Wt = n(Ye) - 1) ZGOJOsH (1 —ta)

(12)
x (=t —p(Ya) +ta(Ye) — 1)°.

Let fi € (t® a)* be defined by fi|; = p and u(Z,) = —p(Yy). Then t — u(Yy) —1=
(to+p—0)(Zy) and —t — p(Yy) +ta(Ye) — 1 = (=to + i —tv — 0)(Z4). Therefore
(12) is equivalent to

ZGOJO (H' (X)Zé)(llo'—i—ﬁ—o')-_—ZGO’JIO’S(HJ®ZZ)(—tO’+ﬁ——tﬂ—0’).

If we change i by fi+t7 and since Q(b) = Ea()’]y()ysHJ ® Z5 we get that b € By if
and only if (8) holds for all /i € (t®a)* such that i(Zy) = —ji(Ys). This completes
the proof of the lemma.

To make things more transparent we recall some basic facts about the structure
of G, = SO(n, 1), or SU(n,1). Let F denote either the reals R or the complexes
C and let z + Z be the standard involution. For z € F set |z|? = zZ.

Consider on F™*+! the quadratic form g(z1,...,2n41) = |21 + - + |za|?> —
|£n+1/2. Then G, is the connected component of the identity in the group of all
F-linear transformations g of F**+! preserving ¢ and such that det(g) = 1. Then
G, =S0(n,1), or SU(n,1) according as F = R or C. If we set

I 0

where I denotes the n x n identity matrix, we have

Go={A€GL(n+1,F):'AQA = Q,det(A) = 1},.

[ (PR

Here the subindex “o” in the right hand side denotes the connected componet of
the identity. We also have

go={X €gl(n+1,F):'XQ+ QX :IO,Tr(X) =0}.
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The Lie algebra g, has a Cartan decomposition g, = &, ® p, where

u:{(§ g)ﬂX+X;mw+naj=ﬂ

w={(53) ver)

In each case the Cartan involution 6 is given by §(X) = —'X.

Let E; ; € gl(n+1,F) denote the matrix with a one in the (4, j) entry and zero
otherwise. Set Hy = E1n41 + Eny1,1 and let a, = {tH, : t € R} in both cases.
As we know a, is a maximal abelian subspace of p,. Let A be the complex linear
functional on a defined by A(H,) == 1. Then, we have A(g,a) = {£A} if F = R
and A(g,a) = {£X,£2A} if F = C. In both cases we choose II = {A} as a set of
simple roots. Now consider the following Cartan subalgebra of m:
ifF=R

and

p—1

(13) = {T= ) iti1(Banjer — Bajary) 1ty € C),
j=1

ifF=C
(14) t={T =t1(E11 + Bng1,n41) + Yt Ejj 1 T(T) = 0,; € C},
j=2

where p—1 = [(n — 1)/2]. Then as we know h = t @ a is a Cartan subalgebra of g.
Now according as F = R or C we define linear functionals A; on b as follows,

t1+ta le
and A\j(H) = tj, ji=2,...,n
t) —t, j:n+1,

t, j=1
tj, .7:21)17

as) =

respectively. Here H = T + tH, where T' is as in (13) and (14). Now a positive
root system of m with respect to t can be discribed as follaws:
fF=R

X 2<i<j<plu{N:2<i<p}, n=2p

16 Alm, )T =
(16) (m, 1) {{)\ii)\jZQSi<jSp}, n=2p—1,
ifF=C

A(m, )t ={\ —);:2<i<j<n}

If A(g,bh) denotes the root system of g with respect to h, we define a positive root
system A(g,H)T compatible with A(g,a)* and A(m,t)*t, as follows: we say that
a € A(g,h) is positive if, whenever a|q # 0 then a|, € A(g,a)t and if a is such
that a|, = 0 then a| € A(m,t)t. A straightforward computation shows that:
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ifF=R
Awmﬁ={{&iAW15f<jSPMHM:15ism,nzzp
i 1si<isel, n=2p—1,
ifF=C

Alg,b)* = (- 1<i<j<n+1}
The corresponding sets of simple roots are:
ifF=R
{ai}, ai=X—-An(1<i<p-1),0p=X,n=2p
{ai}, ai=X = Ap(1<i<p—-1),aqp=X1+rp,n=2p—1,

n(s.) = {

{on,...,ap}, n=2p,p>2

Om,t) =< {ar,...,a}, n=2p—-1,p>3
0, n=3;
fF=C
H(g)b):{al)"'3an}) ai:Ai'—Ai-*-l(i:l;--')n)a
o am_1}, n>3
H(m,t) — { éa2a y 1} n -2

a

In what follows we shall consider Q as a linear map from U(m) ® U(a) onto

S(h). Also if w € W(g,h) we set

S(h)” = {p € S(h) : p(w(p) — p) = p(p — p), for all p € h*}.

Proposition 8. Let G, = SO(n,1). or SU(n,1). If a € P* is a simple root then
an element b € U(m)™ ® U(a) belongs to B, if and only if Q(b) € S(h)*=.

Proof. We shall consider three cases according to: (i) G, = SO(2p — 1,1), p > 2,
(i1) Go = SO(2p,1), p > 2 and (iil) G, = SU(n,1) n > 2.

(i) If p > 3 then a; = A; — Ay is the unique simple root in P*. When
p =2, a1 = A — Ay and ag = A\ + Xy are both in P*. We shall only consider
the case @ = «;, leaving the other to the reader. A simple computation gives:
Ho, = Ho — i(E23 — E32); hence Yy, = —i(Fa3 — F32) and Zo, = H,. Now
i € h* satisfies fi(Zq,) = —i(Ya,) if and only if it = (A1 +A2) +23d3+ -+ 2pAp,
z,r3,...,&, € C. We have # = —A; — Ay and ¢ = A; (see the definitions given
right before Lemma 7). Also p=(p— DA+ (p—2)A2+ -+ A1

We shall identify p € S(h) with the polynomial function on CP defined by
p(z1,...,2p) = p(x1A1 4+ --- + 2,)p). Then (see (8)) the following equation

(17) plto+ i+1tr—o)=p(—to+ i — o)
for all fi € b* such that i(Z,,) = —fi(Ys,) and all ¢ € N, can be rewritten as

(18) p(x—l,:c—t,wg,...,xp):p(x—t—l,w,xg,l...,zp)
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for all z,z3,...,2, € C and all t € N. For p € S(h) let p € S(h) be defined by
p(p) = p(p — p), p € h*. Then it can be easily seen that (18) is equivalent to

(19) ple,x+t,z3,...,2,) =p(x+t,z,23,...,2p)

for all ,z3,...,2, € C and all t € Z. Let s: C?> — CP be the symmetry given
by s(x1,22,23,...,2,) = (&2, 21, 23,...,2p). If p satisfies (19) then the zero set of
pos—p contains an infinite number of parallel hyperplanes. Hence p satisfies (17)
if and only if pos = p. But s4,(A1) = Az and s4,(A;) = Aj for 3 < j < p. Therefore
s corresponds precisely to so, under the identification of h* with C? defined above.
Thus if p = Q(b), b € U(m)™ ® U(a), then b € B,, if and only if (Lemma 7)
P € S(h)*=1 as we wanted to prove.

(i) The cases G, = SO(2p, 1) p > 2, are completely similar to those considered
in (i) and are left to the reader.

(iii) Now we take G, = SU(n,1) n > 2. In this case there are two simple roots
a1 = A=Ay and o, = /\n—)\n.'_l in Pt: Horl = %(E1’1+En+1,n+1)—E2‘2+%Ho and
Hqa, = —2(Ev1+ Eng1,n41)+ Enn+ 3 Ho; hence Yo, = 2(E1 1+ Eng1,n41) — B2,
Yoo = —3(B11 + Eng1,041) + Enny Za, = Zay = $Ho, p= 2 3001 (n = 25 +2));.

Any p € b* can be written in a unique way as g = 21 A1 + -+ - + Zp41 Ap 41 With
zj € Cand ) z; = 0. We shall identify p with (z1,...,2,41) € C"*! and h* with
the corresponding subspace of C*t1.

Let us consider the case & = ay. Then fi € h* satisfies fi(Zq,) = —ji(Ya,) if
and only if o = (A1 + X))+ 23d3+ -+ Zpy1dny1. We have 7 = —A; — Xy +-
2An4+1 and ¢ = Ay — Ap41. We shall identify the restriction to h* of an element
p € C[z1,...,&nt+1] with the corresponding p € S(h) by setting p(z1,...,2p41) =
p(x1d + -+ Tap1Aat1), £; € C and )| z; = 0. Then the equation (17) can be
written as

(20) p(x—1,2—t,23,..., 25, pnp1+t+1) = plez—t—1,2,23,...,8n,Tp41 +1+1)

for all z,z3,...,2p,41 € C such that 2z + 27:31 z; = 0 and all t € N. For
p € Clz1,...,2n41] let p € Clzy, .. : , Znt1] be defined by p(z1,...,2p+1) = p(z1 —
n/2,z2—(n—2)/2,..., 2541 — (—n)/2); in this way p(p) = p(u — p) for all p € h*.
Then it can be easily seen that (20) is equivalent to

(21) Pz, x+t z3,...,2041) = P + t,z,z3,.. S Tnt1)

for all z,23,...,n41 € C,t € Z such that 2z 4+t 4+ 23+ - -+ 41 = 0. As before
this implies that

ﬁ($1,$2,$3, e )xn+1) = ﬁ(xZaxlax::}’ e )xn+1)

for all z1,...,2n41 € C such that ) z; = 0. But the symmetry (z1,22,...,2Zn41)
— (22,Z1,...,Zn41) of C**! when restricted to h* coincide with sqo,. Therefore if
p=Q(b),be U(m)M @ U(a), then b € By, if and only if (Lemma 7) p € S(h)*=.

When o = a, the proof is exactly the same. The proof of the proposition is
now complete.
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The following choice of a representative in M) of the non-trivial element in
W = W(g,a) will be convenient. Let

Diag(—-1,1,...,1,-1,1), for G, =SO(2p—1,1),p > 2
w= ¢ Diag(-1,...,-1,1), for G, = SO(2p,1),p > 2
Diag(¢, ..., &, —¢), for G, =SU(n,1),n > 2,£7+1 = _1.

Then w € M, and Ad(w)H, = —H,. Moreover in the first case we have

p-1 p—2 .
Ad(w) Z itjr1(Foj2541 — E2j41,25) :Zitj+1(E2j,2j+l — Egjq1,2))
ji=1 ji=1

— ity (Bap—2,3p—1 = Eop-1,2p-2)-

Therefore (see (13)) the Cartan subalgebra t of m is Ad(w)- stable, w(};) = A;
(J=2,...,p—1)and w(Ap) = —A, (see (15)). Hence A(m,t)* is also stable under
the action of w (see (16)). In the other two cases it is clear that Ad(w) restricts to
the identity on t. Thus in all cases Ad(w)|, defines an element in W (g, h), which
we shall also denote by w. .

Proposition 9. Let Go = SO(n, 1), or SU(n,1). An element b € UM @ U(a)
belongs to (U(m)™ @ U(a))" if and only if Q(b) € S(f)®.
Proof. When G, = SO(n, 1), or SU(n, 1) we have

(U(m)™ ©U(2))” = {6 € Um)™ & U(a) : Ad(w)(b(A — p)) = b(—A — p), A € a"}.
(See (3), also Kostant, Tirao [15, Cor‘ollary 3.3]) be UmM®U(a) let bv €
U(m)M @ U(a) be defined by 6 (A - p) = Ad(w=1)(b(=A — p)) for all A € a*. Then
be (UmMe U(a))W if and only if ¥ = b. The projection ¢: U(m) — U(t)
commutes with Ad(w) because m* and m~ are Ad(w)-stable. Therefore if b €
UmM @ U(a)

(22) Q) (v, A = p) = Qb)(w(v), A — p)

for all v € t*,\ € a*. If we replace in (22) v by v — py, and take into account that
w(pm) = pm We see that

(23) QUL*)(v = pm, A = p) = Q) (W(V) — pm, A — p)

for all v € t*, X € a*. Now from the explicit description of A(g, h)T and of A(m,t)*
it follows that p|; = pm. Then (23) is equivalent to

(24) QM) (1 — p) = Q(b)(w(k) — p)

for all g € h*. Therefore Q(b) € S(h)¥ if and only if Q(b) = Q(b”). Since
Q: U(m)MQU(a) — S(b) is one-to-one (cf. Wallach [22, Theorem 3.2.3]) we finally

have: b € (U(m)M @ U(a))" <= b= b* < Q(b) = Q(b*) <= Q(b) € S(h)7,
for all b € U(m)™ ® U(a).
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Proposition 10. If G, = SO(n, 1), or SU(n,1). Then (U(m)™ @ U(a)) N BY =

——

(Um)™ @ U(a)) N B and Q((U(m)™ ® U(a)) N B) = S(h)¥ @),

Proof. If ¢ € U(m)M it is well known (cf. Wallach [22, Theorem 3.2.3]) that
q(e)(v = pm) = q(c)(w(¥) — pn) for all v € t* w € W(m,t). By extending each
w € W(m,t) to h by making it trivial on a we can consider W(m,t) as a subgroup
of W(g,h). Then for all b € U(m)™ ® U(a) we have

QU)W — pm, A = p) = QB)(W(¥) — pm, A = p) = QB)(wW(¥) — pm,w(X) — p)

for all v € t*, X € a*,w € W(m,t). Equivalently
Q) (1 — p) = Q(b)(w(p) — p)

for all 4 € h*,w € W(m,t). Hence Q(U(m)M ® U(a)) C S(b)Wf(m)
From the explicit description of the corresponding sets of simple roots given
before we see that:

(s1,...,8p), for F=R,n=2p
Wi(g,h) =< (s1,...,8p), forF=Rn=2p—1
(s1,...,8n), forF=C;

(s2,-..,8p), for F=R,n=2p,p>2

(s2,---,5p), for F=R,n=2p—-1,p>3
W(m,t) =< (e) for F=R,n=3

(s2,...,8p-1), for F=C/n>3

(e) for F=C,n=2,

where s; = 54, in all cases.

If Go =SO(2p,1)e,p > 2 0r Go =SO(2p—1,1),,p > 3, then «; is the unique
simple root in P*. If G, = SU(n,1),n > 2, then ¢; and «,, are the unique simple
roots in P*. While if G, = SO(3,1). then a; and ay are in P*. In any case
we see that W(g,h) is generated by W(m,t) and {s, : @ € P* is a simple root}.
Thus from Proposition 8 and from what was observed above it follows that Q(b) €
S(H)W @Y for all b € (U(m)M™ @ U(a)) N B.

Conversely if p € S(b)m) there exists a u.nique b e UmM ® U(a) such
that Q(b) = p (see Wallach [22, Theorem 3.2.3]). Now Propositions 8 and 9 imply

that b € (U(m)™ ® U(a)) N BY. This completes the proof of our proposition.
Theorem 11. IfG, = SO(n, 1), or SU(n, 1) then P(Z(g)) = (U(m)M ®U(a))NB.

Proof. From Theorem 37 of Tiraa [11] and Proposition 6 it follows that P(Z(g)) C
(UmM @ U(@)) N B. Ifb e (UmM ®U(a)) N B then Q(b) € S(h)W (e

(Proposition 10). Now Qo P: Z(g): — S(h)¥(89) is the Harish-Chandra isomor-
phism (see Wallach [22, Theorem 3.2.3]). Hence there exists u € Z(g) such that
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Q(P(u)) = Q(b). Since @: U(m)M ® U(a) — S(h) is injective we get P(u) = b,
proving what we wanted.

To prove that when G, = SO(n, 1), or SU(n, 1) we have U(g)* ~ Z(g) @ Z(¥)
it will be convenient to begin discussing the following concept.

Let A(%,j)T be a choice of a positive root system of € and let A be the corre-
sponding set of all dominant integral linear functions on j. Also let  be the set
of all dominant integral linear functions on t, with respect to A{m,t)*. A subset
X Cj* (X Ct*) is a separating set of S(j), (S( Vi) if for any f € SG) (f € S(th)
flx = 0 implies f = 0. (S(h); denotes the subspace of S(h) of all elements of
degree < 1) For A € A (w € Q) let V), (W,) be a finite dimensional irreducible
t-module (m-module) with highest weight A (w). If w € Q set

A(w) ={X € A : Homun (W,,, V) # 0}.

When G(J = SO(n,1). (SU(n,1)) the algebra ¥t ~ so(n,C) (gl(n,C)) and
m ~ so(n C) (gl(n — 1,C)) corresponds to the subalgebra of all matrices in
so(n,C) (g[(n C)) with all zeros in the first row and in the first column. Let A’
() be the set of all' X € A (w € Q) such that there exists a representation of
SO(n,C) or GL(n,C) (SO(n — 1,C) or GL(n — 1,C)) of highest weight A\ (w).
according to Gy = SO(n, 1), or Go = SU(n, 1).

For the proof of the following proposition we need to recall how a representation
Vy of SO(n,C) or GL(n,C) decomposes as a representation of SO{n — 1,C) or
GL(n — 1,C), respectively. We need to distinguish three cases: SO(2v + 1, C),

SO(2r, C) or GL(r,C). In any of these cases a basis A1,..., A, of j can be chosen
in such a way that any A € A’ can be writen as A = miA; + -+ -+ m, A, where
my > - >m, >0, m; all integers or half-integers, for SO(2r +1,C)
my > - > my,_y > |m,|, m; all integers or half-integers, for SO(2v, C)
my > --->m, >0, m; all integers, for GL(v, C).

Now the following branching formulas hold (see Foulton, Harris [4,§25.3]).
The restriction from SO(2v+1, C) to SO(2v, C) is determined by the following
spectral formula

//'
(25) m] V)_Z”/(P D)
the sum over all (p1,...,py) with my > p1 > mo > pa > - > pyy > my > |pul,

with the p; and m; simultaneously all integers or all half-integers.
When we restrict from SO(2r, C) to SO(2v — 1, C) we have

..... my ZIV(P yePu=1)

the sum over all (p1,...,py—1) with m; > p1 > me > py > - > p,1 > |my |, with
the p; and m; simultaneously all integers or all half-integers. :

For GL(v — 1,C) C GL(v,C) the restriction of Vy A = (my,...,m,) from
GL(v,C) to GL(v — 1,C) is given by

the sum over all (p1,...,py-1) with m; >pr>me>py> > py_1 >my >0,
with the p; and m; all integers.
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Proposition 12. Let G, = SO(n, 1), or SU(n,1). The set Y; of all w € Q such
that A(w) is a separating set of S(j); is a separating set of S(t),, for all n € N.

Proof. If w € Q' let A'(w) = {A € A’ : Homy(W,.V}) # 0} and V) = {w € Q' :
A (w) is a separating set of S(j);}. Then clearly A'(w) C A(w) and Y/ C Y] for all
w € Q1 € N. Thus it will be enough to prove that Y/ is a separating set of S(t).

If Go = SO2r+1,1), and w = (P1,~~:Pu),171 >p2 > > peor > pul,
pi simultaneously all integers or all half-integers, then from (25) it follows that
A/(pl»-“vpz/) — {/\ - (777,1,...,771,,) L Z " Z ma Z P2 Z 2 Pv—-1 _>_ my _>_
|pv|, p; and m; all integers or all half-integers}. Now we claim that A’(py,...,p,)is
a separating set of S(j); if and only if I(p1,...,p,) = min{p1 —pa2, P2—p3, .. ., Pr—1—
lpv |} > . In fact, if 21,...,2, is the dual basis of A1,...,\, then any element of
S(j) can be viewed as a polynomial in z1,...,2,. Thus if {(p1,...,p,) >, [ =
flee, ... 2y) € SG) and f(mq,...,m,) = 0 for all (mq,...,m,) € A(p1,...,pv)
then clearly f = 0, 1.e. A'(py,...,p,) Is a separating set of S(j);. Conversely, if

pi—1 — |pi| <l for some i =2 ... vthen f(x1,...,2,) = [[(2; — my;) (the product
over all m; such that p;_; > m; > |pi| pi and m; both integers or both half-
integers) is a nonzero element in S(j); which vanishes on A’(py,...,p,). Therefore

Y, ={w = (p1,---,pv) € QX :l(p1,...,pv) > I} which obviously implies that Y} is
a separating set of S(t). 4
In a completely similar way the proposition is proved when (G, = SO(2v, 1) or

Go = SU(v, 1).

Corollary 13. Let ay,...,a, be a linearly independent subset of Z(t) and let
P1,.-,Pm €Ut). Then > . a;p; =0 mod (UE)m™T) impliesp; = 0.7 =1,.... "

Proof. Let | = max{deg(a;),deg(p;) : i =1,...,m}. Givenw € ¥ and A € A(w)
let 0 #v € Vy bea hlghest weight vector of m of weight w. Let ~v: [7(¥) — U/(j)
be the Harish-Chandra projection defined by the direct sum decomposition {/(¢) =
U(G)® (e-U(k) @ U(k)tt). Then an element a € Z(¥) acts on Vy by multiplication
by 7(a)(A). Therefore

m

(;’Y A)pi W)>“_Zaim~v:0,

i=1

hence >, (a;)(A)pi(w) = 0 for all A € A(w),w € Y;. Now we claim that the lincar
span L of {(v(a1)(A),...,7m(A)) : A € Alw)} is C™. In fact, let £ = (&1,...,&m)
be an element in the annihilator of L. Thus &1y(a1)(A)+ -+ &my(am)(A) = 0 for
all A € A(w). Since A(w) is a separating set of S(j); it follows that & y(a)+ - +
Emv(am) = 0. But y: Z(¥) — U(j) isinjective, therefore {1a1 4 -+E&nap = 0 which
implies that & = 0, because by assumption ay,...,a,, are linearly independent.
From this we get that p;(w) = 0forallw € Y;,¢ = 1,...,m. Since Y] is & separating
set of S(t); we finally get that p; = 0,4=1,...,m, as we wanted to prove.

Proposition 14. Let G, = S0(n,1), or SU(n,1). Take a linearly independent
subset a1, ...,anm of Z(t) and elements ¢; € Z(m) ®@U(a) fori=1,...,m.
(1)Ifzzacl € Bthenc;, € Bfori=1,.

(i) If 5, aze; € BWY then ¢; € BY fori= 1
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Proof. We enumerate A(m,t)* = {B1,...,8,} and choose bases Y1,...,Y; of m~,
X1,...,Xq of m* with Y; € m_p;, X; €mg,. Also let Hy,..., H; be a basis of t.
Let E = E,,Y =Y,,Z = Z,, where « € Pt isasimpleroot. If I, K € Nfset Y/ =
(Yy)h ...(Yq)iq, XK = (X;)k ~~~(Xq)’°q. If J € N, put H? = (H,)/* - (H).
Then the Poincaré-Birkhoff-Witt Theorem implies that the elements Y/ H/ XK @ Z¢
form a basis of U(m) @ U(a). Let ¢; =37, | ;g cist kY H' XX @ Z¢.

The element b = )", a;¢; € B if and only if (see (2))

E*(n-Y —1)=b(-n—-Y - 1)E" mod (U(¢)m).
Now, using Lemma 18 (vi) of Tirao [11] and the hypothesis, we obtain

E"b(n=Y —1)=E" Y aicisrskY H XX (n-Y - 1)
i,8,1,J. K

=E" Z aiciy‘,’]’J)KYIHJ
(26) i,5,0,J,K
X (n=Y =1+ (k1fr+ -+ kB )(Y)) X5
=E" Z aiC,"s,o:J,oHJ(n -Y - 1)8.‘
1,8,J

Similarly, and taking into account that [m*, E] = 0, we get

b(=n—Y —=1E"= Y aiciors kY H XX (-n-Y - 1)°E"

i,8,1,J,K
= E a;icis 10,k Y H’
i,s,1,JK
27) x (=n—=Y =14 (kifr+ -+ kofi)(Y)) E" XK
= Z aic,‘,s’o,J’oHJ(—n -Y - 1)sEn
1,8,J
:En E aici,s’o,_;,o (H - 'nOl(H))J ( -n—-Y -1 + na(Y))s.
4,8,

Hence if b € B, from (26) and (27) and using Lemma 20 of Tirao [11], we get

Z aiCils,o,J’OHJ(n—Y-‘ 1)* = Z aiCi 50,70 (H—na(H))J(—n—Y—l—f—na(Y))s.
i;8,J i,8,J

If weset p; = ), 7 ¢€is,07,0 [H (n—Y —1)*~(H—na(H))' (—n—=Y —1+na(Y))*] €
U(t) and apply Corollary 13 to ), a;p; = 0 we get that p; = 0 fori =1,...,m.
Therefore

(28) Zci,,,o,J,oH"(n—Y——l)’ = z:ci’s,o,_z,o(H—na(H))J(—n—Y—l+noz(Y))s
s,J s,J
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for i = 1,...,m. If we multiply (28) on the left by E” and follow the steps leading
to (26) and (27) backwards, we see that

E'¢i(n-Y -1)=c¢i(-n-Y - 1)E",

ie. ¢; € Bfori=1,...,m, proving (i).

To prove (ii) we just need to observe that for w € M] — M,, X € a* (see (3))
Ad(w)(b(A—p)) = b(—A—p) is equivalent to ), a; Ad(w)(c;(A—p)) = Y, aici(A—p)
which implies that Ad(w)(c;(A — p)) for all ¢ = 1,...,m, because Z(¢)Z(m) ~
Z(8) ® Z(m). This finishes the proof of our proposition.

Theorem 15. If G, = SO(n, 1), or SU(n,1) then p: Z(g) ® Z(¥) — U(g)¥X is a
surjective isomorphism.

Proof. Let us first consider the case G, = SO(n, 1).. The proof will be by induction
onn > 2 Forn = 2 an striple {H,X,Y} can be chosen in g with H € ¢.
Set ¢ = H? — 2H +4XY. Then Z(g) = C[(], Z(¢¥) = C[H] and {X'Y'H'}
is a basis of U(g)®. From this it is clear that u: Z(g) ® Z(¢) — U(g)¥ is a
surjective isomorphism. For n > 2 let K, = SO(n) x SO(1) ~ SO(n), M, =
SO(1)xSO(n—1)xS0(1) ~ SO(1)xSO(n—1) and let g,, #,, m,, denote respectively
the complexifications of the Lie algebras of SO(n,1)., K, and M,. Also let n be
the automorphism of gl(n, C) which interchanges the first and the last row and
the first and the last column of a matrix. Since 7 is given by conjugation by an
orthogonal matrix it clearly restricts to an automorphism of &,.

Now assume the theorem: has been already proved for G, = SO(n — 1,1),,
n > 3. Then

(29) UM = 0(U(gn-1)""") = n(Z(gn-1))1(Z2(¥n-1)) = Z(ta) Z(my,).

Let us return to our old notation for G, = SO(n,1).. Given u € U(g)¥ set
b= P(u) € BY c U(t)M @U(a). Then we can write (see (29)) b = "7~ a;¢; where
ay,...,am are linearly independent in Z(¥) and ¢; € Z(m)®@U(a) fori =1,...,m.
From Proposition 14 we know that ¢; € BY. Now by Theorem 13 there exist
u; € Z(g) such that ¢; = P(u;). Then Y, a;u; € U(g)¥ and P(Y; a;u;) = P(u),
hence u = 3, a;u; € Z()Z(g). This proves that p: Z(g) ® Z(¢) — U(g)¥X is
surjective. As we pointed out in the introduction this establishes the theorem for
Go = SO(n, 1)..

The proof for SU(n,1) will be also by induction on n > 2. For n = 2 we
have U(®)M = Z(¥)Z(m) (Lemma 1). Given u € U(g)X set b = P(u) € BY C
U(®)" @ U(a). Then b = Y7 | a;c; where ai,...,an, are linearly independent in
Z(t) and ¢; € Z(m) @ U(a) for i = 1,...,m. As before from Proposition 14 and
‘Theorem 11 it follows that u € Z(¥)Z(g), proving the theorem for SU(2,1). For
n> 2let K, = S(U(n) x U(1)) and .

a 0 O
Mn:{(o A 0) :aEU(l),AEU(n—l),aZdetA:1}.
0 0 a
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Also set g5, €,, m, denote respectively the complexifications of the Lie algebras
of SU(n,1), K, and M,,. Now take n > 3 and assume the theorem has been
proved for G, = SU(n — 1,1). Then ¢, ~ gl(n,C) = 3(gl(n,C)) ® sl(n,C) =
3(gl(n,C)) ® gn-1. Let

Mn_{(g g):an(l),AeU(n—l),azdetA:1}
— A 0
Kn—1:{<0 a)IGEU(l),AEU(n—l),adetA:1}
and observe that
a 0 - . 1/n A 0 -
(0 A)GMn if and only if a (0 > €K,1.
Thus U(gn_1)M» :n(U(g" 1)&n=1). Therefore

Un)Mr ~ U(3(gl(n,C

(3
(3(al(n,C
(
(

) U(gn 1 Mn

)
))U(U(gn 1 "_1)
)
)Z(

I

3(gl(n,C
3(al(n,C
(t2)Z(mn).

)77(1 gn 1 )ﬂ(Z n— 1))
)

~— N N N

U
U
U (Bn-1)Z(my)
Z

1R

From this the proof is completed in the same way as in the case of G, = SO(n, 1),.
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ON THE SUFFICIENT CONDITIONS OF MONOGENEITY FOR
FONCTIONS OF COMPLEX-TYPE VARIABLE

SORIN G. GAL

ABSTRACT. The theories of functions of hyperbolic and dual complex variable were
deeply investigated between 1935 and 1941 as parallel theories with the classical complex
analysis (see e.g. [2-6], [13-20]).

In some recent papers [7-8], [10-11], these theories present interest by some applications
in the interpretation of physical phenomenoms.

In this spirit of ideas, the purpose of this paper is firstly to prove by counter-examples
that the sufficient conditions of monogeneity in [5, p.148] and in [14, Theorem V, p.258] are
false and secondly, to consider new correct conditions of monogeneity which moreover have
the advantage of an unitary presentation.

1. INTRODUCTION
It is well known that a two-component number system forming an algebraic ring can be

written in the form z=a+qb, a,b € R, where ¢ satisfies the equation ¢° = ag+ B with fixed

a,f € R. An important result states that all the systems Cq ={z:a+qb;a,beR} are ring
isomorphic with one of the following three types (see e.g. [9]):

() C, with q—’ = -], called the system of usual complex number, if a’ld+ B <0;

(i) C, with ¢°=0, called the system of dual complex numbers, if a’l4+ B =0,

(i) Cq with ¢7=+1, if a’ld+ B >0. In this case, a number in Cq is called binary [9],
or double [21], or perplex [7-8], or anormal complex [1], or hyperbolic complex [4-6], [13].

While the theory of functions of usual complex variable is well known and does not
represents the aim of the present note, the teory of functions of hyperbolic complex and dual
complex variable was deeply investigated between 1935 and 1941 in e.g. [2-6], [13-20] (see
also the more recent monograph [12] for generalisations to functions of hypercomplex
variables). .

In some recent papers (see e.g. [7-8], [10-11]), these theories were been taken in
attention by some applications in the interpretation of physical phenomenoms.

In this spirit of ideas we firstly prove by counter-examples that the sufficient conditions
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of monogeneity in [5, p.148] and that the Theorem V in [14, p.258] are false and secondly,
we consider new correct conditions of monogeneity which present the advantage that all the
three cases ¢°= -1, ¢°=0 and ¢°=+1 can be more unitaryly treated.

Throughout in this paper we will consider ¢g°=+1, or ¢°=0, or ¢°= -1 and a number
z=a+qb will be called q - complex number.

2. CONDITIONS OF MONOGENEITY
Keeping the notations in Introduction we can consider the following

DEFINITION 2.1 ([13], [14]). If z=a+bq € C, then |2|= Va® +b> represents the
modulus of the q - complex number z, in all the three cases ¢°=+1, ¢°=0 and ¢°= -1. Also,
N, (2)=a* —¢'b* represents the q - norm of the q - complex number z.

THEOREM 2.2 ([13], [14]). If ¢°=0 or ¢°= +1 then the set of all divisors of 0 in C,is

given by Z, = {: =a+gb,N,(z) = O}. Also, if z € Cq \Zq then z is invertible.
REMARK. If ¢’= -1 then Z ={0} and C_is even a field.
Let DcC, beand f:D—>C, . Then we can write: f(z) =u(x,y) +qv(x,y), for all

z=x+qy € D, where v and v are real functions of two real variables.
DEFINITION 2.3 ([5], [14]). fis called q-monogenic in z, € D.if there exists the limit

. !
LHT} [/ (2)=f (20 (z=z20) = [ (20)
i}
Concerning this concept, the following results are known.

THEOREM 2.4 ([5, p. 147]). Let g’=+1. If f is g-monogenic in z, = x, + qy, € D, then
u and v have partial derivatives of order one in (x,,y ) and the equalities

() [ a(x,.5,) = (&1 B)(x0.30). [an/ B)(x0.30) = [/ &[0, )

hold.

THEOREM 2.5 ([S, p. 148]). Let ¢’=+1. If u and v have continuous partial derivatives
of order one in (x,,y,) which satisfy (1), then is g-monogenic in z =x +qy,

THEOREM 2.6 ([14, Theorem V, p.258]). Let ¢°=0. The function f is g-monogenic in
20 =X, +qYy € D if and only if u and v are differentiable in (x .y ) and satisfy

@) [l B(x0.,) =0, L&) &)(x0,50) = [ (%0, 35) -

Firstly, we will prove by counter - examples that the Theorems 2.5 and 2.6 are false.

Indeed, let us define u(x,y)=x+)? v(x,y)=0 and f(z)=u(x,y)+qv(x,y)=u(x,y), for all
z=xtqy.

Obviously # and v have continuous partial derivative of order one in (0,0), which implies
that u is differentiable in (0,0). Also, we immediately get

[/ &x)(0,0) =[v/ 3](0,0)=0, [a/ &](0,0) =[&/&](0,0) = 0.
Let ¢g’=+1. We have
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lim [f(2)-f(0))/ z= lim u(x,y)/(x+gy)= lim (x +y2)(x - qy)/(x ¥ =
z2z x,y—0 x,y—0
zeZg IXI¢|y| Ixl)y]

lim x(x2+y2)/(x -y )—q lim y(x2+y2)/(x2—y2).
x,y—0 x,y—0

]y lxl=)3]

But if we choose, for example, x, = I/s/rr;, Y, =1/¥n+1 we get x, >0, y, >0,

and

#(y, |
(x +yn)/( ) (1/J_) (1/n+1/(n+1))/[1/n—1/(n+1)]=

n(n+1)-(2n+ 1)/[n(n +1)\/17] =(2n+ 1)/\[)1— —) +00, for n — +<0.

Analogously,

Yn(Xe? + 3,2 (5,7 = 3,2) = (@2n+DVn+1 — +oo, for n— +e0.

As conclusion, f is not monogenic in z=0 although # and v satisfy the conditions in

Theorem 2.5. This means that Theorem 2.5 is false.
Now, let °=0. We get

11m [f(z) f(O)]/z— llmou(x W) (x+qy) =

7y
zeZ x=0
’ 2., .2 2 - 2, .2),.2
lim (x +y )(x—qy)/x = lim (x +y )/x q- lim (x +y )/x
x,y—>0 x,y—>0 x,y—>0
x#0 x#0 x#O

But choosing x=)°, y#0, we obtain

(x*+y?) /x = y*+y* /P = y*+ 1/y - +o, for y >0

and

YO+y?) /x2 = y+y o= y+ 14 - +o, for y — 0.

As conclusion, f is not monogenic in z=0, although u and v are differentiable in (0,0)
and satisfy the relations (2) in Theorem 2.6. This means that the sufficient conditions in
Theorem 2.6. are false.

Now, let f(z) = u(x,y)+qv(x,y), z =x+qy, ¢°=0, where

) x,x#0,y€ R {y,x;t(),yER
ux,y)= v(x, =
|y|,x=0,yeR ’ (x.7) 10,x=0,ye R

We have #(0,0) = v(0,0) = f(0) = 0 and
1im0 [f(z)-/(0)])/z= lim 0[”(" Y)+Hgv(x, )]/ (x+qy) =
z—>

X,y
z¢ Zq x#0
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lim (x+gqy)/(x+qy)=1= f'(0)

x,y—>0
x=0

i.e. fis monogenic in z=0. _

On the other hand, (&¢/ 3)(0,0) does not exists because

lim[#(0, )~ u(0,0)]/ y = limy|/ y
y—0 »—0

y=0 v#0

As conclusion the necessary conditions in Theorem 2.6. also are false.

In the sequel we will give correct versions for the above Theorems 2.5. and 2.6.

Firstly, we will introduce the following.

DEFINITION 2.7. Let u:M —> R,M © R be and (x0,y0) € M . We say that u is g-
differentiable in (x .y ) if there exist A,B € R and w=w(x,y) with

Iim  w(x,y)=w(xg,¥0) =0 where == x+qy, zo = xo +qyq such that
XX,
.v_)Avo

-z, &7 q

u(x,y)-u(xy, o) = A(x—xg)+ B(y—yp) + @(x,)- Ng(z-2z)/ z—zo|,f0r all (x,y)e M
with z—z, ¢ Zq. '

REMARKS. 1). Obviously we have

Nq(:—:o)/‘: - :OI =[(.\:—x0)2 —qz(y—yo‘)2 }/\ﬂx - .vco)2 +(y—yo)2

2). If ¢ = -1 then the Definition 2.7 becomes the usual definition of differentiability in
(x,,y,). Concerning the q - differentiability we can prove the following.
LEMMA 2.8. (i) Let q° = + 1. If u is q - differentiable in (x,y ) then there exists

[Ail &x](x,,y,) = A and [dl/@z](xo,yo) =B.
(ii) Let ¢’ = 0. If u is q - differentiable in (x,y,) then there exists [/ &](x,,¥,)=A.
If moreover there exist 6 >0 such that I'(x) = u(x,y) is continuous as function of x in
10,\71 iy_)"o

PROOF. (i) Taking in Definition 2.7 x = x,, and y # y, (which implies z -z, ¢ Z,), we

<&, then there exists [az /(2\.'](.\'(,,),’0) =B.

obtain

u(Xg,y) = (x5, ) = B(y = yy) + o(xy,) -[—(y—yo)~ }/ \y—yo\‘

Dividing by y -y, # 0 and then passing to limit with y =y, we get

lim [u(xg,y)—u(x0y0)l/ (¥ - y0) =B~ lim w(xo,y)(y—yo)/\y—yo =B
Y—=)o0 , Y=o
Y#Yo Y#£Yo
since '
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lim  o(xy)= lm o(x,))=0

X—=X0 y=30
=)0 y#30
z—20¢Zy

Analogously, taking in Definition 2.7 y=y, and x # x and reasoning as above, we get
that there exists [A/¥](x,,¥,) = B.

(i1) Taking in Definition 2.7 y = y, and x # x, (which implies z-z, ¢ Zq), we obtain

u(x,yy)-u(xy,¥y) = A(x-xy)+w(x,y,)- |x—x0‘, Vx # X,

Dividing by x-x,#0 and passing to limit with x — x, we immediately get
[/ &)(xy,5,)= 4"

Now, let b}—y0 <&, Y# ), be fixed. Passing to limit with X — X, X # X, in

Definition 2.7, we obtain

5
u(xg,v)—ulxp, o) = B(y—yp)+ lim axXx, v)(r to /\/x xo +(y—y0)"
x—)\o
X#X()

~ forall |[y—y, <6, y#Yy.

Butby lim @(x,y)= 0 follows that for &>0, there exists 5, >0 such that |o(x, )| <, for
.\‘—).\'0
»=¥
.\‘¢.\'0

<6, x#x, and all {)J—)b)«)}

nd le |

i 66} a Lv v0|<00 V#E V.

{
um
We get Ahm ‘a)(

x# ‘O

<€ forall ‘v—v <8, y#Y,. Since

‘, we obtain

(=) o= 3t = e o) ) <

lim ‘(o(x,y)‘-(x-Jco)2 /\/(x—xo)2 +(y—y0)2 <g- lim |x—x0|:0 for all LV‘.V0‘<50> yEy,
x—=>xq X—>xq
X#X() X#X(Q

As conclusion,

ule, ) - Ul y) = BOv). N ¥# v [y-yo| <8y

Therefore, dividing with y — y, # 0 and then passing to limit with y — ¥, we obtain

[dl/ @](xo,yo) = B, which proves the lemma.
A correct version of Theorem 2.5 is the

THEOREM 2.9 Let ¢’= +1 be and S D>CDcCy, f(z) = u(xy) + qv(x.y),
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z=x+qyeD zg=xy+qy, €D

If u and v are q - differentiable in (x,y,) and satisfy the relations (1) in Theorem 2.5,
then f is g-monogenic in z,,

PROOF. By hypothesis and by Lemma 2.8, (1) we get

)l x0,30) =l +Hy=30) +ea(x.3) | (=30 =30 Jex— s 2+ 3002,

W)~ {xp30) =8x )+l y—yo) + e )| (=50 =3 Jl=50) +(-30)

forall x—x,+q(y—y))=z2-2z,¢ Zq, where  lim w;(x,y)=0, =1,2.
x—Xx()
V=M
o) ey

By simple calculus we obtain

5

f(z)ff(:()) = (a+bq)(:—zo)+[(ul(x,y)+q(oz(x,y)] -|:(x—x0)2 4(,\.'—,v())2]/\/(x—x0)2 +(y—y0) .

Dividind by z -z, ¢ Z, and then multiplying by /=/(x-x )-q(y-y,) ] [(x-x,)-q(y-y,)] on the
right hand, the above equality becomes

[f(z)~f(:o>]/(:~zO>:a+bq+[(x—xo)—q(y—yo)]-[w.(x,y)+cm<x,y)]/\/(x—xo)2+(x—xo)2

= @+ bg+(x—x0) (e Y)Y (= x0)2 + (= 30)* ~ (- 30) @ (e p) ) (= xp)2 + (- yo): +

5

c{(x~x0)~(oz(x,y) /‘/(x—xo)2 +(y—3.'0)2 —(y—yo)-(o](.\'.).')/J(x—xU)2 +(y—_vn)' }

2

By |x—x0|/‘/(x—x0)2 +(y—y0)' <1 and '_\,'—_vo‘/vr(x-xo)

with z — z,, =—z, ¢ Z, (which is equivalent with x = x,,y — y, Ix —x”|¢ iy—y(,

5

+(y—y0)' <1, passing to limit

), we

immediately get that there exists  lim [_f(:)~.f'(:())]/(:~:(,) =a+qgb which proves the
Z=2(0 :
I-I(€2g

theorem.
Now, a correct version of Theorem 2.6 1s the

THEOREM 2.10. Let ¢°=0 and D —>C,, DcC C,. f(z) = ulx,y) + qv(x,y),

z=x+qye D, z,=x,+qy, € D, such that I(x) = u(x,y) and G(x) = v(x,y) are continuous as
Junctions of x in x,, for all y belonging to a neighbourhood of y,, denoted by V(y ).

If f is q-monogenic in =, then u and v satisfy the relations (2) in Theorem 2.6.

Conversely, if u and v are q-differentiable in (x,.y) and satisfy the relations (2) in
Theorem 2.6, then f is g-monogenic in =,

PROOF. Let suppose that f is g-monogenic in =,

Letus denote #4z) =[/(z)~ S (zp)l/(z-z0) - f'(-”o) =
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=L/ (D) - S (2N (z-zp) —(a+bg) = h(x,y)+qh(x,y), z—2y & Z,(i.e. X # X;).

By hypothesis we get lim A(x,»)=0, i= 12 and
x—xQ

y=y0
xX#£XxQ
by (6, 1) iy (X, y) = [1(x, ) =100, ) +q(AX, ) =W X0, YV [(x %) +9(y = yp)]~ (@ +gb), x 7 ;.
By simple calculus, for all x # x,, and all y with z,z,,z-z, € D, we obtain

B)  ulx,y)~ulx, ;) = ale—x,)+ b (%, y)x-%,),
(4) v(x,y)— V(xoayo) = b(x—xo)+a()’—)’o)+hz(x,)’)(x— x0)+h1(x,y)(y—~yo)

Taking y=y, in (3), dividing with x-x#( and then passing to limit with x — x,,x # x,,
it follows that [/ &](x,,y,) = a, since \-inlo hy(x,v) = rinlo h(x.vp)=0 .

y=> 0 x£XQ
X£X(Q

Then, passing with x — x; in (3) and taking into account that F(x)=u(x,y) is continuous
in x,, we get :
(5) Ulxo,y)—ulxg,yp)= lim Ay(x,y)-0,Vy eV(yp).
x—>x() ‘
X#X()
But reasoning exactly as in the proof of Lemma 2.8, (11), (for w(x,y)= h,(x,y)), there
exists a neighbourhood V (y,) such that | lim A (x.v)|= lim [h(x.v)[<e. forally eli(yo)
x—xQ xX—xQ
X#X() X# X0
Combining with (5) we obtain
u(xg, ¥)=u(x,30) = 0,9y € V(3) Wi(3).
This obviously implies (/&) x,,y,) = 0.
Analogously, taking y=y, in (4) as above we have [/ &](x,,y,) = b.
Then passing to limit with x — x, in (4) and taking into account that G(x)=v(x,y) is

continuous in x, it follows

v(X0,¥)=V(%0,¥p) = a(y = yy) + lim hy(x,»)-0+ Lim Ay (x,p)-(y—-,), for all
X=X, XX,

XX, XX,

yeV(y,).
Reasoning as above, there exists ';(y, ) such that
v(xg,¥) = v(x0,¥0) = a(y - yo)+ lim h(x,3)-(y=30). ¥ yeV ) Vi)
x
Dividing by y — y, # 0 and then passing to limit with y — y, we get
[&/3N(x0,y0)=a+ lim h(x,y)=a+0=a |

x—>xQ

y—=>30
X£X(0,YEV()
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As conclusion, [At/ F](x,,y,) =0 and [Ae/ &](x,,y,) =[N/ F1(x,,,).

Now let suposse that # and v are g-differentiable in (x,,y,) and satisfy the relations )
in Theorem?2.6.

By Lemma 2.8, (ii) and by hypothesis we get

U(X, )~ 1(X0, ¥o) = A(x = X,) + @ (%,)- (X=X ) 1] (x =%, + (v = 2)*,

v(x,1) = (X, 3,) = A(x = Xp) +a(y = y,) +@,(x,3) - (1= %,)* [ (x =%, + (y-y,)?, for
all x # x,, y,such that z,z,,z-z, € D, where
lim @;(x,»)=0, j=1,2 and a =[] X](xy,y,), A=[H,&](x,,¥,)

x> x0

y=y0
X#X()

By simple calculus we get

S £ o) = (@A) (2= 2)+ (v = x) [0y (2.) + g, e, I (= xp)” + (= 3o

Dividing by z—z, ¢ Z, and then multiplying with 1=[(x—x,)—q(y—y,)V/ [(x—x%,)—q(y—¥,)]
on the right hand, we arrive at

L (D)= GV (2 2) =a+qA+a,(x,y) (x= %) (x = %,) +(¥=y,)" +

g-[@,(6,) (1= %)/ Y (x =% + (¥ = 3o’ =@ (£,2)- (7= ¥o) (X = %)’ + (=3, )’]

Passing to limit with :Q—ézo,:—zOéZq (which is equivalent with

X=X,y = Y,.x #x,) by

‘x_ x0|/ \/(x_ Xo):Z +(y—yo)2 < 1=
on @, (x,y) we immediately get

lim [f(2)- f(z9)]/(z—zp) = a+qA, which proves the theorem.
Z—2Z .

z—zo% Zy

REMARKS. 1). If g>= -1 it is known that the q-differentiability of # and v in (x,,y,)
together with the Cauchy-Riemann conditions in (x,,y,) is even equivalent with the
monogeneity of fin z,=x +qy,.

2). In the cases when q’=+1 or ¢°=0, there exist functions f=u+qv with # and v gq-
differentiable in (x,y,) and satisfying (1) or (2), respectively.

Indeed, for g°=+1 let us define

- 0‘/\/(x—xo)2 +(y-y,)’ <1, and by the hypothesis

0,lx|=]/ ) Weh
u(x,,V): 2 2 :V(x:J’)=O,f(z)z_”(X,}’)73:x+q.V~ € have
A =52 bl 2y |

[6u/dx}(0,0) = lim [u(x,0) - u(0,0)]/x = lim x2/x =0
x—0 0
x#0 x#0
[du | 6y1(0,0) = 11m [0, )~ u(0,0)/ y = lim y2/y=0,
y=t0 \’*0
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[&V/%](0,0) = [ov/ 6y](0,0) = 0.
Also, u(x,y)—u(0,0)=0-x+0-y+ a)(x,y)-‘x2 —yzf/ W for all |x|= M where
o(x,y) = m satisfies xli_::xo @ (x,v)= 0,1e. uis g-differentiable in (0,0).
MM
Analougously, for ¢°=0 we define
sz,x #0,ye R

0 0 R V(x,¥) =0, f(z)=1(x,y),z=x+qy. It is easy to check that
JX: aye

u(x,y)=
[/ &](0,0) =[A1/ 3](0,0) =0 and w is g-differentiable in (0,0) with @(x,y)=~/x>+)".

3). Let ¢?=+1. The sufficient conditions of q-monogenity in Theorem 2.9 however are
not necessary. Indeed, let us define f(z)=u(x,y)+q(x,y),z=x+qy,z, =0,

x(x* +y7),[x] # |y ¥+ 7). =y

u(x,y)= (x,y) =
0.Jx =y 0.lx =]y

We have

f'(O) = lim [f(z)- f(0)]/z= lim [u(x,y)+qv(x,y)]/(x+qy)=
z—>0 x,y—>0
|.\‘l¢ v |x|¢|y

lim (x2 + )/2 ) (x+gy)/(x+gy)= Ilim (x2 + yz )=0,
x,y—>0 x. v 0
I.r\¢[_v| [x] |y

wich means that f is monogenic in z,=0.

On the other hand u is not g-differentiable in {0,0). Indeed, let suppose that u is q-
differentiable. We easily get [A1/ &](0,0) =[A+/ 3](0,0) = 0 and therefore by Lemma 2.8, (i)
we get

u(X,y) = a)(x’y) . [x2 _y"’]/ \/X: +y: R for all ,X' * ‘y‘, with llm( a)(x,y) =0.

)

x>
Il
It follows x(,\’2 —+—y2) = (U(X,y) . [x2 —y:]/ sz +;'T, which imp]ies

o(x,y) = x(x* + )" /[x* - y*], for all |x]=|y

Now, choosing for example x, =1/v/n.y, =1/Jn+1 =0,
we obtain

x"’ # ly,, , by simple calculus

n-y+u

a(x,,y,)=(2n+1)** /[ndn+1] — 2, contradiction.
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Abstract

We consider the moment problem for the sequence {e_/\it}iEN in L2(0,7) (0 <
T < 00), being {A;};c asequence of positive real numbers such that 372, /\% <
0o. We prove properties of the moment space M of that sequence. In [K] it is
shown that M is a moment space. OQur main result is that M is a Hilbert space
and moreover, that is the image of ¢2 by the operator G*/2, the square root of
the Gram matrix G of the sequence. The operator G'/2 is proved to be the
limit in B(¢?) of a sequence of simple operators of finite rank. We also obtain
an upper bound for the norm of the operator . We find different expressions

for the solution of minimum norm of the stated moment problem, extending
some results of [Z].

1 Introduction

We consider the moment problem of the sequence:

{e—/\;t}iEN (1)

in L?(0,7)(0 < T' < o), being {A:},cy @ sequence of positive real numbers such
that:

21
;/\—i<00

Remark: This condition implies that the sequence (1) is not dense in L?(0,T).
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Our main goal is to characterize the moment space M of that sequence. In the
first section we introduce the moment problem and recall some well known results
about it. In the second section we prove the following properties of M:

*) M is a dense and proper subspace in £2.
*) M does not depend on T'. :
*) M is a Hilbert space, and there exists a continous inmersion in.¢2.

In the third section we obtain the operator G. It is defined by the Gram matrix
of the sequence (1) as the limit in B(¢?) of a sequence of simple operators of finite
rank. This allows us to show that G'/? is a compact operator.

In section four we prove that M is the image of £2 by the operator G'/2. In the
last two sections we find different expressions for the solution of minimal norm of the
moment problem of our interest.

2 The moment problem.

Let H be a real Hilbert space, provided by an inner product (-,-). Let {fi},cn a
sequence of elements of H such that any finite subfamily of this sequence is linearly

independent. We note by {ck},.y an arbitrary real sequence. So, the inner product
(f,fx) , k € N is called the nth. moment of f, arid the sequence {(f, fx)},cy Is the
moment sequence of f. Then in the theory of moments the following problem arises:

Does there exist an element f € Hsuch that : (f, fx) = ek, k = 1,2,...7

The moment space M of {fi} is then the collection of all the moment sequences
M = {(f, fx) : f € H}. Thus a numerical sequence {ck},. 5 belongs to M if and only
if there exist f € H such that ¢, = (f, fx), k = 1,2, ....

M is a Banach space with the norm defined by:

llell3, = sup Z U,kckc: = lim_ Z olkckc,
neN k=1 F k=1

where (fl(k is the (1,k) element of the inverse of the Gram matrix G, of {f1 ySay e fn}-
The last equality is valid because:

n
(n)
Uk,l CiCy

k=1
does not decrease as n increases [K]. It is easily proved that M is also a Hilbert space
(cf. Lema 2).

Remark: To avoid confussion we use a subscript denoting the space we are refering
to; for example (-,-)gor ||| -
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3 The moment space of a sequence of exponen-
tials. Some properties.

Let H = H(T) = L*0,T) ,0 < T < oo and let fi(t) = e™™! | k = 1,2,..., being
{Mk}ren @ sequence of positive real numbers such that A\; < Ay < ... < A\, < ... and

§ %k < 00. In what follows, we will call M (T") the moment space of (1) if 0 < T < o0,
k=1

and M if T = co. We will study properties of M and M(T).

IfT < o0 let
1— e—(/\i+/\j)T
A+ A 1<i,j<n

be the Gram matrix of {e_’\kt}KK ,m€ N, and
SKESN

G T) - 1— e—(z\;-{-z\j)T
( a Ai + ’\f i,jEN

be the Gram matrix of {e_’\kt}

keN
If T = oo ,then
G—[ ! ] neN G(T)—[ ! J
" Ai + A 1<4,j<n Ai + ’\J' i,jEN
PROPOSITION:

a) M(T) C £, M(T)# ¢3,YT > 0

b) M(T) = M ,NT > 0

c) M is dense in €% ,and the inmersion i: M—{? is continuous.
Proof:

a) Let 7"(T) be the greatest eingenvalue of G,,(T), and 7 (T') be the smallest
one. Then

(n) . (.’L‘, G"n (T).’L‘) _ .
" (T) - ZER,T#0 “.T“2 T = (ml)ISiSn
and
n 1 — e—(’\i+’\j)T n
Gn T = —I;T; < i =
(I’ ( )I) ijZZI )\i + A] z 'T] - iél /\i + )\J lx | |x]|

w (009)" il dml (Y’
> St <y (3 ) < rea e

S5 AN W) PO T ANE (W2

where Tr G, is the trace of G,. Then v"(T) < Tr G, , ¥n € N , (1) is a Bessel
sequence [Y], and M(T) C ¢2.
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Since
g
2\,
then ¥{™(T) — 0 if n — oo , and (1) is not a Riesz-Fischer sequence. Then M(T) #
2
b) (Gn = G(T));; = J e MtemMitdt then G, — Gn(T) is the Gram matrix of
’ T

{e”“'t}KKn in L?(T,00). So G, — G,(T) is positive definite. It follows that G, >
Gn(T).

In addition to this, the following result is valid
LEMMA 1: G;YT) > G
Proof:

Let L be a linear transformation such that [CH] LT G,.(T) L = Id and LTG,L =
D where D = (d; ;)1<i j<n is the diagonal matrix of order n such that

o eoi=g

s { 0 it |
Then G, —Gr(T') > 0 implies that p; > 1,1 <4 < n. Also LG YT (L")t = 1d

and L7'G;Y(T)(LT)"! = D, where D = (d; ;)1<i j<n is the diagonal matrix of order

n such that

) <

i Ue i=j
S U
Then Id — D > 0 and G\ (T)>G;!

As a consequence of Lemma 1, M(T) C M. Also, there exists a constant K =

K(T) such that:

1

In fact, let ¢ = (¢j)jen € w, and c(n) = (¢1, ¢, ..., cn) € R™

(el Guclo) = [ () (Z) @t~ 1P o
a5 \i=1 i=1 ,
where P(t) := i c;e~™t, In an analogous way,
i=1

(e(n), Gn (T) e(n)) = [IP(O) 20,7y
Acording to a result proved by Scwartz [S] there exists a constant K = K(T') such
that )
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I1P@) L2(0,00) < K(T) IP@)I 20,y -

Hence K(T)G < Gu(T) and G, }(T) < K(T)G;!. Therefore M C M(T).

c) Let z € £2 be such that (z,c)p = 0, Vc € M. Since ¢ € M there exists
VU (t) € L%(0,T) such that:

T
/ U (t) e Mtdt = c;,¥j € N.
0

00 00 T '
Then Y zic; = Y. z; [V (t) e dt = 0, VW (t) € L?(0,T). By the continuity of the
i=1 =1 0

inner product

lim (Zz, )\Il(t

N—boo

Since $X zie™ € L2(0,T), it follows that f (z et ) () dt = 0.

The sequence (1) is minimal in the sense that each element of the sequence lies
outside the closed linear span of the others. Then there exists a biorthogonal sequence
[Y] {gi(t)};cn such that taking W(t) = g;(t) will give z; =0, Vi € N. Then z = 0.

To show that the inmersion i : M — £2 is continuous, we shall show that:

llellz: < Tr G llelly, -

This is inmediate since

(e(n), Gle(n)) = lle(m)]? %‘)“_”2("_)2 > [le(n)|? (’Yl(n))ﬁl >

le@)*(TrGo)™ o

LEMMA 2: (M;||||5,) s a Hilbert space.

4 An approximation to the Gram matrix.

The Gram matrix:

1
G =
()‘i + ’\-‘i) 1<4,5<00
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generates a bounded operator on ¢2 because ||G|| < Tr G. This result is a particular
case of the following one:

LEMMA 3: If G = (i) 1<; j<oo 15 the Gram matriz of a system {fi}, y such that

2 9ii < 0o then |gi;| = |(fi, [5)] < NSNS < (9:4)"* (95,9)"% , 1 < 4,5 < 00 and
S gimz| < (ZI gi,i) (Z)I |~"7¢|2) - Henee |G| < 32 gi = Tr G.
i,j=1 i= i= i=

LEMMA 4: ||G|| < TrG.
Let G, be the nth. section of G, G,, =

(gi,j)lgi,jgn :
. . . A ~ i, 1<1,7<
Then the infinite matrix Gn =(ij)<; jc00 = { g"’i’> 7_12;"]j_>nn defines a
)

bounded operator G, #2 — £2,Yn € N

LEMMA 5: G, — G on B (%) if n — .
Proof: .
Let R, := G — Gy and let z € 2 | y = R,z. Then

00 00
E 9i;%; 1= 1,2,...,71 Yn+i — Zgn+i,jxj 1= 1,2,...
=1

j=n+1
thus, if 1 <1 <mn,

ie (£ i) (£ o) mais zg)(z)
j=n+1 j=n+1 j=1

)=

j=n+1 by e
i 1 X1
> y?sﬁf( > A)nacnﬁ
i=n+1 j=n+1 "7

Hence

- \;lst( 3 /\L) and G, — G on B (£2) if n — oo. .
j=n+1"7

Remark: It can be proved in a similar way that Lemma 5 is valid if G = (gi;1), i j<oolS
a Gram matrix such that § 9ii < 00
i=1
The operators G, are of finite rank and positive (recall that a bounded linear
operator T on a Hilbert space H is said to be positive if (T'f,f) > 0, Vf € H).
Therefore G is a compact and positive operator. Since
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oo [o o] oo
= 2
(5:6) = 3wy < (L) (S o) < 7ol
i,j=1 i=1 i=1

it follows that 0 < @; <7ld,Vne N ,and0<G<T Id’.jlence for every natural
number n there exists a unique operator T, such that 7> = G, and a unique operator
T such that T? = G. We will denote them by E;W and G'/? respectively. Now,
because of the uniqueness, it follows that

Qn .. 9

12

G, "=

where @, is the only matrix such that Q, > 0 and Q2 = G,,.

LEMMA 6: G,""* — GV/2 on B(£) if n — co.
Proof:

Let {Px (A)}rcn be a sequence of polinomials with real coefficients that converges
uniformly to the function p(A) = A2 | X € [0,7]. Let T be a selfadjoint operator
such that 0 < T < 7.Id. Then

Therefore {Px(T)},cn is a Cauchy sequence in B(£2). Accordingly, there exists an
operator T € B(f?) satisfying: '

i) Pp(T) > T , if m — o0

i) T2 =T

ii) T >0

w) T is the only operator with the properties %)-iii).
We note T2 = T.We choose an arbitrary positive small € and find an index k such
that

sup |Pe(A) — )\1/2’ < -g
A€0,7]
For that k we have: "Pk(G) — G1/2“ < ¢ and ‘ Pk(a;) _ 6;1/2.| < £. Let ng = no(e)
be such that HPk(’GT,) — Pk(G)H < §,Vn>mng Hence
H@;l/z - GY?| < €,Yn > ny. °
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5 A characterization of M.

THEOREM 1: M = G'/2(¢?).
Proof:
Let ¢ € M. Then (¢(n),G;'c(n)) < K ,Vn € N. We denote

NS
Hence ||z(n)|]| < K ,V¥n € N, and ¢(n) = G}/zr(n). We define the elements

o z; (n) ifl1<i<n
w10 ifi>n
and we denote T, = (Tn;), y - As ||Znllz = ||z(n)||zg= < K, V2 € N ,we can suppose

that {Z,}, v is weak convergent in £2 (if it is not the case, it is sufficient to consider
a subsequence with this property). Then

(Zn,y) = (z,y) if n— oo,Vy € 2.
Since G'/? is a compact operator G'/%%, — G2z if n — oo and GY%%, — c if
n — oo, then ¢ = G2z,

To show that G/2(¢2) C M , let ¢ be an element of G/2(£2). Then there exists
z € €% such that GV%zr =c . We now introduce the elements

ul® = 5’31/21:

We assume for an instant that 4¢®) € M | V¥n € N.. Then we have
172 (s)
}(G )

o) () -] s

neN

< "(Gn 1/2( (n) — uE:))H + K ,being K a constant. So

_1\1/2 _ . s
I(G’nl) c(n)“ < H ) (c(_n) ~ lim ugng) H P K=K
because u®) — cin £2 if s — oo. Thus ¢ € M.

To show that u(® € M , ¥n € N let’s introduce the set
Rs:{a:(ai)ieN€€2:a¢:0Vi>s}

and consider {g;}, 5 a biorthogonal sequence to the sequence (1). Next we define
g=01g1 +0g92 + ...+ asgs , g € L?(0,00). Then

gty _ ) i 1SS
e {5 i5s

and hence ﬁ’,s CM,VseN. °

Remark: Now the part a) of the proposition is obvious.
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6 Solution of the moment problem.

If @ (t) is the solution with minimun norm of the truncated moment problem

(‘Pn(t),e_)‘jt) =c¢; j=12,...,n
then [K]

en(t) =Y me™™
i=1

n
where 7v; = Y 0;;(n)c; and o; ;(n) is the (i,j)-element of G, 1. Tt can be proved that
i=1

ISV VRIS WS VRSP Vi Iy ¥

cri’-n = .
i(n) A+ A kl;ll)\k—/\i kl;[l/\k—/\j
ki k5
L VS ¥ 1

If we call a;(n) = 2\ H

a;(n)a;(n). The
k=1 Ak — Ai

we can write o; ;(n) = ——
W) =

k#i
moment problem has a solution if and only if there exist a constant K > 0 such that

[K] |len(®)|| < K ,VYn € N. Let D,, = (d;)1<ij<n be a diagonal matrix of order n
such that

d:: = ai(n) 1=
W70 i

then G,;! = D,,G,,D,, and

n n ai(n N n N
o) = 3 (32300 ) e = S e
j=1 \i=1 "™ J J=1

where d(n) = : = Gy Dnc(n).
dn(n)

The condition Z x < oo implies convergence of the infinite products r}im a;(n) =
i=1 i o
a; , Vi € N [C] . For every ¢ € N the sequence {d;(n)},.y has also a finite limit
when n — oo. Then we write d; = T}Lr& d;(n).

In fact, let P,(t) = i ci(n)a;(n)e=>* ; then | P (t)|| = llen(t)|| < K, Vn € N and
=1

P,, e')“‘t) = d;(n). This shows that {P,(t)}, . is a sequence of elements in L?(0, co)
such that the norms form a nondecreasing sequence of real numbers with K as an
upper bound. Then there exists P € L?(0, o) such that P, — P if n — oo.
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The following theorem is valid

THEOREM 2: If there exist a constant 8 > 0 such that A,y 1 — Ay > 3, Vn € N,

> 1
and Z — < oo then
k=1 k

p(t) = djaze ™t
j=1

is the solution with minimun norm of the moment problem

et)e ™ =¢;, i € N.

Proof:
First,

Z djaje_’\"t € LZ(O, OO),
7j=1

is a consequence of a theorem of Schwartz [S]. In fact, as @, (t) = 51_1“, di(n)a;(n)e >t
i=1

is the solution of minimun norm of the problem of order n:

pt)e M =¢,1<i<n,

there exists ¢(t) = lim fj a;(n)d;(n)e=** € L*(0,00), being ¢(t) the solution of
N0 4o

minimum norm of the moment problem [K]. Then ¢(t) belongs to the clausure of the
subspace of L?(0, 00) generated by {e"\“‘} . and can be written as a Dirichlet series
1

[S]
(p(t) = i_o: kie >t

As {e_’\i’}ieN is ‘a minimal system [S] it follows that k; = oyd; , Ve € N | i.e.:

At

o0
It remains to prove that 3~ d;ja;e™"" is a solution. As
j=1

1

o) o) )
diaie Mt e M) = N djay———

then we must prove that:
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ad 1
dio;——— =c¢,Vk € N.
,'ZZI '/\i I /\k k)
Itk <n, Y di(n)ai(n) g5 = (CaDaGoDnc(n)), = c then
i=1
R i e o~ A
'nh-?olo ;G,(n)adﬁ) R}“;‘;; =, VR < N,

But ,%j ade Mt e L?(0,00) then
i=1

7 Another expression for the solution

The solution of minimun norm of the problem of order n ¢, (t) = Z dj(n)a;(n)e~*t

iz
can be written as p,(t) = E vj(n)e~ %t with y(n) = (7i(n))1cicn = DnGnDnc(n).
=1 =
But D,Gn,D, = G;! , then
¥(n) = (7i(n))1gign = G:llc(n)'
The goal of this section is to find an analogue expression for the solution (). In
section 5 we proved that there exists P(t) € L%(0, oo) such that

P(t) = lim Py(t) = lim Zc, (n)ai(n)e ™t

Then P(t) belongs to the clausure of the subespace of L%(0,00) generated by the
system {e"\‘t}iGN and P(t) can be developed in a Dirichlet series

o0
P(t) =) hie ™.
i=1
But {e“.""t}ieN is a minimal system, then h; = a;c;, Vi € N,

P(t) =) cae e L%(0, 00).
i=1

Then (P(t)7 e"‘it) =3 .c.;a.' - converges and

c;a 2. CiQ;
~dim ) = Ji 2SR5
—1 M
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oo 00

. 00 ;0
Th t) = d,-aie Ait et
enelt) =4 Y—;Jz; N+

If we define the operator DGD as the one generated by the infinite matrix

Q;

/\i+)\j

Ai + A
it follows that ¢(t) = (DG’Dc) e Mt,

;05
( haac ) and the operator GD as the one generated by the infinite matrix
i/ J
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CROWNS.
A UNIFIED APPROACH TO STARSHAPEDNESS

Fausto A. Toranzos

Departamento de Matematica

Universidad de Buenos Aires

ABSTRACT: I/t is observed that many papers concerning starshaped sets
have similar structure and objectives. Those papers usuaily deal with
construction of the convex kernel, dimension of the kernel and
Krasnoselsky-type theorems. Furthermore, the logical connections
among these different topics are almost the same in the different papers.
The aims of the present note are to exhibit these logical connections and
to sketch a unified theory of starshapedness. A third implicit aim is the
development of a brief survey of some aspects of this part of Convexity

Theory. The main tool to obtain these objectives is the notion of crown of

a starshaped set.

1.- INTRODUCTION.

More than thirty years ago, F. A. Valentine, in his classical book [15] on
Convexity, posed several problems regarding starshaped sets. The first and

more important two problems were :
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(Po) Characterize the starshapedness of S in terms of the maximal convex
subsets of S. (Problem 9.3 of [5]).

(P1) Determine neccessary and sufficient conditions that the convex kernel of
S have dimension o. , where 0 <a <d, and d is the space dimension.
(Problem 1.1 of [5]).

Problem (Po) was completely solved in [11], but its solution provoked a similar
and more general type of problem : |

(P2) Describe the convex kernel of a starshaped set S as the intersection of a

certain family of subsets of S.

In 1946 Krasnoselsky [8] proved that a compact set S « R" is starshaped if
and onily if for each subset of n+1 points of S there exists a point of S than can
see via S all these points. This theorem, perhaps the most important result in
the theory of starshapedness, suggested a new angle of research about
starshaped sets and visibility. The results of this new approach are usually
labelled as Krasnoselsky-type theorems , and provide answers to the following

probiem :

{Ps) Describe properties (related to visibility and starshapedness) of the set S
by means of conditions upon each subset of k points of S, where Kk is an

integer related to the space dimension.

The literature on starshapedness and related matters includes scores of
particular solutions of prbblems (P1) , (P2) and (P3) . We will mention some of
those solutions in Paragraph 3. The main purpose of this note is to exhibit the
logical connections among these probiems. We intend to show that a solution

to any of these problems can produce solutions to the remaining ones.
2.- BASIC DEFINITIONS.

Unless otherwise stated, all the points and sets considered here are inciuded in
a real locally convex linear topological space E. The interior, closure,

boundary, convex hull and affine hull of a set S are denoted by intS , ¢l S,
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bdry S, conv S and aff S , respectively. The open segment joining x and y is
denoted (x y) . The substitution of one or both parentheses by square ones
indicates the adjunction of the correspondig extremes. The ray issuing from x
and going through y is denoted R(x —>y) , while R(y x —) is the ray issuing
from x and going in the opposite direction. All rays are considered closed. We
say that x sees yvia Sif[x y]c S. The star of xin S is the set st(x,S) of all
the points of S that see x via S. A star-center of S is a point x € S such that
st(x,S) = S . The kernel (convex kernel, mirador) of S is the set ker S of all the

star-centers of S . Finally, S is starshaped if ker S is not empty.

A crown of the starshaped set S is a coliection | of subsets of S whose
intersection is ker S. If S is a starshaped set and R is a crown of S, a subcrown
is a subfamily 3 ¢ R such that 3 itself be a crown of S. A minimal crown of S
is a crown that admits no proper subcrown. A covering crown of S is a crown
whose union is S. A finite crown is one with a finite number of members. Any
other qualification of the word “crown” {e.g.: convex crown, closed crown, efc.)
indicates that the same adjective applies to each of the members of the crown.
That is, R is a convex crown if and only if it is a crown and each of its members
is convex. We are naturally inclined to try to prove, by means of a
nonconstructive approach (i.e. Zorn'’s Lemma, well ordering principle, or the
like), a theorem that assures that every crown admits a minimal subcrown.
Unfortunately, such a theorem would be false, as a counterexample given

below shows.

3.- EXAMPLES OF CROWNS.

In this paragraph we consider seven examples of crowns already in the
literature. We shall restrict our exposition to the basic definition in each case,

and the statement that identifies the crown considered.

THEOREM 3.1 If S is a starshaped set, the family ® = {st(x,S)| xS} is a

crownof S.
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No proof is needed here. This is just a different way to state the definition of the
convex kernel of S. An interesting type of problem is to describe, in different
environments and settings, a minimal subcrown of the crown just defined.
Theorem 3.3 and Theorem 3.6, stated below, present two different approaches

in this direction. A convex component of S is a maximal convex subset of S.

THEOREM 3.2 (Toranzos, [11]) /f S is a starshaped subset, a covering

family of convex components of S is a covering and convex crown of S.

The original statement -of this result refers to the family of all convex
components of S, but the proof applies to the present statement. It is important
to remark that both previous theorems omit any topological and/or dimensional

requirement, either on the space or on the starshaped set S.

The relative interior of a set M, denoted ‘relint M, is the interior of M in the
relative topology of affM . A k-simplex is the convex hull of k+1 affinely
independent points. A point x € S is a k-extreme point if no k-simplex A < S
exists such that x € relint S . Of course, in these two definitions k is not larger
than the space dimension. The set of all the k-extreme points of S is denoted

by extc S .

THEOREM 3.3 ([6], [10]) Let S be a compact starshaped subset of R". The

family ® = {st(x,S)| x eexty,S} is a crown of S .

This statement was proved simultaneously and independently by Tidmore [10]
and by Kenelly et al. [6] . It is easy to construct, even in R® , counterexamples
to show that the set of regular extreme points of S , that is ext; S in the
previous definition, is not enough to describe the convex kernel as intersection

of its stars.

The point y sees clearly x via S if there exists a neighborhood %, of x such
that 2¢, — st(y,S) . The nova (or clear star) of x in S is the set nova(x,S) of all

points of S that see clearly x via S . A point x € S is a point of local convexity
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of S if there exists a neighborhood %, of x such that %~ S be convex.
Otherwise, x is a point of local nonconvexity of S. The set of all points of local

nonconvexity [local convexity] of S is denoted by Inc S [lc S].

THEOREM 3.4 (Stavrakas, [9]) Let S be a compact connected subset of R® .
Then, the family of novae of points of local nonconvexity of S is a crown of S.

This theorem has recently been generalized in Theorem 2.2 of [14] whiere the
requirement of finite dimension is dropped, and the condition of compactness
of S is substituted by that of Inc S. As we remark here, these improvements
yield easily better results about the dimension of the kernel and new

Krasnoselsky-type theorems.

Let p and q be points of S. The point p has higher visibility via S than q if
st(q,S) < st(p,S) . The visibility cell of p in S is the set vis(p,S) of all the points
of S having higher visibility via S than p . Of course, p < vis(p,S) always.

THEOREM 3.5 (Toranzos, [12]) Let S be a closed connected set such that
Inc S be compact. The family of visibility cells of all points of local nonconvexity

of Sis aconvex crownof S.

A simple smooth Jordan domain is a compact set S — R? whose boundary is
a simple closed smooth Jordan curve having a finite number of inflection
points.

THEOREM 3.6 (Forte Cunto, [2]) Let S be a simple smooth Jordan domain.
The family of stars of the inflection points of bdry S is a finite crown of S.

Let yebdryS and xest(y,S). We say that R(x — y) is an inward ray
through 'y if there exists t € R(x y —) such that (y t) cint S . Otherwise, we say
that R(x — y) is an outward ray through y . The inner stem of y in S is the set
ins(y,S) formed by y and all the points of st(y,S) that issue outward rays
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through y . A regular domain is a set S having connected interior and such that }
S=clintS.

THEOREM 3.7 (Toranzos, [13]) Let S be a nonconvex regular domain. Then

the family 3 = {ins(x,8)| x Inc S} is a crown of S .

EXAMPLE 3.8 Example of a crown without minimal subcrowns.

Let S be a planar set consisting of three quarters of a circular disk, that is,

using polar cordinates :

S= {(r,w)eR2‘0$r£1;%SWS2p}.

Let O be the origin, p = (1 %) and q= (1,p). The convex components of S are
the closed semidisks obtained by intersection of S with a halfplane limited by a
line through O . Each of these convex components is characterized by the point
of the arc [p q] where its limiting line intersects this arc. If x is a point of this
arc, let K, be the corresponding convex component. It is easy to verify that if L
is a subset of the mentioned circular arc such that the points p and q are
accumulation points of L, then the family R,_= {Kx| xeL} is a crown of S .
Consider now the family & of all the convex components of S, with the

exception of K, and K, . Then & is a crown of S that has no minimal

subcrown.d

4.- REPRESENTATION AND DIMENSION OF THE CONVEX KERNEL.

The natural way to begin a study on starshapedness is to prove a theorem of
representation {or construction) of the convex kernel of a starshaped set. The

format of such a theoremis :
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THEOREM 4.1 Let S be a starshaped set with property @ included in the

space E with structure Q . Then the family R of subsets of S is a crown of S.

Unless we determine explicitly the property (or properties) @ , the structure g
and the family R , this statement is not a real theorem but a theorem-format
i.e. a logical template that can be filled with real mathematicai contents. All of
the theorems quoted in the previous paragraph fit into this format. The proof of
a theorem having this format is a particular solution of the Problem (P,) stated
in the first paragraph. Once solved the Representation Problem of the convex
kernel, the Dimensicn Problem, stated above as Problem (P,) , can be

approached in the same way by means of another theorem-format .

THEOREM 4.2 Let S be a set with property ® inciuded in the space E that
has structure g , and let R be acrown of S. Then dim(ker S)>a >0 ifand
only if there exists an o-dimensional flat F , a point x € relint(F ~ S), and a
neighborhood 2, of x such that foreach M € R holds (%x ~F~S)c M.

Proof : The if part is simple since the definition of crown implies
(%<~ F n'S) c M where the set between brackets has dimension o . For the

converse implication it is enough to take F = aff ker S and x € relintker S .4

Let us now apply this theorem-format to the examples of crowns that were

introduced in the previous paragraph.

THEOREM 4.3 Let E be a locally convex linear topological space, and S a
starshaped subset of E . Then dim (ker S) > a >0 if and only if there exists an
o-dimensional flat F, a point x e relint (F ~ S) , and a neighborhood 24« of x
suchthat Vte S, (%x~F nS)cst(tS).

Proof : This is just the conjunction of Theorem 3.1 and Theorem 4.2 .0
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THEOREM 4.4 [et E be a locally' convex linear topological space, S a
starshaped subset of E, and R a covering family of convex components of S.
Then dim (ker S) > a. >0 if and only if there exists an a-dimensional flat F, a
point x e relint (F ~ S) and a neighborhood 24, of x such that V K € R holds
(s ~"FS)cK.

Proof : Conjunction of Theorem 3.2 and Theorem 4.2.0

THEOREM 4.5 Let E=R", and S be a compact starshaped subset of E .
Then dim (ker S) > a > 0 if and only if there exists an a-dimensional flat F , a
point x e .relint (F ~ S) and a neighborhood 2« of x such that Vvt e extys S
holds (2 ~F ~ S) c st(t,S) .

Proof : Conjunction of Theorem 3.3 and Theorem 4.2 .0}

THEOREM 4.6 Let E=R®and S be a compact connected subset of E. Then
dim (ker 8) > a >0 if and only if there exists an a-dimensional flat F , a point
x e relint (F n S) and a neighborhood %, of x such that VtelIncS holds
(2x ~F n S) < nova(t,S) .

Proof : Conjunction of Theorem 3.4 and Theorem 4.2 . It is important to recall
that precisely the present result was proved in [9] , where Stavrakas introduced

the nction of clear visibility. O

THEOREM 4.7 Let E be a locally convex linear topological space and S a
closed connected subset of E such that IncS be compact. Then
dim (ker S) = a. > 0 if and only if there exists an o-dimensional flat F , a point
x € relint (F ~ S) and a neighborhood @, of x such that every point of
(%<~ F ~S) has higher visibility via S than each of the points of local
nonconvexity of S .

Procf : This is the conjunction of Theorem 3.5 and Theorem 4.2 .Q
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THEOREM 4.8 Let E=R? and S be a simple smooth Jordan domain. Then
dim (ker S) > a >0 if and only if there exists an a-dimensional flat F , a point
x e relint (F ~ S) and a neighborhood %, of x such that every point of
(%~ F ~ S) see via S every inflection point of bdry S .

Proof : Conjunction of Theorem 3.6 and Theorem 4.2 .Q

THEOREM 4.9 Let E be a locally convex linear topological space and S a
nonconvex regular domain included in E . Then dim (ker S) > o> 0 ifand only if
there exists an d-dimensional flat F , a point x erelint(F~S) and a
neighborfiood 2. of x such tii
rays through each of the points of local rnonconvexity of S .

Proof : This is the conjunction of Theorem 3.7 and Theorem 4.2 .

We have shown, by means of these seven examples, that any solution to the
Problem (P,) of representation of the convex kernel by a crown yields almost
inmediately, via the theorem-format 4.2, a solution to the problem (P,) of the

dimension of the convex kernel.

5.- KRASNOSELSKY-TYPE THEOREMS.

Every theorem that fits into the theorem-format 4.1 of representation of the
convex kernel by means of a crown is essentially a result about the intersection
of a certain family of sets. The literature on Convexity has, in the finite-
dimensional case, a large corpus of theory usually labelled as Helly-type
Theorems , that deals with the intersection of families of sets and has a strong
combinatorial flavor. The conjunction of this type of result with the theorems
exhibited in the previous paragraph is highly desirable, but a technical problem
arises : Helly-type theorems usually refer to families of convex sets, while the
members of a crown are not necessarily convex. The difficulty is solved by

means of an auxiliary lemma whose proof is usually far from simple.
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LEMMA 5.1 (K-lemma) Let S be a set with property ® included in the space
E that has structure @ and R be a nonconvex crown of S . Let xe S but

x ¢ ker S. Then, 3M € R such that x ¢ convM [x ¢ cl conv M].

This lemma irhplies inmediately that ker S is the intersection of the convex
hulls [the closed convex hulls] of the members of the crown R . The use of the
alternative enclosed in square brackets depends on the topological conditions
of the crown considered. It is clear that this lemma is superfluous if the crovs)n is
convex, as in examples 3.2 and 3.5 above. We quote here for later reference

the three most commonly used Helly-type theorems.

THEOREM 5.2 (Helly,[4]) Let E=R" and R be a finite family of convex
subsets of E such that each subfamily of k members of R, with k<d+1, has
nonempty intersection. Then, the intersection of all the members of R is
nonempty. The condition of finiteness of R can be dropped if it is required the

compactness of all its members.

THEOREM 5.3 (Griinbaum, [3]) Let E=R® and R be a finite family of
convex subsets of E . f N denotes the set of positive integers, we define a
function g: NxN >N by g(n,1)=2n, g(nn)=n+1 , and if n>k>1 then
g(n,k) = 2n-k . Any other value of g(nk) is irrelevant. The dimension of the
intersection of all the members of R is greater than or equal to o if and only if
the dimension of the intersection of every subfamily of R that has at most

g(d,a) members is at least o .

THEOREM 5.4 (Klee, [7]) Let E=R®, R be a finite family of convex subsets
of E and &> 0. The intersection of all the members of R contains a ball of
radius & if and only if for every subfamily of d+1 members of R , its intersection
contains such a ball. As in Theorem 5.2, the finiteness of R can be dropped
provided the compactness of all its menbers is required.
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The knowledge of a crown for a ‘certain class of starshaped sets, plus the
previous theorems, produce three different Krasnoselsky-type theorem-formats.
As we have observed at the beginning of thiis paragraph, either the crown
considered is convex or it must verify a K-Lemma that folldws the format of
Lemma 5.1.

THEOREM 5.6 (Krasnoselsky-type 1) Let E=R", S be a compact subset of
E , and R be a crown of S that either is convex or verifies Lemma 5.1. Then S
is starshaped if and only if the intersection of every subfamily of d+1 members
of R is nonempty.

Proof : Theorem 5.2 and , if needed, Lemma 5.1. The compactness of S can be

substituted by the finiteness of the crowmn ® .0

THEOREM 5.6 (Krasnoselsky-type 2) Let E=R" S be a subset of E , and
R be a finite crown of S that either is convex or verifies Lemma 5.1. If N
denotes the set of positive integers, define a function g:NxN >N by
g(n,1)=2n, g(n,n) = n+1, ahd for n>k>1 g(nk)=2n-k. Any other value of
g(n,k) is irrelevant. Then, S is starshaped and dim ker S > « if and only if the
dimension of the intersection of each subfamily of g(d,a) members of the crown
is af least a. . |

Proof . Theorem 5.3 and, if the crown is not convex, Lemma 5.1. In this case
the finiteness of the crown is essential and admits no substitution by any
compactness condition.(

THEOREM 5.7 (Krasnoselsky-type 3) Let E=R", S be a compact subset of
E , and R be a crown of S that either is convex or verifies Lemma 5.1. Then S
is starshaped and ker S contains a ball of radius & >0 if and only if the
intersection of each subfamily of R having at most d+1 members contains a
ball of radius & . ’
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Proof : Theorem 5.4 and, if needed, Lemma 5.1. Once more, the compactness

of § can be substituted by the finiteness of the crown.Q

These three theorem-formats combined with the seven types of crowns
described in Paragraph 3 can give rise to twenty one Krasnoselsky-type
theorems. Some of those results are already known. M. Breen (in [1] and other
papers) has derived several Krasnoselsky-type theorems from the Stavrakas’
crown described in Theorem 3.4. The theorem that can be obtained by the
conjunction of Theorem 3.1 and Theorem &5 is the original 1946
Krasnoselsky's Thecrem [9]. The nine Krasnoselsky-type theorems that can be
derived from Theorems 3.5, 3.6 and 3.7 have already been proved in the
papers ([12], [2] and [13]) where the respective crowns were described. As an
example we state the theorems that can be derived from the crown described in
Theorem 3.2.

THEOREM 5.8 Let E=R*, S be asubsetof E,and R be a covering family
of convex compenents of S . Then S is starshaped if and only if every d+1

members of R have nonempty intersection.

THEOREM 5.9 Let E=R?, S be a subset of E , and R be a finite covering
family of convex components of S . if N denotes the set of positive integers,
define a function g:NxN—>N by g(n1)=2n, g(nn)=n+1, and for
n>k>1 g(nk)=2nk. Any other value of g(nk) is irrelevant. Then, S is
starshaped and dim ker S > o if and only if the dimension of the intersection of

each subfamily of g(d,a) members of R is at least o .

THEOREM 5.10 Let E=R®, S be a subset of E , and R be a covering family
of convex components of S . Then S is starshaped and ker S contains a ball
of radius & if and only if the intersection of each subfamily of R that has at

most d+1 members contains a ball of radius 3.
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6.- CONCLUDING REMARKS.

In-the previous sections we have shown that once proved a theorem about the
~ construction of the convex kernel that fits the format of Theorerh 4.1 and, in the
case that it would be necessary, a K-Lemma like 5.1, the whole

Starshapedness Theory including theorems about construction and dimension

of the kernel and Krasnoselsky-type theorems follows easily. The main tool in
this development has been the idea of crown of a starshaped set. We claim
that this notion is worthy of systematic study. The study of minimal crowns
generated by some of the known types of crowns seems specially promising.

In the Krasnoselsky-type theorems that fit the theorem-fcrmat 5.6 , sometimes it
is possible to obtain a slight improvement if the analogous theorem of
Katchalsky [5] is substituted instead of Grinbaum’s Theorem 5.3. The
application of different Helly-type theorems and/or adimensional theorems
regarding intersections of convex sets to the present approach remains to be
studied in the future.
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Abstract: In IR", given+y € [0,n) and p € (1,n/7), it is well known that w? € A",
with 1/¢g=1/p—v/nandr =1+ q%l, is a necessary and sufficient condition
for the boundedness of the Maximal Fractional Operator M, between LP(w?) and
L%(w?) spaces. In this work we study the dependence of the operator norm on the
constant of the A, condition. The result extends the obtained by S. Buckley for
the Hardy-Littlewood Maximal Function (i.e.: v = 0).

§1.

Let p be a positive Borel measure in IR". For each v in (0,n), the fractional
maximal operator M, with respect to u is defined by

1
(1.1) M, f () =:ggm/ |f1 du,

for f € L1, (dp), where the sup is taken over all cubes in IR" containing z. It is
well known that for each p in (1,n/v) there exists a constant C, independent of

f, such that the inequality

(1.2) ([ (sl du)% <c ([ arwy du)% ,

holds with 1/¢q = l/p; v/n for every f in LP (wPdp) if and only if w is a weight in
the A (p, ¢) class with respect to u, that is, w is a non negative function satistying

* The authors were supported by: Consejo Nacional de Investigaciones Cientificas y Técnicas de la
Repiblica Argentina. i

Keywords and phrases: Lebesgue spaces operators norm, Fractional maximal function, Theory of
weights, Weighted norm inequalities.

1991 Mathematics Subjects Classification: Primary 42B25.
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=

where the sup is taken over all cubes in IR" and p' = p/(p—1). From the classical
proofs of the above result, it can be obtained that the constant C in (1.2) depends
on Ky 4., but they do not show explicitly the dependence. In 1993, S. Buckley
([B]) solved the problem for the Hardy-Littlewood maximal function (i.e.: v =0
in (1.1)). The purpose of this work is to extend that result to the general case of
the operator in (1.1). Actually, our main result is the following theorem.

(1.4) Theorem: If 0 < vy < n,1 < p < nf/y,1/g =1/p—v/n and w is a
nonnegative function on IR™ such that, for every cube Q, (1.8) holds, then

1 1
as) ([ oswyrae) <orllT ([ a)

(1=3)

The power Kﬂ,,p,q /13 the best possible.

As it can be seen in §2, our techniques to prove the above theorem are extensions
of those used by Buckley in the case v = 0. An important point in order to
obtain these extensions is to recall the obvious relation between the A (p, ¢) classes,
defined as in (1.3), and the Muckenhoupt’s classes A, with respect to p. In fact,
since a weight w is in A,, 1 < r < oo, when

1 1 ) r1
1.6 By,,=sup| — | wd — [ wTr1d o0,
(19) e (g fo o) (igp [ mam) - <

where the sup is taken over all cubes in IR", it is clear that w belongs to A (p,q)
if and only if w? belongs to Ay y,/p, with p' = p/(p — 1). Moreover, we have
By 1tq/p = Ky pq-

§2

As in the case 7y = 0, we are going to prove theorem ( 1.4) by using an argument
of interpolation. For this reason, let us first to state the following version of the
Marcinkiewicz’s interpolation theorem with respect to a positive Borel measure .

(2.1) Theorem: Suppose that a quasi-linear operator T is simultaneously of weak
types (p1, 1) ¥ (P2,42), 1 < Piy¢i < 00, q1 # g2, with norms My y Mj respectively
a ) 9
(i.e.. u({z : Tf(z) > a}) < (%—L ||f||L,i(d”)) , t =1,2). Then for any (p,q)
with
1 (1—1t)

t
- = —+ s
b D1 D2

t 1—t
:—+( ), 0<t<l,
q1 q2

|
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the operator T is of strong type (p,q), and we have

ITf N ocany < H MM | fll o ag
Proof: See (Z], p. 111, vol.2.a

(2.2) Remark: From the proof of ( 2.1) in the case p; < p2 y 1 < g2, it follows
that

HY =294 ((pl/p)ﬁ- n (pz/p)%%)

9—qQ q2 —4q

To apply the above theorem we need weak type inequalities for M, . They will be
given by the next two results. The first one was proved by S. Buckley and provides
an estimate concerning a known property of A, classes. The proof of the second
one is due to B. Muckenhoupt and R. Wheeden ([MW]). However, accordingly to
our purpose, here we are going to examine carefully that proof in order to obtain
a more precise conclusion.

(2.3) Theorem: If w satisfies A, then w satisfies A,_. with ¢ ~ Bf‘;pp' and
By p—e < CBy,p, where C = C(n,p).
Proof: See [B], p. 255, lemma 2.1.5

(2.4) Theorem: If 0<~vy<n, 1<p<n/y, 1/¢g=1/p—v/n, a >0, E4 is the
set where M f > a, and w is a nonnegative function on IR™ satisfying (1.3) then
there 1s a C , independent of f , such that

(25) ([ wraw)' scBers ([ puran)’

Proof- Fix M > 0 andlet Ey pr = EqNB (0, M). It is clear that for each z € E, m
there exists a cube @ containing z such that

1
—_— d 1
@ Jp 11>

Using Besicovitch’s theorem we can choose a sequence {Qi} of these cubes such
that Eo m C UQk and no point of IR" is on more that C' = C (n) of these cubes ,
i.e. 3 xqQ. < C. Then, since p/q <1 and w satisfies (1.3), we have
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R

N
U)o v19)
S ot
(o), )
<2l ([ \ipwran)

Finally, letting M — oo we get (2.5).m

|/\

(L)

AN

IA

Now, we are able to proceed with the proof of our main result.

Proof of Theorem ( 1.4): In the next, for the sake of simplicity, we are going to
denote Ky p 4 by K. As we said in §1, the fact that w satisfies (1.3) implies w?
belongs to A, with r = 1+ ¢/p' and Bys , = K9. Then, from (2.2), there exists
e ~ K91=™) such that w? belongs to A, with s =r —¢ > 1 and Bye,s < CK?,
C = C(n,p,q). Now, we choose numbers p; and ¢; such that 1 < p; <p, 1/¢q; =
1/p1 —v/n and s = 1+ q1/p}. So w¥/" satisfies A (p1,q:1) with Kyilar pg <
CK9/% C = C(n,p,q). Then, by theorem (1.4),

K1 o
(2.6) / widpy < C (/ Tis wqpl/‘hd#)
(M, f>a) aft \JR®
By defining T (z) = (gvn (z)) with v = w? , and taking f = gv= (z), it is
clear that (2.6) can be wrltten in the form
a
P1
(2.7 / vdu < C (/ lg|** vd,u)
: {Tg(2)>a) ot \VR"
In the following step of the proof we shall asume € < £ -"- . This hypothesis can

be ensured by taking € min (1, y Ervo 7) instead of the orlgmal € in the choice of p;

and ¢, (note that this change preserves the relation between ¢ and K ). Now, we
can pick g and p; such that 1/g — 1/q2 = 1/q1 — 1/q and 1/q2 = 1/p2 — v/n.
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It is clea.r that 1+ g2/py > 1+ q/p', s0.v € Aj4g,/p, With Byiyg,/p < CKT,
C = C(n,q,p). Then, by reasoning as before, we get

92
q 2
(2.8) J vdp < CX ( S el vdu) ’
{Tg(z)>a} o \JR"
Since there exists t € (0,1) such that
1 t —t) -
1t 00 1t (en
P M b2 9 @ 92

theorem (2.1) allows us to obtain, from (2.7) and (2.8), the inequality

(2.9) ITgl12 10y < CHIK lgll%, o)

where C = C(n,p,q) and H is as in (2.2). From our ch01ce of q1, p; and ¢y and
the assumption on €, we have
en

Q=9 )
n—7v

a9 ‘I_F;E—L-y q’

2en

5 =4q S =
21 — ¢ 99— 7=y q—2q/4

q2 =

"2 <9
P2 = —F/"——3X4q
n+7q

Then, H can be estimated as follows

2 a 2g
HY =2 (p2/p)7> + (p1/p) M 9443 (2_q) F i1 (n —'y).
929 . a0 9—q p En

The above inequality, (2.9) and the fact that e ~ K a(1-7') allow us to obtain

IT6%0c0) < CKT Nlgllt oy = C KT fgld,

with C = C (n,p,q). Finally, (1.5) follows from the definition of T' by taking
g=fw 7% and v = wl.

To see that the power of K in (1.5) is the best possible , we give an example in IR
(a similar one works in IR" for any n). Let r = 1+ ¢/p’, where p and ¢ are as in
the hypothesis of the theorem, and § belonging to (0,1). By a simple computation
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[Z]
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!r—l“l—ﬂ =T
we can see that w(z) = [z| ¢ satisfies A (p,q) with Ky pq ~ 617, when p
is the Lebesgue measure. Then, from (1.5) with this weight, we have

(2.10) Myl Loy S C6™ I F Lo ury -

Now, we take f(z) = |:z:|(6_1) X[0,15 (z). It is not difficult to prove that

c
Myf (@) 2 S lal" f(a)
for every z € IR, where C is independent of §. Then, the above inequality and the

fact that || f||75 ,» = §-9/7 allow us to get the estimate

1My ey = €670 = C5~ 1% uny

where C is independent of §. Finally, we complete the proof by combining the
above inequality with (2.10).
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PAYOFF MATRICES IN COMPLETELY MIXED
BIMATRIX GAMES WITH ZERO-VALUE

JORGE A. OVIEDO!

ABSTRACT. A completely mixed bimatrix game (A, B) has a unique equilibrium
strategy. The values of this game for each player, are defined by v; = 2T Ay and
vy = T By where (z,y) is an equilibrium strategy. We give a formula for computing

the completely mixed equilibrium strategy when the bimatrix game has zero-value.

1. INTRODUCTION

For the zero-sum two-person games Kaplansky {1945) introduced the notion of
completely mixed strategies and showed that in games where both players have only
completely mixed optimal strategies, the payoff matrix is square and each player
has a unique optimal strategy. Raghavan (1970) extended this result to the non-
zero-sum bimatrix games. Also Kaplansky (1945) gave a necessary and sufficient
condition on the payoff matrix for a game of value zero to be completely mixed. He
showed that if the value of a game is different from zero, then the payoff matrix is
nonsingular and gave a formula for computing this value. Jansen (1981a,b) showed
that in completely mixed bimatrix gamnes with A > 0 and B < 0, the matrices A
and B are nonsingular. He also extended the formulas for computing equilibriumn

strategies and the values for completely mixed bimatrix games.

Instituto de Matematica Aplicada San Luis, Universidad Nacional de San Luis. Ejercito de los
Andes 950, 5700-San Luis-Rep. Argentina.
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Completely mixed bimatrix games have unique equilibrium strategies. The value
of these games are defined to be the payoffs that the player receive when they play
equilibrium strategies. In this paper we try to see how far the results can be extended
to bimatrix games with zero value.

2. GENERAL RESULTS

A bimatrix game with m pure strategies for player 1 and n pure strategies for
player 2, where 1 < m,n < 0o, is specified by two real m x n matrices A and B. If
player 1 chooses pure strategy ¢ and player 2 chooses pure strategy j, the payoffs to
players 1 and 2 are a; ; and b; j respectively, for i =1,...,m, and j = 1,...,n. Let

P, = {x eER*:2;,>0,i=1,...,n, and zn:x,' = 1}
i=1
and Pt ={z € P, :z; > 0,i = 1,...,n}. Vectors are assumed to be column vectors,
and T denotes transpose. The vectors in P, are called mixed strategies and denoted
by £ > 0 where 0 = (0,...,0). The vectors in P} are called completely mixed
strategies and denoted by = > 0. A pair (z,y), where z € P,, and y € P, is defined
to be a equilibrium strategy of the game specified by (A, B) if

T Ay > €T Ay for all £ € Py,

"By > z"By for all n € P,

Nash (1950) proved that this equilibrium strategy exists. Let £ be the set of all pairs
of equilibrium strategies. We say that & is completely mixed if the elements of £ are
completely mixed pairs. Let (z,y) € € be v(z,y, A) = 2T Ay and v(z,y, B) = 2T By
are called equilibrium values of the bimatrix game (A, B).

Let
S(y) =A{z € Pn:(z,y) € &}

T(z)={y € Pn:(z,y) € E}.

We say that S(y) is completely mixed if all elements of S(y) are in P}. A similar
definition applies for T'(z).
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Theorem 1 If the set £ is completely mixed and v(z,y, A) = v(z,y, B) = 0 then
i. A and B are square matrices and rank(A) = rank(B) =n —1

i. A;j, Bi; denotes the cofactor of a;; and b;;. Then there exists an 7 with
1 < ¢ < m such that A;,,...,A;, are different from zero and have the same
sign. There exists a j with 1 < j < n such that B, ,..., By  are different

from zero and have the same sign.
wi. 3 Ai; #0,and 3, ; B ; # 0.

Proof. The necessity of (¢) is an immediate corollary to Theorem 1 and 4 from the
paper of Raghavan (1970).
Let (z,y) be completely mixed equilibrium strategy. Let A;; be the cofactor of

a; ;. Since ¢ > 0 and {z,y) € £ implies that

Ay =0.
Then
Y1 Y2 Yn
_— ===, .= . 1
Ain A Ain (L)

Since rank(A) = n — 1 then there exists 7, 7 such that A;; is different from zero.
As y is a completely mixed strategy this implies in (1) that for ¢ =7, and for all j,
A;; have the same sign. A similar remark applies to B. Hence the necessity of (1)
is proven.

Since rank(B) = n — 1 then rank(cof(B)) = 1 where cof(B) is the matrix in
which the (7,7) elements are the cofactors for b;;. Without loss of generality we

assume that the cofactor of by, Bs, # 0, then

n—-1 1
bl,l cee bl,n—l Z tjbl,j
j=1
B -
bn_1,1 cor byt Z tibn-1,;
j=1
n—1 n—1 n—1n-1
Do(=M)bix o Do (A)biar DL D (= X)tibi
| =1 =1 i=1 j=1 i
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and
_tlAan,n te _tn—lAan,n A1 Bn,n
of(B) = | : :
¢ f( ) _ilAn—ll%hn e '_tn—lAn—lthn An—ll?n,n
_tan,n ot '_tn—an,n Bn,n

where \; = z;/z,. If Y B;; = 0, implies that

i,J

S 3B =33 A(~t;)Bupn = Bany_ iy (—t;) =0
i=1j=1 i=1j=1 i=1 j=1
where t, = —1, then
n n—1
S(t)=0 o Y(-t)=1
j=1 . i=1

Since the system

7. wI'B =0T
) w >0

has a solution z, we ’ll show that the system

oTB =17
{8 2

(where 1 is the column-vector of length n with every element equal to 1) has a
solution. In fact, if the system (II) has not a solution, by Alternative Theorems (see

Mangasarian book, page 34, Table 2.4.1) then (by Theorem (6) Farkas) the system

Bz <0
(1). >
I { T2 >0

has a solution z. Therefore the system

Bs >0
(2) . 2
I { 175 <0

has a solution § = —2Z.
It suffices to analyze three different case:
a) If 5 fulfills that
Bs>0

then (by Theorem 5 (Gordan)) the system (I) has not any solution. This is a

contradiction.



b) If s fulfills that
Bs=90

since ,rank(B) =n—1and tT = (t1,...,t,_1,—1) fulfills that Bt = 0 and

then ¢ = ¢s, but

This is a contradiction.

¢) From a) and b) there exists 1; and i, such that

Ebilngj >0 and Zbi%igj =0
J J
Let
Li={i:Y b;5>0 and  L={i:) b5 =0}
J J
We denote by By, (Bp,) the submatrix of B formed by the row ¢ € I,(i € I3).

Then 3 is a solution of system

11(3) :{ BIjs

=1

DO

A

but (by Theorem 2 (Motzkim)) the systems

11(4) . ’U?;BII -f U£B]2 =0
v 20 (v, #0)

has not any solution. This is a contradiction since ¥, = zj,,0;, = x5, Where
z, ={z;:i €1} and zp, = {z;: i € I,}) is a solution of this system.

From a),b) and ¢) the system (II) has a solution. Let © a solution of systems
(I1), and & = 9/ 3; ¥;. It is clear that & € P, and is different from z.

Finally, we are showing that (0,y) € £.
?TAy > ¢TAy  forallt € P,
it holds true because Ay = 0.

T By > 9T By for all y € P,
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it holds true because ?7B = 17T.
Thus (z,y),(9,y) € €. This contradicts that a completely mixed bimatrix game

has a unique equilibrium strategy. Hence }=; ; B;; # 0. O

Corollary 1 If the set £ is completely mixed and (z,y) € £ then

det A det B

— B =
v(z,y, A) S A and?(w,y, ) > Bi;

the denominator is always different from zero. o

Proof. By Theorem 4 of Raghavan (1970) we easily see that the pair (:z:,y) is a

unique equilibrium strategy. Let
v(w,y,A) - vy and v(x,yy, B) = v

then the game (C, D) given by
Cij =a;j— v and d; ; = .i,]' — vy

is completely mixed, (z,y) is equilibrium strategy and
v(z,y,C) =0 and v(z,y,D) =0

In particular by Theorem 1 det(C') = d(%t(D); 0.
det(C) = det(A) — vy ) Aij and det(D) = det(B) — vy y_ Bi;
o ' i

By Theorem 1 Y C;; # 0'and Y_ D;; #0. The case v; = 0 or vy = 0 obviously
i o B v -
need not be considered. Hence we have det(A) # 0 and det(B) # 0. O

Proposition 1 If for the bimatriz game (A, B) there exist vy; v, such that, for any
(z,y) €E, |
Ay: ’U]_l ' and .’I)TB:'UQIT

and if (i) and (ii) of Theorem 1 hold true, then £ is completely mized.
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Proof. By hiphotesis A is square, rank(A) = n — 1 and there exists ¢ such that
(Ait, ..., Aiyn) have the same sign. Then the vector § (§; = Ai;/ Y Aix) belongs to
P}. Similarly we choose Z € P} (z; = B;;j/ Y _ Bix). It is clear tlllca,t (z,9) € € and
v(Z,9,A) = v(Z,y,B) = 0. Since T > 0, it foﬁows that if y* € T'(Z) then Ay* = 0.
But rank(A) = n — 1 assures us that y* =g and y* > 0. Let (z,y) € £, then there
exists vy, vy such that

Ay = v11 and zTB = v,17.

Thus (Z,y),(z,y) € €. By the argument above we have z = Z,y = y and

z>0,y>0.0
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ON THE MEASURE OF SELF-SIMILAR SETS II

PABLO PANZONE

ABSTRACT. In §1 we show a condition for H*(K}) > 0 for almost allb = (b1,...,be) €
R™ where Kp = é ¥i(Kp) and v; are similitudes, 9;(z) : R® — R™ defined by
Yi(x) =k; Ajz + bzl,—Alz an orthogonal matrix, 0 < k; < 1/3, b; a vector of R™.

In §2 we give a (geometrical) criterion for a set K = iélwi(K) to be H*(K) =0
if the Hausdorff dimension is equal to its similarity dimension.

In §3 we develop a method for calculating the measure of K = ié1wi(K> when

K meets certain conditions, generalizing a method shown in [7]. We also calculate
dimensions of sets K such that their dimensions do not coincide with their similarity
dimensions.

Finally we give some examples (Sierpinski sets with overlapping).

g8l

Let ¢;(z) ,72 = 1,...,4, be similitudes in R" i.e. ;(z) : R™ — R™, ¢i(z) =
kiA;x + b; with 0 < k; < 1, A; an orthogonal matrix and b; a vector. Let b =
(b1,...,bp) € R™ and let K} be the (unique) compact set such that

)

(0) Ky= U wz(Kb)

1=1

The following theorem is due to Falconer

Theorem 1 [1]. If maz k;< 1/3, then the Hausdorff dimension of K isinf (n, s),

where Zle ki = 1, for almost all b € R™ in the sense of the Lebesgue measure
‘Cnl.

The number s, Zle k} =1, is usually known as the similarity dimension of Kj.
In this paragraph we assume that {maz k;} < 1/3 and b € A :={ a € R":K,
has Hausdorff dimension s with Zle ki =1}

It is easy to show that H*(K}) < oo for b € A (see [3] pg.122).

One natural question is to ask whether H*(K}) > 0 for b € A. (It should be
noted that if ¢); are affine contractions instead of similitudes then H*(K}) may be
infinite, cf. [4].).

We prove
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Theorem 2. Let g := {min k;} and G := {maz k;}. Suppose

<2log g)
(1) e\lg G/ gm 1 =2 6m <1

Then H*(K,) > 0 for almost all b € R™.

Condition (1) right implies that the similarity dimension is less than n and there-
fore by theorem 1, A is almost all R™. That both formulas in (1) are equivalent

follows from taking logarithm to the left hand formula i.e. log [13( Tosd )g"} <0=

llgg Zlog 22 +nlog g < 0. Multiply this last expression by l—l%%, getting the right
hand formula.

We recall a theorem of McLaughlin [5], generalized by Falconer [2], which we
shall use. It should be noted that theorem 3, lemma 1 and corollary 1 are true

without assuming {maz k;} <1/3 or b € A (or both).

Theorem 3 [2]. Suppose that K}, has the following property: there exist a natural
number m and o ,r, > 0 such that for any set N C K, with |N| < r, there are sets

N; with N C _Tﬁ’le and mappings ¢; : N; — Ky (1 < j < m) such that
]:
(d(.,.) is the euclidean distance)

a d(z,y) < |Nld(p;(z), v;(y))

for x,y € N;. Then H*(K;) > 0.

To prove Theorem 2 we need
Lemma 1 [6]. Fixb. If ;(Kp) N1p;(Ky) =0 for i # j then H*(K3) > 0
Proof.

One can use theorem 3 or one can notice that K, satisfies an open set condition.
See [3] H

Let C(K) denote the convex hull of a subset K of R™. Let ; be natural numbers
such that 1 < i; < £. I stands for a finite tuple of such i i.e. T =14y ...0m, and |I|
denotes the length of such a tuple. We write for short ¥7(-) = 95, (... (¥4, (-))...).

Given I,J two tuples, we say that I is a curtailment of J (we write I < J) iff
I=di...00m;d =141 %m, Jme1---Js, S = m. It is not difficult to see that <
defines a partial order in the set of all finite tuples.

Corollary 1. Suppose K, has the following property: there exists a finite family
of tuples F (not necesarily of equal length) such that
(i) For any I’ , |I'| > Teafa_:u, there exists I € F such that I < I' (F is secure).

(ii) ¥1(Kep) N1ps(Kp) = O for any pair I,J € F with i1 # jy
- Then we have H*(K}) > 0.
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Proof.

Suppose p € ;(Kp) 1 < i< ¢, say p € ¥1(Kp). Choose an index I’ = 1i'y.. .1/,
such that |I'| = ryea}_i,]i and p € 1 (Kp). Therefore by (i) we have an index I € F
such that I < I’ and p € ¢1(Kp) D l/)II(Kb) with T = 145 . (7<m) A similar
argument and (ii) shows that p ¢ ¢;(Kp) ,. i # 1< ie. 1/11\Kb) NyYi(Kp) =
0 Vi # 1. By lemma 1, H*(K;) > 0.8

Proof of theorem 2.

Let b, € R™. There is no loss of generality if we assume 0 € K;,. Let Qp, be
a cube in R™ centered at b,, LM(Qp,) < 1. Therefore |Kj, U {0}| < ¢,, for some
constant ¢, if b € Qp,. This is possible since K, = {b;, +k;, A;, bi, +ki, ki, Ai, Aiybiy +

ci; € {1,...,£}}. We will show that H*(K}) > 0 for almost all b, € Q. This
will prove our theorem.

Let Qio = {({ — 1) — tuples (bl,...,l;j,...,bg) cbe @y} FixOa large
natural number and Fp be the set of all tuples I = i;...im such that ¢© <
ki, ...ki,,_, and k;, ...k;, < g“. Then Fp has property i of corollary 1 and
K, = IEL;:o’l/)I (K(,) for all b. Let

D) =biy A ki A by -k ki A A, b,

(2) = 1(0)

and
T1(b) := C($1(Ks)) = ¢1(CKs)

/

The number of elements of Fp is not greater than c; - ¢ ( ) where ¢; < 4.
Let I.J € Fo: i1 # ji1. We want to measure Ayy := {b : b € Qp, and T7(b) N
) # @} Let b€ A;y. Then

Do) = > 0) = [91(0) = s (0)] < {1 (Kp U {0}) Uthy (K, U {0})]

I J
(3) < [91(C(Ky U {0})) Uy (C(Ky U {0}))] < 2¢0g®

Therefore if b,b’ € A;; and

bz(bl,... bi1 1,bi1,bi1+1,...,b4)
= (b1 »bin1,b)  bir 1, - be)

Then from (3) and (2) and 4; # j; we get

\ [za)) _ za))} _ [gw) _ zw')} j by ) + A < deag®
I J

I J
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with
' ‘ 2G
|
Al < m“ﬁ — b,

Combining this last two inequalities we get [b;, —b} | < c2-g° with ¢y depending on k;
and c,. Therefore projecting along the axis i; we have L™ (A} ;) < (:;;E’"(F“])(Q',"')‘ B
g9 < ez - g9 with ¢ depending on k; , ¢, and n .

Ifb ¢ { U Ars} then K has property ii) stated in Corollary 1 and then
1,J€Fo it #51 '

H*(Kp) > 0. But the number of pairs (IJ) I,J € Fo ,i1 # 41, is not greater than
log g
20

S
2.4 109 G Therefore the set { U Ary} has (outer) measure at most
I,JeFo ii#h

2log g

c?cg- | g™ €< log G) and this tends to zero by hypothesis if O — oco. The

theorem follows.

§2

- g . . . p . vy .
Let K be a self-similar set i.e. K = Ul't/),,‘,(K) where ¢; are similitudes of ratio
=

0 < k; < 1, K compact. Recall that H*(K) < oo if s is the similarity dimension
(cf [3] pg.122). Assume that the Hausdorff dimension of K is equal to its similarity
dimension. Under such hypothesis we want to give some geometrical criterion for
H*(K) = 0 . This is proposition 1 below. To prove it we need some tools. The
following function f(&) has been defined in [7] for K, s as above . with the extra
condition 0 < H*(K): let, for § > 0,

f(8) := sup{H*(KNCs)/6° : Csisaconver compact setof diameter b}
In [7] it was proved that f(8) < 1 for all § > 0 (sce also §3 of this paper).

We follow the notation of the proof of theorem 2, Fp» being the set of all tuples
I =141...1p such that go<k:,;l...l< and

7'I:'m—l
(4) g%t < ki, ... ki, < go

Recall K = JELJ7I-' 1 (K). Write for short Ty := C(¢1(K)).
Fo

Let h(O) :=the maximum uumber of elements I; ... I, € Fp such that
() d(T1,,T1,) < g°|K]|

The function h(Q), roughly speaking, measures the overlapping of the sets of ap-
proximately equal diameter ¥;(K), [ € Fo.
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Proposition 1. If the Hausdorff and similarity dimension of K are equal to s then:
H(K) =0 <> Olim h(O) =

Proof.

=) Suppose OTiE};h,(O) < B. Therefore if O is any large natural number then
by definition of h(Q) any set N such that N C K, g+ < |[N|-|K| < g© can be
decomposed in at most 3 sets N; = vy, (K)NN with I; € Fo i.e. N C LTJNJ Apply
theorem 3 with ¢; = 1/),‘7,1.

<) Suppose OlTZo h(©Q) = oo and H*(K) > 0. Then we are in condition to

define the function f(6) as above. Also observe that H*(y;(K) N;(X)) = 0 for
1 <i# j </ and therefore H*(1(K) Ny (K)) =0if I #J € Fo.

By definition of h(O) there exits I ... I(o) such that d(T7,,T7,) < g°|K

Let Cs, = {z : d(z,Tr,) < 29°|K]|}.

Therefore (by (4)) Cs, contains T}, ..., Ty, , and has diameter 6, < 5-9-|K]|.
Therefore, since H*(¢1,(K) Ny, (K)) = G we have

) ; s )
= o = 63 = 53 |K|Sgos
_ hOYH(K)g?
= 5;!K|s

This is absurd taking O — co B

> (by4) >

§3
In this section we assume K to be a self — similar set, i.e. K = U ’(/)7,(K) s

a similitude of ratio 0 < k; < 1. In [7] a method was given Wthh permits to
approximate the Hausdorff measure of H*(K) assuming that:
(1) 0 < H*(K) < o0
(ii) K has property A (see below)
¢

(iii) Zkf = 1 i.e. the Hausdorff dimension of K is equal to its similarity

dimension.

In this section we want to generalize this result by dropping condition iii). Recall
that for a self similar set K satisfying conditions i) and iii) one must have H*(1; (K)N
Y;i(K)) =0 Vi#j; 1<4j<L

Theorem 4. Assume K to be a self similar set and 0 < H*(K) < co. Define
- f(6) = sup H (K NCs)/6°

Cs convezx
- compact
of diameter §>0

Then f(6) <1 V6 > 0.
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Proof.

If the Hausdorff dimension of K is zero then K has to be a point (if K had two
points at least then being K a self similar set defined by similitudes then it should
have infinite points. This would contradict H°(K) < oo ). The theorem is true in

this case.
H(KNCs) _ H*(KNCs) ~
63 - =z

Therefore we assume s > 0. Suppose 1T B > 1 for some
Cs convex and compact. Moreover one can assume |[K N JdCs| = |Cs| = 6. Let

A, = IIlLi %1(K N Cs). Therefore Apy1 C An. Let A = ‘fr)iA,-. For A we have

H?(A) > 0 or H*(A) = 0.

Assume H*(A) > 0. Let n, be such that H*(A4,,/A) < e and observe that
{v1(K N Cs)}, |I| 2 n, is a Vitali family for A. Since for any countable disjoint
subfamily we have ’

SIH(K NCo)l* < 53 M (Wi(K 1 C)

©) o LR

there exists a disjoint countable subfamily indexed by F such that H*(A/ Ig}_@b (KN

< o0,

Cs)) =0 (cf.[3], pg.11). Besides, we can assume

BH(A) —e < BY_[r(KNCo)l" < D M (wi(K N Cs)) < H*(An,) < €+ H(4)
IeF IeF

This is absurd if ¢ is sufficiently small.
If H°(A) =0, let ¢ be a fixed positive number such that 0 < § < ¢ and

(7 KC[KNCsle={z:d(z, KNCs) < c}

For any € > 0, let n, = n,(€) be a natural number such that H*(A,,) < . Then

(8) H* (1 Y #r(Kn Cg)) <e

where F’ denotes a maximal family of indices I of lenght n, chosen in the following
way: first choose I, (|I,| = n,) such that |97, (K NCs)| = I7I7|7,aa; |1 (K NCs)|. From
=N,

all the indices I (|I| = n,) such that (K NCs) N1ro(K NCs) = @ choose one such
that its diameter is maximum, call this index I; and so on. Using (7) we see that

(9) K C |I|L=Jno’¢1([Kﬂ Cg]c)
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and by the way F’ is chosen (recall 0 < § < ¢)

, 1
(10) K C IeUf'l/)I([KnCéJc)
Moreover
(11) R (W (K 0 Co)) >B>1 VIieF

[vr(K N Cs)l*

Using this last formula, (8) and (10), we get

=2 Y ncr > () (Zi" ﬂCs]c)i5)>
IeF F
)

(12) <?> "3c{ma1:k}” K)

It follows that H*(K) = 0, an absurd.W

Corollary 2. Assume the hypothesis of theorem 4. Then:
(i) f(6) <1 V6 >0
(i) Tom f(8) = 1
(iii) f(6) is continuous from the right

Proof.

(ii) follows from elementary density bounds (see [3], p. 24).

(iii) From Blaschke selection theorem follows that for any é there is a compact,

convex set of diameter §, Cs, such that f(§) = ux%{gc_b) Notice that f(6)6° is non
decreasing. Using these last observations and the continuity of H*(-) we get (iii)

(cf. [7] 81). W

Property A. We say K has property A if there exists a > 0 such that for any
sphere By, (z) with r; < a there exists an expanding similitude (z) with contrac-

tion ratio £ > 1 and an index i,, 1 < i, < £, such that

¥(Br, (z) N K) C ¢i,(K)

Property A is indeed quite strong.

Proposition 2. If K is a self-similar set with property A and Hausdorff dimension

s then K is an s-set i.e. 0 < H*(K) < oo.
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Proof.

As 1; are similitudes and K = iélz/)i(K), by [2] page 550 we get H*(K) < oo.

That 0 < H*(K) follows from the fact that property A implies the hypothesis
of theorem 3. This assertion is proved as follows. Let N be any subset of K of
diameter less than a of property A. Then by this property there exists an index
o, 1 < 1o < £ and 1 an expansive similitude such that ¥(N) C v, (K). Taking
1,[);1 in this inclusion one gets w;lw(N) CK.If |1/J[011/)(N)| < a then proceed as
before with 1; L(N) as N. After a finite number of steps one gets

YW YT W(N) C K
a < |t ()|

where 1 < 4; < £ and ¢/,...,% are expansive similitudes. Therefore one can
define p(z) = 1/);111,2)’ . .w;lw(x) : N — K. It is easily chequed that a d(z,y) <
|N|d(p(z),p(y) for all z,y in N.I

The following is a corollary of theorem 4.

Corollary 3. If K has property A and 0 < H*(K) < oo then f(6) = 1 for some §,
such that a £ 6, < |K]|

Proof.
Let 6§ be such that 0 < § < a. We want to show that f(8) < f(66{min k;}~1).
(K
For this let Cs be a convex compact set such that f(6) = L (sﬂﬁ.. Obviously

Cs C By () for some sphere with radius 7y < a. From this and property A we get
P(Cs N K) C Y(Br, (x) N K) C i, (K)

and therefore '(/);1(1/)(05 NK)) = w;l(w(CE)) Ny (W(K)) C K. Intersecting this
last expression with 1/);1(1,11(6'6)) we get ¥ ' (¥(Cs N K)) C K N1, ' (¥(Cs)) and
therefore

H® (97, (W(K N Cs))) = £k ."H (K N Cs) < H* (K Ny, ($(Cs)))
i.e.

s ] s _-—l
o) = TEENG) M (K gsié:;fif(ca)))

5 < f(08k))

(notice that ;" 1(4(Cs)) is convex, compact, of diameter 6¢k;.'). This proves the

assertion. From this, i) and ii) of corollary 2 we get that sup f(6) = 1 and therefore
[a,00)

sup f(6) = 1 because f(6) = H (SK)
[a K] 6
the right and f(8) - ° is non decreasing we get f(6,) = 1 for some a < 4, < |K|.I

for § > |K|. Since f(6) is continuous from
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Definition. K is & — discrete if 0 < H® (K) < oo and there exist (non void) sets
Ki,...,Kq, g = q(€), such that:

(i) K = iglm and H*(K; N K;) =0 fori # j

(if) | K;| < e Vi

(iii) the numbers «; := %I}({)) ,i=1...q, can be calculated.

The reader should observe that if a self similar set K is such that 0 < H*(K) < oo

and its Hausdorff dimension s is equal to its similarity dimension then K is e
-discrete. To see this, just take as K; in the above definition the sets v¥(K),

. . . He(K;)
_ . e . . . _
7] = 1. .. %no| = no i.e. ¢ = £™. Properties i), ii) are easily verified and Ho () ~
MWK _ e e
HS(K) T Mt WMine”
Therefore the Sierpinski set and the Cantor set are e-discrete. See §4 this paper

for other examples.

If K is € — discrete with € < a, then we can obtain approximations of f(6) on
[0, |K]]. This is theorem 5 below. Later we shall use a, = a, with a of property A.
For this theorem we need some definitions that only assume that K is € — discrete
with € < a,. '

Let P be the family of all non void sets {i1,...,i:} with 1 <1y < --- <4, < q.

If p € P define G(p) = |L€J K;|. It is clear that G(P) is a finite set of non negative
i€p

numbers and there exists some d € G(P) such that d < € < a, (by ii) of the

above definition). Define I on G(P) in the following way: U(d) := maz (3 o).
p such i€p

that
' G(p)=d
Next we define U(6), for 6 > ao, (U(6). H*(K) will be an approximation of f() -
6°). Define U(6) := maz U(d). Easy consequences of the definition of /()

d<é
deG(P)
are that it is a non decreasing function and that ¢/(6) is constant on the intervals
[as,a1), [a1,a2),...,[aw,o0) with a,, < |K| where a; < --- < a, are points of

G(P) and U(6) = 1 for § € [ay,o0) by i) of the above definition. We also recall
that f(8) - 6° is non decreasing and continuous from the right and that s does not
coincide necesarily with the similarity dimension.

Theorem 5. Assume that K is € — discrete with € < a,. Then
(i) U() < £y <U(S +2¢) for 6 > a,
(ii) Suppose that K is € — discrete for each € > 0. Then

sup ———— —
s€lao K]  0° s€lao, Kl O°

( Ufs +2) sup b((&)) — 0 fore—0.

Proof.

We assume s > 0. If s = 0 then K must be a point and the theorem is trivial.
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(i) Fix 6. By Blaschke selection theorem f(6) - 6° = H*(K N Cs) for some Cs
convex compact. Let d € G(P),d < 6. ThenU(d)-H*(K) = quxd(Zai)Hs(K) =
P

=a 3¢p
maz (Y H*(K;)) < f(6) - 6° This last inequality because | U K;| =d < § and
G(p)=d jcp G(ie)p
p)=d

f(6)-6° is non decreasing. From this the left hand inequality of i) follows. To prove
the right hand inequality, suppose that Cs is such that f(6)-6° = H*(K N Cs) and
let p, € P be the set of indices i such that K; intersects Cs. As |Kj;| < e Vj we get
G(po) = |i€Li) K| < 6+ 2¢ and therefore by the definition of ¢(6) we have

£(8) 8 = H(K N Cs) < MK N (U K)
= [ e | e r0) <uG) e (K)

1€P,

< U6 + 26)H (K)

proving the other inequality of i).
(ii) From i) we get  sup @ < sup % <
§€fao, | K] §€fas,|K]]

Ut2e) gy (BF20)° Ue) sup __(54:5%5)8 . But

< sup € ; sup
 selanl K11 O sefa K]  sefaote Kl42e] O sela K]
U8)=11if § > |K|. Then sup ué(:s) < sup “6(3‘22. From this and the
5€[as+2¢,| K|+2¢] 5€lao,| K]
above inequality we get 0 < sup %— sup “6—@
6€(ao, |K]] b6€lao, |K|]
< sup MT@( sup % —1) < (byi) <
8€fao, |K]] €lao, |KI]
f E]
< sup #‘?{)( sup Qg—s) — 1) which proves ii).l
§€la, , |K|] ) §€lao, | Kl

Finally, we show how to obtain bounds for H*(K). Assume
(i) K has property A

(ii) K is € — discrete with € < a , a of property A

Then, from theorem 5 and corollaries 2 i) and 3 we get

' ue) 1 U + 2)
(13 sup —* < < sup ——+
) selalk]] H(K) ~ scla k) 0°

If K is € — discrete for any € > 0 we get from theorem 5 ii) that in (13) the two
suprema tend to 1/H*(K), yielding the algorithm. For an example see §4.

We finally point out that in practice, kncwing «; in the definition of the £ —
discreteness requires the knowledge of s, the dimension of K. We prove a lemma
showing how this dimension can be obtained in some cases. We assume that
0 < H*(K) < oo, which in practice will follow from theorem 3 and [2].
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¢
Lemma 2. Let K = ,911&,'(K). Assume ;(K) N;(K) ,i # j, Is a disjoint union

of sets K7 t = 1,...,n(i,7) where K" = ¢ (K) and ¢ is a similitude with
contraction ratio €. Assume also H*(1;(K) N;(K) N (K)) = 0 for any triple
(i,9,k), © # j # k # i. Then the Hausdorff dimension s verifies the following
relation

’ £ (i)
12251'3_ Z Z(f])
=1 i,j=1 t=1
3<i
(here &; is the contraction ratio of ;)
Proof.
From the hipothesis we know that
/ p 2 n(ij)
(14) He($i(K)) =H° | bi(K)/ (U %;(K)) | +> ) H(K;)
i# j=1 =1
G
and therefore
l ’n(”’.]) .
(15) EH(K) =1 | i(K)/( U 45(K)) | + YO>I H(K)
i =t
Also from the hypothesis we get
¢ n(ij)
(16) ZHS (K)/( 4 HE) |+ D0 Y WK
J#l i,=1 =1
3<i

Putting (15) in (16) we get

2 ¢ ¢ n(if) ¢ n(ij)
0= (X )0~ | o33 @ || 33 @ | e
i=1 =1t=1 =11t= =1
];éz j<i

As 0 < H*(K) < oo and £ = €],

’ ¢ n(ij)
1= 8- 2 ) @) |,
=1 ij=1 t=1

j<i
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84 Ezample ( Sierpinski set with overlapping) : Let A be an equilateral trian-
gle of side 1 and let py, p2, p3 be its vertices (fig.1). Let A;, Ag, As, be three
smaller equilateral triangles inside A and touching p;, p2, ps, respectively. We
define 9;(x) ;i = 1,2,3, as the similitudes that transform A onto A; (without ro-
tation). We assume that all contracting ratios are equal to £,0 < £ < 1. Notice
that C(K) = A (C = convex hull). We write for short: A; = ¢1(A) = ¥1(C(K))
and assume that £ satisfies the following equation:

(17) 26 —€&" =1; n>3, n an integer.

We will see that we can apply the previous theory to K i.e. we will prove that K
has property A and therefore by proposition 2, K is an s — set . We will also show
that K is € — discrete. To prove all these assertions one needs lemmas 3 and 4 and
the following discussion.

It is easy to prove that there is a unique £ , 0 < £ < 1 satisfying (17), for the
polinomial 2z — ™ — 1 has only two roots in [1/2,1], being 1 one of them.

Let 0 < &3 < 1 where &3 satisfies (17) with n = 3. Then &3 = @ . It is easy
to prove that if 0 < £ < 1 and satisfies (17) then 1/2 < £ < £3. Therefore £ must
also satisfy

(18) 1> €64t

with equality only if n=3 and

: 5—1
(19) 1/2<¢< &= \/—2 <2/3

From (19) it is seen that A;NAgN A3 =0 and A; N A # 0 for i # j. Notice that
by (17), A; N A; is an equilateral triangle of side £™. From the construction we get

(20) CAND =0 =0
N—— N —

n n

and from this it follows that

(21) Vij... @) =15 ()

SN—— S——
Fig. 4 a) shows K for £ = £3. Our aim is lemma 4 below which will be used to
prove the mentioned properties of K. For the following lemma it is useful to look
at figures 3, 2 a), b), c).

Lemma 3. For any index I beginning with 1 of length g =m(n —1)+1 ,m > 1,
such that A; N Aqg o #0, we have a) or b) or c):
. S —

n
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a) if A; C Ay9 o then there exists J = 12...2jp41...Jq such that ¢r(z) =

bs().
b)if Af € N9 9 and ArN A9 9 is not a point then there exists
N—— S——

n n

J =12...29p41. .qu such that one gide of A; and one side of /Ay are on the

same line and ArNAy = ArNAqg 9 is an equilateral triangle of side of length
gm+1)(n=1)+1 (Observe that there are only two possibilities, see fig.2 a, b)
c) AN A1 9 isa point, fig. 2 c).
S

n
The same holds interchanging 1 with 2.
N 211 3 PR T ; . ) L
Only a) will be used but b) and c) are needed in the proof.

Proof.

The proposition is-true if m = 1 because the only sets A; with Il = n, I
beginning with 1 that can touch Ajo 9 are, by (18), Ay2..22, Ni12..21, D12..23
.
and in case n=3 also Ajig, A132 (fig. 3). The last two satisfy ¢). The first one
satisfies a) and the others satisfy b) with J = 12. ’_g

Assume that the lemma is true for m. Take an index I beginning with 1 and
of lenght (m + 1)(n — 1) 4 1 with Ay touching A9 9. Then Ay C Ay where
——

I'l" = I, I’ of lenght m(n-1)+1 (I’ is a curtailment of I). For m the lemma was as-

sumed, therefore if Ay C A then there exists J' = 12...2Jn41 - Jm(n—-1)+1
12...2 Lo (n—1)+

such that v (z) = ¥ (z) and therefore Yy () = bpp () - Yr(x).
Now, assume Ay € A1g 9. If ¢) is true for I’ then A;NAqg 9 is at most

a point. If b) is true for I’ then there exists J' with the mentioned properties. We
assume that Ap and Ay are located as in fig. 2 a. As Ay N Ay is an equilateral
triangle of side £(M+D(=D+1 we get (by 17) that Ap NAy = Ap Nhyy o=
——
Dpg. .. 2=8p3...3
-1 n—1

Therefore Ay = A must touch Ap9...9 . But the only sets Ay, , {I'L| =
—

n—1

(m+1)(n——1)+1 that could touch AI'Z _..9are (by 18) Npig. 92, Ao, 23, IANTIIT
: oz

n—1
Apo.212, 2. 232. Therefore I must be one of the above. If I is the first then as
Apg. 9 =203 3 weget Yo o(z) = ¥y3.3(z) and a) follows. If I is one of

n—1 n—1
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the last two then c) is true.and if (for example) I'2...23 = I then it is seen that
— =

n—1
b) is true with J =J'3...3. &
N——
n—1
Lemma 4. (a) AiNANK =919 9(K) =191 1(K)
—— —
(b) MinAsNK =913 3(K) =931 . 1(K)
— N——
(c) DoNA3NK =193 3(K) =939 oK)
\_\,/_/ ——

Proof.
We prove the first proposition, the others follow from symmetry. Obviously
P10 o(K) C AinNAyNK. Let p € (int(A; N Ay)) N K, then there exists
——

an index beginning with 1 (or 2) of lenght m(n-1)+1 with m great enough such
that p € ¢;(K) and p € Ar C A1 N Ay, Recalling (20), by Lemma 3 a) we get
p €Yo 9(K) (or p € 91 . 1(K) respectively ). Therefore using (21) we get

a)

n

If p € (A1 N Ay) then obvioulsy p € 19 o(K). W
——

Lemma 5. K has property A.
Proof.
Let g1 =419 9(p3) and g2 =19 91 .. 1(p3) (see fig.3). We want to show
~—— A

that the 'shape’ of K near q; is the same as ne;r g2. Notice that from (18) the only
sets Ay, |[I| = n that touch q; are Ajg 2 = Aa1..1,Q12...23,A21..13 and eventually
A132 and Ag3; if n=3. We assume for simplicity that n > 3 and let the reader fill
the gaps if n=3. Therefore, if ¢ is small enough, from K = U{¢;(K) : |I| = n} we
get,

(22)

KN Be(q1) = (d12. . 2(K) U1 . 23(K)Udgr. . 13(K))N Be(q)
- —— S———

n n n

By lemma 4 c) if € is small enough we get 2(K) N Begr—n (Y2(p3)) C Y30 . 2(K)
N——

and applying ¢¥19 o(z) to this last relation we get 19 92(K) N B:(ql) C
— ——’
n—1 n
¥12...232...2(K) C 12, 23(K). Applying this to (22) we get
N — - —
n n—1 n

(23) KN Be(q) = (Y12...23(K) Utho1 . 13(K)) N Be(q1)
—— —_——

n n
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Also g2 only touches Ao 2 = Ag;. 1 and Aqg. 91 of sets Ay, |I| = n. Therefore
KNB:(q2) = (Y19 99(K)U%i9 . 91(K))NB:(ge). Using this last formula, (23)
—— —

and the fact that 19 93(2)+(e2—q1) =v¥12.. 21(%) ;%21 . 13(®)+(a2—@1) =
— N —— —

P19 . 99(x) we get t};at there exists € > 0 such that
——

(24) K N Be(q2) = (KN Be(q1)) + (g2 — q1) and Be(q2) C &

Using this last assertion one can prove that K has property A as follows.

Let @ << ¢, a will be the parameter of property A. We assume that B,(z) is a
ball touching Ay N Ag (if By(z) touches only A but neither Ay nor Az then take
i9g = 1, 1 = identity ). Assume B,(z) C B.(q1) then use (24) , lemma 4 a) and
take ¥(z) =z + (g2 — q1) , ip = 1 in property A to get ¥(B.(z) N K) C 1 (K).

If Bo(z) € B:(q1) then use lemma 4 a) 1 = identity and ig = 1 or 2, depending
where x is placed.H

Because of proposition 2, K is an s-set, s the Hausdorff dimension of K.

Next we calculate s. Apply lemma 2 to get that s must satisfy

(25) £ — g™ =1/3

Then, z = €&° isaroot of 1/3 = 2—-2",0 < z < 1, and s = ;—g-’ﬁ This last
polynomial has two roots 71,72, in (0,1): 0 < 7 < €3 < r9 < 1. Since K contains a
segment, we have s > 1. From (17) and (25) we get for s = 1, £ = 2/3, which is in
contradiction with (19). Then s > 1. From z = ¢° and (19) it follows that z = 7,
and s < 2.

K is indeed e-discrete for any € > 0. We prove this fact for n = 3 and a similar
argument works for the other cases.

Fig.4 a) shows a decomposition of K in-closed sets K;, i = 1,....4; H*(K; N
Kj) = 0 for i # j; K = K1 UKy U K3 U Ky4. From lemma 4 it follows that
K1 = 99(K), K3 = ¥11(K), K2 = ¢33(K) and therefore H*(K;) = &H*(K);
He(Ko) = H*(Ks) = £3°H*(K) and

(26) - HEK)=(1-&- 263°)H* (K)

Fig. 4 b) shows a decomposition of the set K, in closed sets K5, K¢, K7;
K4 = K5 U Kg U Kq; HS(Ki N KJ) = 0,1 # j with K5, K¢ similar to K4 and K7
similar to K (K7 = 1311(K)). Moreover, using lemma 4 and symmetry, H*(Ks) =
e (Ke) = E5H2(Ky) = by (26) = (& — €3° — 263 )H*(K) ; H*(Kr) = E§°H*(K).
From this follows that K is e-discrete because one can apply the decomposition of
figures 4 a) and 4 b) again and again to the smaller pieces which are similar to K
and K4.

Fig. 5 shows a variant of our example where the ratios of the contractions are not
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equal: & = &2 & aroot of z + 22 — 2% — 1 = 0 (this forces 190() = 211(x))
and €3 such that Az does not intersect A; nor Ay. In the case of the figure
€3 =1/4,62 ~0,682...,6; ~0,465....

p3

A
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ABSTRACT. We consider the complex solvable non-commutative two dimensional
Lie algebra L, L =< y > @ < z >, with Lie bracket [z,y] = y, as linear bounded
operators acting on a complex Hilbert space H. Under the assumption R{y) closed,
we reduce the computation of the joint spectra Sp(L, E), o5,x(L, E) and o, x(L, E),
k = 0,1,2, to the computation of the spectrum, the approximate point spectrum,
and the approximate compression spectrum of a single operator. Besides, we also
study the case y2 = 0, and we apply our results to the case H finite dimensional

1. Introduction.

In [1] we introduced a joint spectrum for complex solvable finite dimensional Lie
algebras of operators acting on a Banach space E. If L is such an algebra, and
Sp(L, E) denotes its joint spectrum, Sp(L, F) is a compact non empty subset of
L*, which also satisfies the projection property for ideals, i. e., if I is an ideal of
L, and if II: L* — I*, denotes the restriction map, Sp(I, E) = II(Sp(L, E)). In
addition, when L is a commutative algebra, Sp(L, E') reduces to the Taylor joint
spectrum, see [5]. Moreover, in [2] we extended Slodkowski joint spectra osx and
oxk to the case under consideration, and wé proved the usual spectral properties:

they are compact non empty subsets of L*, and the projection property for ideals

still holds.

In this-paper we consider the complex solvable non-commutative two dimensional
Lie algebra L, L =<y > @& < « >, with Lie bracket [z,y] = y, as bounded linear
operators acting on a complex Hilbert space H, and we compute the joint spectra
Sp(L,H), osx(L,H) and o x(L, H), for k = 0,1,2, when R(y) is a closed subspace

1 Research supported by UBACYT
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of H. Besides, by means of an homological argument, we reduce the computation
of these spectra to the one dimensional case. We prove that these joint spectra are
‘determined by the spectrum, the approximate point spectrum, and the approximate
compression spectrum of ¢ in Ker(y) and T in H/R(y), where T is the quotient

map associated to z, (R(y) and Ker(y) are invariant subspaces for the operator ).

In addition, we consider the case y? = 0, (it easy to see that y is a nilpotent
operator), and we obtain a relation between the spectrum of z in R(y) and a subset
of the spectrum of 7 in H/R(y), which give us a more precise characterization of
the joint spectrum Sp(L, E). Finally, we apply our computation to the case H finite

dimensional.

The paper is organized as follows. In Section 2 we review several definitions and
results of [1] and [2]. In Section 3 we prove our main theorems and, in Section 4,

we consider the case y? = 0 and the finite dimensional case.

2. Preliminaries.

In this section we briefly recall the definitions of the joint spectra Sp(L, H),
osx(L,H) and or(L,H), k = 0,1,2. We restrict ourselves to the case under con-
sideration. For a complete account of the definitions and mean properties of these
joint spectra, see [1] and [2].

From now on, let L be the complex solvable two dimensional Lie algebra, L =<
y > @ < z >, with Lie bracket [z,y] = y, which acts as right continuous linear
operators on a Hilbert space H, i. e., L is a Lie subalgebra of L(H)°?, where L(H)
is the algebra of all bounded linear operators defined on H, and where L(H)?
means that we consider L(H) with its opposite product. We observe that, any
complex solvable non-commutative two dimensional Lie algebra may be presented

in the above form.

If f is a character of L, we consider the chain complex (H ® AL,d(f)), where
AL denotes the exterior algebra of L, and d(f) is the following map:

dp—1(f):H @ N°L - HQANPT'L,
do(f)(a <y >) =y(a), do(F)(b <z >) = (2 — f(2))(b),
di(f)(c <yz >) =(—(z —1 - f(2)))e) <y > +y(c) <z >.
Let H.(H @ AL,d(f)) denote the homology of the complex (H ® AL,d(f)), we now

state our first definition.
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Definition 1. With H, L and f as above, the set {f € L*, f(L?) = 0; Ho(® A
L,d(f)) # 0}, is the joint spectrum of L acting on H, and it is denoted by Sp(L, H).

As a consequence of the results of [1], we have that Sp(L, H) is a compact non
empty subset of L*. Besides, as a standard calculation shows that the equality
y = [z,y]°? = [y, z] implies ny™ = [y", z] = [z,y"]°P, we have that y is a nilpotent
operator. Thus, Sp(< y >) = 0, and by the projection property, if f belongs to
Sp(L,H), as < y >= L? is an ideal of L, f(y) = 0.

Now, let us consider the basis of L, A, defined by, A = {y,z}, and B, the basis of
L* dual of A. If we consider Sp(L, H) in terms of the above basis, and we denote it
by Sp((,2), H), i. e, Sp((y»2), ) = {(f(), f(2)), f € Sp(L, H)}, we have that,
Sp((y,2), H) = (0, f(2)), f € Sp(L, H)}.

In addition, the complex (H @ AL, d(f)) may be written in the following way,

0 H S HoH 2 H 50,

do=(y c—2), d1=(_($_y1_<,\)),

where A\ = f(z). We denote this chain complex by (C,d())). Thus, as (0,)) €
Sp((y,z),H) if and only if f € Sp(L, H), where A = f(z), to compute the latter is
equivalent to compute the former, and to study the exactness of the chain complex
(H ® AL,d(f)) is equivalent to study the éxactness of (C,d(})).

With regard to the joint spectra o5 x(L, H) and or x(L, H), k = 0,1,2, we review,
for the case under consideration, the definition of them given in [2]. If p =0,1,2,
let £,(L, H) be the set, £,(L,H) = {f € L*, f(L?) = 0; Hy(H ® AL,d(f))) # 0}.

We now state our second definition.

Definition 2. With H, L and f as above,

osi(L,H) = |J =(L,H),
’ 0<p<k

oxi(L,H)= | E,(L,H)U{féL“, f(L?) = 0; R(dx(f))is not closed},
k<p<2

where 0 < k < 2.

We observe that Sp(L,H) = 052(L,H) = 0ox,0(L,H). Besides, as we have

said, these joint spectra are compact non empty subsets of L*. In addition, as in
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the case of the joint spectrum Sp(L, H), we consider the joint spectra osx(L,H)
and oxx(L,H) in terms of the basis A and B. As these joint spectra are sub-
sets of Sp(L, H), we have that o5 ((y,2), H) = {(0,f(z)),f € osx(L,H)}, and
ork((y,2), H) = {(0, f(2)), f € on (L, H)}, where k = 0,1,2.

Moreover, as in the case of the joint spectrum Sp(L, H), to compute o5 (L, H) |
and ox k(L,H), 0 < k < 2, is equivalent to compute these joint spectra in terms
of the basis A and B. Finally, to compute the latter joint spectra it is enough to
study the complex (C,d())), and to consider the corresponding properties involved
in the definition of o5 x(L, H) and oxx(L,H), 0 < k < 2, for it.

3. The Main Result.

We begin with the characterization of Sp(L, H). Indeed, we consider Sp((y, =), H),
and by means of an homological argument we reduce its computation to the case

of a single operator.

Let us consider the chain complex (C, d),
0—H =% g 0.

Then an easy calculation shows that we have a short exact sequence of chain com-

plex of the form,

0 (C,d) 5 (C,d(\)) 2 (CT,d) — 0,

where (7;)0<j<2) and (pj)o<j<2) are the following maps: i3 = 0, ¢ = Iy & 0,
to = Iy, and po = Iy, p1 = 0@ Iy, po = 0.
Thus, by [4,11,4], and the fact that p is a map of degree —1, we have a long exact

sequence of homology spaces of the form,
— Hy(C,d(\) 2 H,_1(C,d) 224 H,_,(T,d) 2= H,_,(C,d(\)) — .

We observe that H;(C,d) = Ker(y), and that Ho(C,d) = H/R(y). Moreover, as
[z,y]°? = y, we have that z(R(y)) € R(y), and that z(Ker(y)) C Ker(y). Then,
by [4,11,4], 8,, ¢ = 0,1, are the following maps: do([a]) = [(z — A)(a)] = (?c' - MNla],
and 8,(b) = —(z — A — 1)(b), where T: H/R(y) — H/R(y) is the map obtained
by passing = to the quotient space H/R(y). We now give our characterization of
Sp(L,H).
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Proposition 1. Let L be the complez solvable non-commutative twe dimensional
Lie algebra L =< y > & < z >, with Lie bracket [z,y]=y, which acts as right
continuous linear operators on a complez Hilbert space H. If R(y) is a closed
subspace of H, and if we consider Sp(L,H) in terms of the basis {y,z} of L and
the basis of L* dual of the latter, we have,

Sp((y, ), H) = {0} x Sp(z — 1, Ker(y)) U {0} x Sp(z, H/R(y)).
In addition, we have:
i) Ho(C,d())) = 0 iff ¥ — \: H/R(y) — H/R(y) is a surjective map,
i) Ha(C,d(N)) = 0 iff ¢ — 1 — \: ker(y) — Ker(y) is an injective map,
i) Hy(C,d(\) =0 iff T — 1 — X is injective, and = — A — 1 is surjective.

Proof.

It is a consequence of the long exact sequence of homology spaces, and the form
of the maps 0;, j =0, 1.
[}

In order to characterize the joint spectra o, (L, H), we recall the notion of ap-
proximate point spectrum of an operator T ) is in the approximate point spectrum
of T, which we denote by II(T'), if there exists a sequence of unit vectors, (zn)nen,
tn € H, || zn ||= 1, such that (T — A)(z,) —— 0. An easy calculation shows that
A ¢ II(T) if and only if Ker(T — \) = 0 and R(T — A) is closed in H.

We now consider the spectrum ox2((y,z), H). We observe that, as [z,y]°? =y,
(z —1)(Ker(y) € Ker(y). Then, we may consider II(z — 1, Ker(y)). Indeed, we
shall see that o, 2((y,2z), H) = {0} x II(z — 1, Ker(y)).

To prove the last assertion we proceed as follows. By Definition 2, we have
that o5, = {(0,A; H2(C,d())) = 0, and R(d1(})) is closed}. However, by the
definition of dy(A) and Hy(C,d()\)), H2(C,d(\)) = Ker(z —1—A)NKer(y). Then,
H3(C,d()\)) = 0 is equivalent to Ker(z — 1 — A | Ker(y)) = 0. Thus, in order to
conclude with our assertion, it is enough to see that the fact R(z —1— A | Ker(y))

is closed, is equivalent to R(d1(})) is closed.

Indeed, if (@n)nen is a sequence in Ker(y) such that (z —1— A)(an) —— b€
Ker(y), we have that, dl(/\)(a,;) —— (—b,0). If R(dy1())) is closed, there 18 a 2
in H such that dy(A\)(z) = (=b,0), 1., —(z — 1 — A\)(z) = —b, and y(z) = 0. Thus,
z € Ker(y) and R((z — 1 — )) | Ker(y)) is closed.



106

On the other hand, if R((z —1— )\ | Ker(y)) is closed, let us consider a sequence
(2n)neN, zn € H, such that dy(A)(zp,) —— (w1, w;) € H & H. We decompose H
as the orthogonal direct sum of K er(y)_*and Ker(y)t, H = Ker(Y) ® Ker(y)*.
Let (an)nen and (b, )nen be sequences in Ker(y) and Ker(y)*, respectively, such
that 2z, = a,, + b,. Then,

di(A) = di(A)(an) + d1(A)(n)
= (—(x -1- ’\)(an)70) + (—(x -1- A)(bn)’y(bn))’

where 7: Ker(y)* — R(y) is the restriction of y to Ker(y)l. We observe that,
as R(y) is a closed subspace of H, § is a topological homeoﬁlorphism Besides, as
7(bn) —— w2, there exists a 22 € Ker(y)! such that b, —» 29, and Y(z2) =
wz. Then, —(@ =1 — A)(bn) —— —(@ — 1 = \)(22), and —(z — 1 — \)(an) ——s
w1+ (z—1—-X)(2z2). As (an)n'é;(i’: a sequence in Ker(y), and R(z—1-\ | Ker(;;)
is closed, there is a z; € Ker(y) such that w; +(z —1—A)(22) = —(z — 1 — A)(21).
Thus, (w1,w2) = di(M)(21 + 22), equivalently, R(d;(})) is a closed subspace of
HoH.

With regard to ox,1((y, ), H), we have, by Definition 2, that,
ox1((y,2), H)® = {(0,A); Hi(C,d())) = 0,¢ = 1,2, and R(do(A)) is closed},

‘which, by Proposition 1, is equivalent to the following conditions:
i) 2 —1— X Ker(y) — Ker(y) is an isomorphic map,
i) T— A\ H/R(y) — H/R(y) is an injective map,
ili) R(do(A)) is closed.
We shall see that ox,1((y,z), H) = Sp(z — 1, Ker(y)) UII(Z, H/ R(y)).

Indeed, it is clear that condition i) is equivalent to A ¢ Sp(z — 1, Ker(y). Then,
it is enough to see that condition ii) and iii) are equivalent to A ¢ II(zZ, H/R(y)).
However, by ii), it suffices to verify that the fact R(do)()) is closed is equivalent to
R(Z — )\) is closed. Now, as the quotient map, II: H — H/R(y), is an identification,
by [3,II;6], R = R(z— ) =II(R(z—\)) is closed in H/R(y) if and only if I"}(R) =
R(z — A) + R(y) = R(do(A)) is closed in H.

In order to study the joint spectra o5 x(L, H), k = 0,1, 2, we recall the definition

of the approximate compression Spectrum of an operator T in H: X is in the

approximate compression spectrum of T', which we denote by IIC(T'), if there exists
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a sequence of unit vectors in H, (zn)neN, Tn € H, | zn ||= 1, such that (T —
A)(zn) — 0, i. e., IC(T) = II(T*). Besides, an easy calculation shows that A

does not belong to II(T') if and only if (T' — A) is a surjective map.

We now consider the joint spectra 05,0((y,z), H). However, by Definiton 2,
Proposition 1, and the previous considerations about the approximate compression

spectrum, it is clear that o5 x((y,z), H) = {0} x IIC(Z, H/R(y)).

With regards to 05,1 ((y,z), H), by Definition 2 and Proposition 1, we have that
(0,) does not belong to 05,1((y,z), H), if and only if (0, \) satisfies the following

conditions: '
i) T— A\: H/R(y) — H/R(y) is an isomorphic map,
i) z —1— A: Ker(y) — Ker(y) is surjective.
Then, it is obvious that, o51((y, z), H) = {0} x Sp(z, H/R(y))U{0} xIC(z—1 |
Ker(y)).

We now summarize our results.

Theorem 1. Let L be the complez solvdble non-commutative two dimensional Lie
algebra, L =< y > @ < z >, with Lie bracket [z,y]°? = y, which acts as right
continuous linear operators on a complez Hilbert space H. If R(y) is closed, the
joint spectra Sp(L, H), ‘(,Tgvk(L,H) and o, x(L,H), k =0,1,2, in terms of the basis
{y,z} of L, and the basis of L* dual of the latter, may be characterize as follows:
i) Sp((y,z), H) = {0} x Sp(z — 1, Ker(y)) U {0} x Sp(z, H/R(y)),

u) 050((y,z), H) = {0} x IIC(z, H/ R(y)),

i) a5,1((y,e)) = {0} x Sp(Z, H/R(y)) U {0} x IC(z — 1, Ker(y)),

w) ox2((y,2), H) = {0} x I(z — 1, Ker(y)),

v) ox1((y,2), H) = {0} x Sp(z — 1, Ker(y)) U {0} x II(Z, H/ R(y)),

1)7,) 0'6,2((:9, $)> H) = UW,U((y) ‘T)v H) = Sp((y’ 1‘), H)

4. A Special Case.

As we have seen, y is a nilpotent operator. In this section we study the case

92 = 0, and we obtain a more precise characterization of th joint spectrum Sp(L, H).

We decompose H in the following way: H = Ker(y) & Ker(y)'. Besides, as
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R(y) is contained in Ker(y), let us consider M, the closed subspace of H defined by,
‘M = Ker(y)NR(y)*. Then, we have another orthogonal direct sum decomposition
of H H = R(y) ® M & Ker(y)t. Moreover, if we recall that z(R(y)) C R(y) and
z(Ker(y)) € Ker(y), we have that z and y have the following form,

0 0 g Ti1 ZTi2 ZT13
y=1]10 0 01}, T = 0 xz20 zo3 |,
0 00 0 0 33

where ¥ is as in Section 3, and the maps z;; ,1 < ¢ < j < 2, are the restriction of
z to the corresponding spaces. We now see that, in the case under consideration,

Sp(L, H) reduces essentially to the spectrum of z in Ker(y).

Proposition 2. Let L be the complez solvable non commutative two dimensional
Lie algebra, L =< y > ® < z >,withLiebracket[z,y]’? = y, which acts as right
continuous linear operators on a complex Hilbert space H. If R(y) 1s closed and y? =
0, Sp(L, H), in terms of the basis {y,z} of L and the basis of L* dual of the latter,
may be described as follows. If x1; and x92 are the maps defined above, and if S;,
i = 1,2, are the sets: Sy = (Sp(z11, R(y))—1), and Sz = (Sp(z22, R(y)t NKer(y)),

then, we have that,

Sp((y,z),H) = {0} x (S1 U(S14+2)U S U(S2 —1)).

Proof.

An easy calculation shows that the relation [z,y]°? = y is equivalent to yz33 —
z11y =Y. However, as 7 is a topological homeomorphism, 733 = Iger(y)+ +y lzy.
In particular, Sp(z33, Ker(y)') = Sp(z11,R(y)) + 1. Then, as Sp(z, H/R(y)) =
Sp(za2, M)USP(z33, Ker(y)*), where M = R(y)tNKer(y),we have that Sp(Z, H/R(y)"
(S1+2)US,.
On the other hand, it is clear that Sp(z — 1, Ker(y)) = S; U (S2 — 1). Thus, by
Theorem 1, we conclude the proof. .
' '
Finally, we consider the case R(y) closed, y*> = 0, and H finite dimensional. If
r = dim(R(y)) and k = dim(Ker(y)), let us chose a basis of Ker(y) such that the

first r-vectors of it are a basis of R(y), and in this basis, z has an upper triangular

form, with diago}lal entries A;;, 1 <1 < k. Then we have the following corollary.
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Corollary 1. Let H, L and the operator y be as in Proposition 2. If H is fi-
nite dimensional, and if we consider a basis of Ker(y) with the above conditions,
Sp(L,H), in terms of the basis of L and L* considered in Proposition 2, is the

following set,

Sp((y,z), H) = {0} x {(Aii = Da<i<r) U Niidimei<iy U (Mii + Da<icm) }-
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Abstract: In this paper the continuity of the solutions of a mathematical model
of thermoviscoelasticity with respect to the model parameters is proved. This was
an open problem conjectured in [27] and [28]. The nonlinear partial differential
equations under consideration arise from the conservation laws of linear momen-
tum and energy and describe structural phase transitions in solids with non-convex
Landau-Ginzburg free energy potentials. The theories of analytic semigroups and
real interpolation spaces for maximal accretive operators are used to show that the
solutions of the model depend continuously on the admissible parameters, in par-
ticular, on those defining the free energy. More precisely, it is shown that if {g,}%2,
is a sequence of admissible parameters converging to ¢, then the corresponding so-
lutions z(t; gn) converge to z(t; ¢) in the norm of the graph of a fractional power of
the operator associated to the linear part of the system.

1. INTRODUCTION

The conservation laws governing the thermomechanical processes in a one-dimensional
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CAI+D 94-0016-004-023.
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shape memory solid {2 = (0,1) with Landau-Ginzburg free energy potential ¥ give
rise to the following initial-boundary value problem.

pust — Bpuzzt + Yizzze = f(:l,‘,t) + % [%\I,(uzaurz, 9)] , z€Q,0<t<T,

Cy0; — kb0, = g(z,1) + 2020uzuz + Bpul,, z€eN0<t<T,
(1'1) u(a:,O) = uO_(x)a u,(rt:,O) = ul(x)v 0(1‘70) = 90(1')7 T €,

u(0,t) = u(1,t) = up (0,2) = uzp(1,t) =0, 0<t<T,

6.(0,t) =0, k0.(1,t) = k1 (6r(t) — 0(1,1)), 0<t<LT.

The functions, variables and parameters involved in (1.1) have the following physical
meaning: u(z,!) = displacement; 6(z,t) = absolute temperature; p = mass density;
k = thermal conductivity coeflicient; C, = specific heat; 8 = viscosity coefficient;
f(z,t) = distributed forces acting on the body (input); g(z,t) = distributed heat
sources (input); ug(z) = initial displacement; u,(z) = initial velocity; 6o(z) = initial
temperature; Or(t) = temperature of the surrounding medium (input); k; = positive
constant, proportional to the rate of thermal exchange at the right boundary, and T
is a prescribed final time. The function ¥, which represents the free energy density
of the system, is assumed to be a function of the linearized shear strain € = u,, the
spatial derivative of the strain ¢, = u,, and the temperature 6, and is taken in the
Landau-Ginzburg form

T2

U(e,€z,0) = Uo(0) + az(0 — 01)e? — age* + age® + 5 €es

0 (1.2)
Uo(0) = —C,blog <g> +C,0+C,

where 6, 6, are two critical temperatures and a5, a4, ag, v are positive constants,
all depending on the material being considered. Note that for values of 8 close to
01 and ¢, fixed, the function W(e, €,,0) is a nonconvex function of e. This property
is related to the hysteresis phenomenon which caracterizes this type of materials
in the low and intermediate temperature ranges. The stress-strain relations are
strongly temperature-dependent. The behavior goes from elastic, ideally-plastic at
low temperatures, to pseudoelastic or superelastic at intermediate temperatures, to
almost linearly elastic in the high temperature range. Shape memory and solid-solid
phase transitions (martensitic transformations) are other peculiar characteristics
of these materials whose dynamical behavior is described by system (1.1). For a
detailed review of these and other properties and the derivations of the equations
in (1.1) we refer the reader to [25] and the references therein.

The boundary conditions mean that the body is clamped at both ends, thermally
insulated at the left end and, at the right end, the rate of thermal exchange is
prescribed. The nonlinear coupled equations in (1.1) are sometimes referred to as
the equations of thermo-visco-elasto-plasticity. In particular, the first equation in
(1.1) can be regarded as a nonlinear beam equation in u, while the second is a
nonlinear heat equation in 6.

Initial boundary value problems of the type (1.1) have been studied by several
authors ([15], [16], [21], [27], [28], [32], etc.; see [25] for a review). Initial efforts to
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prove existence of solutions for this type of systems considered the heat flux in the
form ¢ = —kb, — akl, with o > 0, instead of the classical Fourier law (a = 0).
This assumption introduces the additional term —akf_,, on the left hand side of the
second equation in (1.1). Although this was done merely for mathematical reasons
so that existence theorems could be proved ([15], [16], [21], [22]), it turns out that
the second law of thermodynamics is not satisfied if o > 0, as it can be easily verified
by checking the Clausius-Duhem inequality for the entropy production. Therefore,
the case o > 0 has no physical meaning. The first results on existence of solutions
for the case @ = 0 are due to Sprekels ([27]). However, he imposed very strong
growth conditions on the free energy W. In particular, those conditions excluded
the physically relevant case in which ¥ is given in the Landau-Ginzburg form (1.2).
Later on, Zheng ([32]) derived certain apriori estimates from which he concluded
that, if the initial data is smooth enough, then any local solution of (1.1) with W
as in (1.2) can be extended globally in time. This result was later generalized by
Sprekels and Zheng ([28]) to include more general free energy functionals. More
recently, using a state-space approach ([25]) it was shown that system (1.1)-(1.2)
has a local solution for a much broader set of initial data than the one considered

in [28] and [32].

From a practical point of view it would be very important to find the values of all
the parameters in (1.1)-(1.2) that “best fit” experimental data for a given material.
This is called the parameter identification problem (ID problem in the sequel).
Once this problem is solved, the next step is to determine how well this model can
predict the dynamics of a given shape memory material which is subjected to certain
external inputs. This is called the model validation problem. Although numerical
experiments performed with system (1.1) have shown that physically reasonable
results can be obtained for certain values of the parameters (see [4] and [19]), the
ID problem still remains open. :

In order to establish the convergence of computational algorithms for parameter
identification, one needs to show first that the solutions depend continuously on the
parameters that one wants to estimate. As we shall see in the following section,
system (1.1)-(1.2) can be written as a semilinear Cauchy problem of the form 2(t) =
A(q)z(t)+F(q,t,2), 2(0) = 2o, in an appropriate Hilbert space Z,, where ¢ is a vector
of admissible parameters, A(q) is a certain differential operator associated with the
linear part of the partial differential equations in (1.1) and F'(g,t,2) corresponds
to the nonlinear part of the system. In [26] it was shown that the nonlinear term
F(q,t,z) is locally Lipschitz continuous in the state variable z in the topology of
the graph of (—A(q))?, for any 6 > %. Although this result is necessary to show the
continuous dependence of the solutions of (1.1) with respect to the parameter g, it
is not sufficient. In fact, it turns out that a key step in achieving this result involves
proving that if {g,}°2, is a sequence of admissible parameters converging to g, then
the associated analytic semigroups T'(t; ¢, ) converge strongly to T'(t; q) in the norm
of the graph of (—A(q))®. This is a much stronger result than the one obtained by
using the well known Trotter-Kato Theorem (see [25], Theorem 4.1).
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2. PRELIMINARIES AND STATE-SPACE FORMULATION

In the sequel, an isomorphism will be understood to denote a bounded invertible
operator from a Banach space onto another.

Let X be a Banach space and X* its topological dual. We denote with (z*, z)
or (z, z*) the value of z* at z. For each z € X we define the duality set S(z) =
{z* e X* : (z*,2) =

iz||* = ||z*||*}. The Hahn-Banach theorem implies that S(z) is nonempty for every
z € X. If Ais a linear operator in X with domain D(A), we say that A is dissipative
if for every z € D(A) there exists z* € S(z) such that Re(Az, z*) < 0. We say that
A is strictly dissipative if A is dissipative and the condition Re(Az,z*) = 0 for all
z* € S(z) implies that z = 0. If X is a Hilbert space then S(z) = {z} and therefore
A is dissipative iff Re(Az,z) < 0 for every z € D(A). We say that the operator A
is mazximal dissipative if A is dissipative and it has no proper dissipative extension.
We say that the operator A is (mazimal) accretive if —A is (maximal) dissipative.
If the operator A is strictly dissipative and maximal dissipative, we will simply say
that A is strictly mazimal dissipative.

If A generates a strongly continuous semigroup T(t) on X then the type of T is de-
fined to be the real number wy(T') = glg % log ||T(¢)||. It can be shown that the type

of a semigroup is either finite or equals —co. Moreover, wo(T') = tlim %log 1T
Also, the semigroup T(t) is of negative type iff T'(t) is exponentially stable, i.e.,
wo(T) < 0 iff AM > 1, a > 0 such that |T(¢)|| < Me ™ for all ¢t > 0 (see [1,
pp 17-21]). If the semigroup T'(t) generated by A is analytic and o(A) denotes the
spectrum of A, then wo(T) = sup Re X provided that o(A) # 0 and wo(T') = —o0

A€o (A)
if 0(A) =0 (see [1]).

Let us return now to our original problem (1.1)-(1.2). We define the function

L(z,t) = 0p(t) cos(2rz) and the transformation 6(z,t) = 6(z,t) — L(z,t). We also
u

define the state space Z = H}(0,1) N H?(0,1) x L?(0,1) x L*(0,1), z = (v) €Z
w

and the admissible parameter set

Q = {q : (pacvaﬁwa%a‘ha&oh | q € ]R' 0}

Next, we define in Z an inner product (-, -) . depending on the parameter q as follows

<<§))( )>q_—':’y/01u"() ()dx+p/ o(z) dz—i———/

and we denote by Z, the Hilbert space Z endowed with the inner product (-,-),. The
norm induced by (,-)  in Z; will be denoted by || - [|;. Note that these norms are all
equivalent and, moreover, they are uniformly equivalent on compact subsets of Q.
Then the initial boundary value problem (1.1) with ¥ as in (1.2) can be formally

S>'¢3> [~33
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written as an abstract semilinear Cauchy problem in Z, as follows
51 = A(Q)=(t) + Flg t,2(), 0<t<T
(2.1)
Z(O = 20,

where =( <t)
={(§)

u € HY0,1), u(0) = u(1
v e Hy(0,1)Nn H*(0,1),
we HA0,1), w'(0)=

) = 0= u’(0) = u'(1), } |
) ¥

0, kw'(l)=—kw(l
(2.2)

The element 2, is defined by

uo(z)
20(z) = u(z)
Oo(z) — Or(0)cos(2mz)
and the nonlinear mapping F(q,t,2) : @ x [0,T] X Z, — Z, is defined by

U 0
F(q,t,Z)=F(q,t,(v>> = (fz(q,t,z)>, (2.4)
w f3(qataz)

where :
pr(qat’z)(m) = f(:l:,t)

o+ (,% [Qag(w(m) + L(z,t) — 0,)u'(z) — 4ayu’(z)® + 6agu (:c)s] ,
Cufs(4,4,2)(2) = 9(2,1) + 203 (w(z) + L(z, 1) w(2)v'(x)

+ Bpv'(z)? — C,0(t) cos(27z)

— 4km*L(z,1).

The following results can be found in [25] and [26].

Theorem 2.1. ([25]) Let ¢ € Q and the operator A(q) : D (A(q)) C Z, — Z, as

defined by (2.2)-(2.3). Then

i) A(q) is strictly maximal dissipative;

i1) The adjoint A*(q) is also strictly maximal dissipative and is given by D (A*(q)) =
u

D (A(q)), and for (v) € D(A*(q))

w

u Y %4 _8]2 0 u
A v )= [ B +5v" | = | bom Bom O v |;
w E’f_w” 0 0 k2 w
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iii) 0 € p (A(q)), the resolvent set of A(q);
iv) The spectrum o (A(q)) of A(q) consists only ofeigenvalues o(A(q)) =0, (A(q)) =

N, an}os, where AT = /i, (—r q) £ /r%(q ), o, = ——'21, with p, =
,7n47r4 B/p
r(q) = V= and {7, }.2
p 2

tan 7 = k—l The corresponding set of normalized eigenvectors in Z, is given by

;
€én knen 0 o
Men |, [ kndien |, 1 O ,
0 0 Xn n=1

2 : kT :
whete e, (z) = (m) sin(7nz), xn(z) = (C I 0252 ) cos(7,x)

—; are all the positive solutions of the equation

V) The operator A( ) generates an analytic semigroup T'(t; q) of negative type which
satisfies || T(t; q)||c(z,) < e 9, for t > 0, where w(g) is given by

min (%i @) : if B%p < 4y
w(q) = . kr2 2
min (z%, - 2—% Bp — 47) ) if 3%p > 4.

It will be useful to introduce some notation for certain interpolation spaces. If X
is a Banach space and p > 1, L2(X) will denote the Banach space of all Bochner
measurable mappings u : [0,00) — X such that ||ul|7p ) = I u@®))% % < oco. Let
Xo, X1 be two Banach spaces with Xy continuously and densely embedded in Xj,
p > land 6 € (0,1). We shall-denote by (Xo, X1),, the space of averages (or “real”
interpolation space)

(X07X1)9,p = {-’L‘ € X1 aui : [O’m) - Xi’i = Oa 17 t—@uo € LZ(XO), }

1%, € LP(X1) and = = uo(t) + us(t) a.e.

Endowed with the norm

1=, € L?(X,) and

t"euo S Lf(Xo), }
T = ug(t) +us(t) a.e. ,

||93”(X0,X1)9,,, = inf {Ilt"’uollw(xo) + ||t1_9U1||L’,’(x1)

(XO,XI)Q’p is a Banach space. In the particular case when p = 2 and X,, X; are
Hilbert spaces, we shall denote (X(,,Xl)g'2 = [Xo, X1l

Since 0 € p(A(q)) and A(q) generates an analytic semigroup T'(t;q), the fractional
-powers (—A(q))’ of —A(q) are well defined, closed, linear, invertible operators for
any § > 0 (see [23, pp 69-75]). Moreover, (—A(q))'é has the representation

(~A(g)~* = ﬁ / Tt q) dt,
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where the integral converges in the uniform operator topologyAfor every 6§ > 0. Since
A(q) is closed and 0 € p(A(q)), the operator (—A(q))’ is also closed and invertible

for each 6 > 0. Therefore, D ((—A(q))”c) endowed with the topology of the graph
norm is a Hilbert space. Since ((—A(q))’ is boundedly invertible, the norm of the
graph of ((—A(g))’ is equivalent to the norm ||z||,s = H(—A(q))‘squ We shall
denote by Z, s the Hilbert space D ((—A(g))°) endowed with the | - ||,,s-norm.

Theorem 2.2. ([26]) Let ¢ € Q, A(q) : D (A(q)) C Z, — Z, as defined by (2.2)-
(2.3),0 < 6§ <1 and Z, 5 as defined above. Then

i) Z,s =[D(A(q)),Z,],_s, in the sense of an isomorphism;
ii) The norms ||zlles, 12l (p(acy) 2, _,, 21d I2lls + HLI_EA(Q)TU;(I)ZHLg(Zq) are

all equivalent in D ((—A(q))‘s)
The next lemma shows some relations between the spaces Z, s for different ¢’s.

Lemma 2.3. ([26]) Let § € (0,1). Then,
i) For any pair q, ¢* € Q the spaces Z,s and Z, s are isomorphic.
ii) Moreover, for any compact subset Q¢ of Q the norms {||-|l;5 : ¢ € Qc¢}
are uniformly equivalent, i.e., there exist positive constants m, M such that

s < Mz s forevery g,¢* € Qg and all = € D (= A(g))") 1
D ((-A(¢")").

Consider the following standing hypotheses.

m|zllqs < |2

(e

(H1) There exist functions K;, K, € L*(
that

Fla,t) = flo, )] < K@) It — o] and  Jg(a,t) — g(e,t2)| < K, (@) 1ty — ta]

for a.e. z € (0,1) and all ¢4, t, € {0,717
(H2) 0r € H'(0,7) and 6f is locally Lipschitz continuous in (0, 7).
Theorem 2.4. ([26]) Let ¢ € Q, 0 < € < ; and assume that the hypotheses (H1)
and (H2) hold. Then,
i) for any bounded subset U of [0,7] x Zy 4. there exists a constant L =
L(q,U,0r, f,g) such that

1P (g t1,21) = Flayte, 2)ll, < L (16 = tal + |21 = 2l 24.,)
for all (t1, z1), (t2,22) € U, i.e., the function F(q,t,z) : QX[O,T]XZQ‘%H — Z,
is locally Lipschitz continuous in t and z. Moreover the constant L can be
chosen independent of q on any compact subset of Q;

ii) for any initial data zy € D ((—A(q))%ﬂ), there exists t; = t1(q, z9) > 0 such
that the initial value problem (2.1) has a unique strong solution z(t;q) €

C([0,t2) : Z,) N CH((0,41) : Zy). Moreover L2(t;q) € CAZ((0,t1] : Z,), ie.,
d

£2(t;q) is locally Hélder continuous on (0,t,] with exponent Ll
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Finally, we state the following theorem proved in [26], which states that for any com-
pact subset Q¢ of the admissible parameter set Q, it is possible to find a nontrivial
common interval of existence for all solutions z(t,q), ¢ € Qc.

Theorem 2.5. ([26]) Let Q¢ be a compact subset of the admissible parameter
set Q, go € Qc, 20 € Zy s, where 3 < 6§ < 1. Let [O,tM(q)) = [0,tM(q, 20))
denote the maximum interval of existence of the solution z(t; q) with initial condition
2(0;q) = zo. Then

M e M
t"(Qc) = inf ¢ (¢) >0

3. CONTINUOUS DEPENDENCE ON THE MODEL PARAMETERS

In this section we show that the mapping ¢ — 2(-;¢) from the space of admissible
parameters Q into the space of solutions is continuous. More precisely, we shall
show that if {g,}52, is a sequence in Q converging to ¢ € Q, then the sequence
{z(t; ¢4)}32, converges to z(t; ¢) in some appropriate sense.

Throughout this section, to simplify the notation we will denote with A,, = A(g,), A =
A(q), Ta(t) = T(t;q4), T(t) = T(t;q), 2n(t) = 2(t;qa) and 2(t) = 2(t; ).

We shall need the following lemmas.

Lemma 3.1. Let {¢,}32, be a sequence in Q, ¢, — q € Q, and let A, A,, T, T,
be as above. Then

|AnTn(t)z — AT (t)z|lq — 0 as n — 0o
for every z € Z, andt > 0.
Proof. Let z € Z,. Since T,(t), T(t) are analytic semigroups, T,(t)z, T(t)z, are in

D(A,), D(A), respectively V¢t > 0. From Theorem 3.5 in [25] it follows that there
exists an angle 6, 0 < 6 < 7, such that the angular sector

S ={0}U{reC: arg ,\|<§+o}Cp(A)nﬂp(An).

Now, let £ < 6, < 5 + 60 and let T' be the path composed of the two rays
re”® re1 0 < r < oo, I' oriented so that Im()) increases along I'. We have
the following expresions (see [23])

_ 1 MB(Y.
AT(t)z = /r AMR(N; A)zdA,

A T,(t)z = -21— AMR(); Ap)z d),
r

™

for every z € Z;, t > 0, where R(}; A) = (M - A)™Y, R(\;A,) = (M — A,
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Then
AT(0)z — AuTi(t)e = o / A (R(GA) — ROs An)zdh. (3.1

But
IAC¥ (RO 4) = ROs 4) 2l < W@ (4 20) el
< (1 + )™ z], € LYD),

where the constant C' appears because of the uniform equivalence of the norms ||-||,,
and || - ||, Also, for any fixed A € T
[ (R(A; 4) — R(A; 4n)) 2lly 0 asn — oo.
In fact,
[ (B(X; A) = R(X; An)) 2[lg = [R(; An) [(M — An)R(X; A) — 1] 2],

= |R(X; An)(A — An)R(); A)z|

< IB(X; An)ll 2z (A = An)R(A; A)z|lq
which converges to zero as n goes to infinity by virtue of the uniform boundedness of

IR(X; An)|lc(z,) and the strong convergence of A, to A (which follows immediately
from the definition of A, and A, and the convergence of g, to q).

The lemma then follows from (3.1) and the Dominated Convergence Theorem. ™

Lemma 3.2. Under the same hypotheses of Lemma 3.1
(=4 (T () - Tn(t))z”q —0 as n — oo
for every z € Z,;, § € [0,1] and t > 0.

Remark. We note here that the assertion of Lemma 3.2 could be obtained imme-
diately if (—A)® commuted with T},(¢). However, this is not true since A, does not
commute with A, as it can be easily verified.

Proof of Lemma 3.2. 1t suffices to show the result for 6 = 1. We can write
JAT(®) - Ta@®)2]l = [AT() — AT(t) + (I — AAT) AT (B,
< AT(t) = AuTu(®)zll, + |1 = AAT| i) [ AnTn(2)z, -

As a consequence of Lemma 3.1 the first term on the right of the above inequality
tends to zero as n goes to infinity and the sequence {||A,T,(t)z||,}or, is bounded.
A straightforward calculation using the definition of A(q) shows that for any pair of

admissible pararneters q= (P, Cu,ﬂa 02,04,05,01, ) q - (pacvaﬂ, 02,04,06,01, )
u

€ Qand any z = (v) € Z,
w

A@A N (g)2 = (B —F %) Wt G| (3.2)

from which it follows immediately that ||[I — AA;'|¢z,) — 0 as n — oo. The
theorem then follows. [ |
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Lemma 3.3. Let Q¢ be a compact subset of Q. Then for any § € [0, 1] there exists
a constant C depending only on § and Q¢ such that '

”(_A(QI))B(_A(%))_&”c(zqa) <C
for every qi, gz, 43 € QC' |

Proof. Since the operator A(q) is maximal dissipative (Theorem 2.1), the space Z, 5
is isomorphic to the real interpolation space [D(A(q)), Z,]1-s, of order 1 — § between
Z, and D(A(q)) (see [1]), i.e. »

(D ((=A@))) Il - llas) = [D(A0)), Zohs-s- (33)
From (3.2) it follows that there exists a constant C' depending only on Q¢ such

that ||A(§)A™"(q)z|lz < C||z|l5 for every ¢, € Qc, z € Z,. Letting n = A™'(q)z we
obtain

1A(@)nlls < CllA(g)nlls  for all ¢,§ € Qo, n € D(A(9))- (3-4)
Since the || - ||;-norms are uniformly equivalent for ¢ € Qc¢, it follows from (3.4) and
(3.3) that the norms || - ||, are also uniformly equivalent for ¢ € Q¢. Thus, for any

41,492,493 € Q¢

1(=A(9:)) (= A(g2) " 2llas < Cull(=A(@1))’(—Alg2))* 2l
= C1ll(=A(g2)) " 2llos 6
< G Coll(—A(22) " 2llaa s
= Cl C2”z"qz
< C1 C; Csl| 2|55

where the constants C;, : = 1,2,3, depend only on Q¢ and 6. [ |

Remark. Since T,(t) is an analytic semigroup of contractions, by a well known
result on semigroup theory ([23]), for any 6 € (0,1], there exists a constant Cj
independent of n such that '

Cs

5
=AY Tl 24y < FTeosm]
where v, is any angle in (3, 7) for which
p(Ax) D{0}u{recC:|arg| <wv,}.

As we mentioned in Lemma 3.1, in this case the angle v, above can be chosen
independent of n. Hence, there exists a constant C's depending only on é such that

C
||(_An)5Tn(t)||c(an) < —{é_ﬁ Vn=1,2,---.

Next, we state a lemma whose proof can be found in [14] (Lemma 7.1.1).
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Lemma 3.4. Suppose L > 0,0 < 6 < 1 and a(t) is a nonnegative, locally integrable
function on 0 < t < T'. Let u(t) be a real valued function defined on [0, T] satisfying

u(t) <a(t)+ L /Ot G_l—s)su(s) ds

on this interval. Then, there exists a constant K = K(§) such that

(t) < m+EI/t£@—d for0<t<T
U <a A (t—~s)5 L] or( < .

The following theorem will be essential for our main result.

Theorem 3.5. Let § € (3,1), {¢.}32, C Q, ¢ — ¢ € Q, and 2z,(t), 2(t) be the
solutions of the IVP (2.1) with initial datum zy € D ((—A)®) corresponding to the
parameters q, and g, respectively, and let [0,t;) be the maximal interval of existence
of z(t). Then, for any t] < t, there exists a constant Np such that z,(t) exists on

[0,¢,] for every n > N; and a constant D such that

lza()lles <D, VYn > No, Vt €[0,8].

Proof. Let 6 € (3,1),0 <t} < t1, and t] > 0 be such that z,(t) exists on [0,]) for
each n € IN. Then, for t € [0, min{¢},t7}) 7

40:T@%+ATH—QF@AQM5

¢
zo(t) = T (t)20 + / To(t — s)Fn(s, zn(s)) ds,
0
which imply

() =2a (Dl = (= A)2(t) = (~AY za(D)]l,
< (=AY (T(0) - Tu(t)) o,

+ /0 (—A)‘ST(t —3s)F(q,s,z2(s)) — (—A)‘sTn(t — 8)F(qn,s,2n(s)) ds
< =AY (@) - T ) 2],

+ /%%fﬂﬁﬂﬁﬁédﬂ%%ﬂwﬂﬁ—QF@&ASNS

q

q

+ /0 (—AYT,(t — s)[F(q,s,2(s)) — F(gn,s,2(s))] ds

9

+ / (ATt — 5) [F(guy 5, 2(5)) — F(gm 5, 2a(s))] ds
= I{‘(t) + I7(t) + Ig(t) + IZ‘(t).

9
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Note that, even when this last inequality is true on [0, min{t},¢}}), I7(¢), I7(¢) and
I (t) are well defined on [0,t]. k

We have the following estimates

B < [ ATt = 9leczy P05, 2(6)) = Flan 5,25 s
<C1 [ =Tt = 9letzun IP(a:5,5(6)) = Flanss, (5D ds

<Cr [ G P s, 5(0) = Flans, 26Dy ds

The second and third inequality follow from Lemma 3.3 and the Remark preceding

Lemina 3.4, respectively. Now, for any s € [0,t}], || F'(g, s, 2(3))—F(gn,s,2(s))|l = 0
asn — o0o. Also, there exists a constant C, independent of n such that || F'(q, s, 2(s))—
F(qn,s,z(s))|l; < C; for every s € [0,t]], which follows easily from the continuity
of z(s) and the definition of F. Therefore, I5(¢) — 0 as n — oo on [0,¢;] by the

C1C,C,
Dominated Convergence Theorem and I3(t) < 11 266t1 ‘ Vn € IN, V¢t € [0,t]].

To estimate I7(t), observe that

f?(f)ﬁ/ I(=A) (T(t = 5) = Tu(t = 5)) F(g, 5, 2(s))l, ds.

Now, ||F(q,s,z(s))||; is uniformly bounded on [0,#], say ||F(q,s,z(s))|l, < Cs,
Vt € [0,¢]] and
I(=A)(T(t = 8)=Tult = 9))llc(z,)
< N(=A)T(t = 9)lleqzy + (A Tu(t = 9)ll(z,)

S N=AYT(E = 9)llezy) + Cll(=Aa) Tult = )l £(z,)
Cs C Cs Cy

< = .
S T T iy
,On the other hand, for any s € [0,t}] we have
(= A)° (T(t — ) = Tu(t — 5)) F(g,5,2(s))]l, =0 as n— o0

by Lemma 3.2.  Therefore I3(t) — 0 as n — oo by the Dominated Convergence

Theorem, and also I7(t) < Cétl = Vn, Vt € [0,t].

In regard to I"(t) observe that

= (=4 (Ta(t) = T(®) ],
=I|(—A —~An) (AT, ()m—( AT (0)zl,
< C||Tu(t) (= An) 20|, + || T()(— A) 20,

< CTa®)ll gz, C I(=A) 2|, + IIT(t)quq) [(=A) |,
< Cs (=AYl
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where we have used that zo € D ((—A)®) and the semigroups are contractive. Also,
by Lemma 3.2 IT'(t) — 0 as n — oo.

Similarly,

/ I(=A)Ta(t = 9)lle(z) 1 F (gn, 5, 2(5)) = F(gn, 3, 20(5))l ds

<a [ (t_l—s)sHF(qn,s,Z(S)) = F(an,3,20(5))y ds

From the above estimates on I7(t), I3(t), IF(t) and I}(t), there follows

12(8) = 2a(®)llos < ent) + Co / (7—1——||F(qms 2(5)) = F(gny 5, 2a())l, ds (3.5)

 where, for all ¢ € [0,8], e (t) = I7(t) + I3(t) + IF(t) satisfies 0 < €,(t) < Cr
for all n € IN and €,(t) — 0 as n — oo. In particular, these conditions imply
[o1 €a(t) dt — 0 as n — oo.

Let K = K(6) be as in Lemma 3.4 and define K = C7 4+ CsC7K and M =
SuPgcicy ||2(t)|lg,s- From the continuity of z(t) it follows that M < oco. Let
n € IN. Since 2(0) = 2,(0) = z, there exists &, > 0 such that ||z,(¢)|lqs <
M + 2K for all t € [0,6,]. Let L be a Lipschitz constant for F on the set
U = [0,¢] x {||z||5 <M+ 2]~(}, valid for ¢ and all the g,’s. Then, from (3.5)

and Lemma 3.4, we have

2a(t) = 2()l, 5 < falt) on 0 <1t <6y, (3.6)
where f,(t) = €,(t) + CGLK/O (;"_(Z))5 ds, for t € [0, 1]

Now,

/ot e < / ol

‘1
:C7 —5dS
o S
C7 1-6
= —y ",
1-46

)
for every t € [0,7], it

1—
Choosing n = (L) > 0 sufficiently small so that ¢~ <
follows that

¢ €n(S) Cy
< — . .
/o =) ds < 5T for every t € [0, 7] (3.7)
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On the other hand, if n <t <t}

[ (ten—(?)s ds = /Ot#ds
=/0nﬂtsa_—s)ds+/t#ds

C, 1 [t
< — —_ —
_2L+n5/0 €n(t — s)ds

C;, 1 [h
§ﬁ+7—7§/0 €n(s) ds.

Hence, since fot; €n(s) ds — 0, there exists No such that

¢ € (t) C7 C7 C7
i < — _— = — 1 a >
/0 G—sF 3L 2L 7 Vit € [n,t}] and n > Nq. (3.8)
From (3.7) and (3.8) it follows that
fa(t) < Cr+ CeCrK Vt €[0,t]] and n > Np. (3.9

Consequently, from (3.6) and (3.9)
llza(t) — 2()l, 5 < K Vn>N;andtel0,6,],

which implies

lza(®)ll,s < M+ K Vn>Noandte0,8,]. (3.10)

Finally, let n > Nj be fixed. We claim that z,(t) exists on [0,#,] and for ¢ € [0,¢}],
llzn(t)ll,5 < M+2K. In fact, suppose, on the contrary, that there exists t* < ¢ such
that ||zn(t*)||,s = M +2K and ||zn(t)||, 5 < M +2K for 0 <t < t*. Then, in (3.6),
6, can be replaced by t* and (3.10) follows with &, = t*, i.e. ||za(t)|l,s < M + K
on [0,¢*]. This contradicts ||z,(t*)||,s = M + 2K. The theorem then follows taking
D=M+2K. u

Theorem 3.6. Under the same hypotheses of Theorem 3.5
lz(t) = 2(Olly5 =0, asn— oo
for every t € [0,11).

Remark. If the initial data is smooth enough, then the results in [28] and [32]
imply that ¢; = oo and therefore, this theorem ensures the || - || s-convergence of
zn(t) to z(t) on the whole interval [0, co).

Proof of Theorem 3.6. Let § € (%,1) and t{ < t;. By Theorem 3.5 there exist
No € IN and D > 0 such that z,(t) exists and |[2,(t)|[,s < D on [0,1]] for every
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n > No. Following the steps of Theorem 3.5 we see that for every ¢ € [0,1]] and
n Z N()

| .
1400 = 5Ollas < t) + Co [ 55l (ans505(6)) = Flans syl s
t
1
S elt) + 105 | mmile(s) = 2u(o)lgsds
where 0 < €,(t) < C7 and ¢,(t) — 0 as n — oo for every ¢ € [0,#}]. In the

last inequality we have used the fact that F' is locally Lipschitz continuous and
lz2()ll, 5 < D, Vn > No, Vt € [0,13].

Hence, by Lemma 3.4, there exists K > 0 such that

t
[|2(2) — 2n(t)]lgs < €n(t) + K / % ds — 0 asn — oco.
Jo \t* 7 9)
Since t] is arbitrary, the theorem follows. [ |

4. CONCLUSIONS

In this paper we have shown that the solutions of the IBVP (1.1), with free en-
ergy potential ¥ in the Landau-Ginzburg form (1.2), depend continuously on the
parameters p, C,, 3,az, a4, ag, 6, and 4. In particular, we have shown that if {¢, =
(Pn, Cu,m ﬂm 2.0,
Qany Aoy 01,0, Tn) }32, is a sequence of admissible parameters converging to the ad-
missible parameter g, then not only 2(¢;¢,) — 2(%;¢) in the norm of Z,, but also in
the stronger || - ||, s-norm (6 = 2 + ¢€). This constitutes an important step towards
solving the parameter identifiability and the ID problems for system (1.1). These
problems, to which we are already devoting efforts, involve also showing that the
mapping ¢ — z(-; q) from the admissible parameter set Q into the space of solutions
is locally one-to-one. Results on this issue will be published in a forthcoming article.
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THE a-CONCENTRATION OF PROCACCIA OF INFINITE WORDS
IN FINITELY GENERATED FUCHSIAN GROUPS.

E. CESARATTO

ABSTRACT. In order to study the spectral decomposition («,f(a)) of Procaccia
of the limit set L(G) of a finitely generated Fuchsian group G of rigid movements
in the hyperbolic half plane H, it is necessary to calculate the o of each element
of L(G). Each such element is an allowed infinite word, each letter a generator of
G. In this paper we calculate first the & of the periodic infinite words, and use
this result in order to calculate the & of the non-periodic irrational words.

SECTION 1. INTRODUCTION.

In 1993, a method [1] was proposed to generate fractals © such that their multifractal
decomposition (a, f(a)) of Procaccia modelled all (a, f(a)) curves in the Tel classifi-
cation [2].

The importance of the curves (a, f(a)) in the Tel classification and their relevance
to the study of a variety of physical phenomena is described in [1]. The fractal sets
) generated in [1] are the limit sets Q=L(G) of minimally generated groups G, all
generators being rigid movements in IH and having zero trace.

The importance of expressing the elements of 2=L(G) by means of an infinite word
code —each letter a generator of G— is reviewed in [3].

Let us deal then with the o — concentration of Procaccia of infinite words coding for
elements in Q=L(G), when G is minimally generated by zero-trace generators (three
generators).

Generators A, B, and C have zero trace; then no two letters can be repeated in an
allowed word, i.e. a word with correct spelling. Words W; = ABABAB... and W; =
ABCABC... are allowed words denoting two different points in the fractal Q=L(G),
whereas word AABBAABBAABB... denotes no point in L(G), and does not have a
correct spelling.

The transformations S=AB and T=ABC have |trace|] > 2, i.e. they are hyperbolic
trans\formations. Therefore words W; and W, can be written as infinite words W; =
SSSS... and Wy = TTTT... with hyperbolic letters.
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This paper deals with the « of infinite words written with hyperbolic letters; speciﬁcaﬂy,
we will calculate the a of infinite words in L(G), here G is a group generated by two
hyperbolic operators: two rigid movements in H.

The results can be easily extended to groups with any finite member of generators.

SECTION 2. CONSTRUCTION OF THE LIMIT SET IF OF A FUCHSIAN SEMI-
GROUP GENERATED BY TWO HYPERBOLIC 2 x 2 MATRICES.

SECTION 2.1. GENERALITIES AND NOTATION.

az+b
Let T(z) = ot d

integers, and ad — bc = 1. The transformation T(z) operates on the values

be an element of the unimodular group U, i.e. a,b,c, and d are

z€]H={x+iy//y>o}, ’];:]H—»]H

Let us recall that the set {z € H/|cz +d| <1} = {z/|T'(z)| > 1} is the isometric circle
of T =T(z). With Cr, gr, and rr we will denote the isometric circle of T, its centre,
and its radius, respectively.

We have g = =4 and r =
c

le|

Let us also recall that every hyperbolic T = (z Z) (i-e.|traceT| = |a + d| > 2) has

two real fixed numbers, one an em;tractor‘7 the other a repeller. The repeller belongs to
Cr, and the attractor, hereafter denoted as £r, is always inside Cp-1. Let us recall
that if A is hyperbolic then IH — Ca is mapped, by A, onto Int.C4-1, and that 0Cyx
is mapped onto C4-1 .

From now on, A and B will be hyperbolic elements of U such that C4,C4-1,Cp and
Cp-1, are disjoint (see Fig.1)

Let S(A, B) denote the semigroup generated by A and B. Let z € IH — (C4 U Cg).
Let IF(x) denote the limit set of {T'(z)/T € S(A,B)}. It is not hard to prove that, if
y€H-(CaUCg) , y# z , we have IF(x) = IF(y). Hence, with IF we will denote
IF(x) (for any x in IH), and we will call it the limit set of S(A,B).

SECTION 2.2.

Let us now construct a fractal F associated with S(A, B). We will construct it in stages,
following an iterative process similar to the one that yields the Cantor ternary. Let us
write

R={zeR/c ¢ Csa}and S={z € R/z ¢ Cp}

STEP 1. We have, then, cl.A(R) = C4-1 NIR and cl.B(S) = Cg-1 NIR. These
two segments, disjoint by our assumption on the transformations A and B, will be the
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analogue of the two segments [0,1/3] and [2/3,1] which constitute the first step in
the construction of the Cantor ternary. Par abus de langage, and only when there is
no danger of confusion, we will denote with the letters A and B (the same letters that
denote the hyperbolic generators), these two sets A(R) and B(S), which are the two
segments of the first step; see Fig.2.

STEP 2. In strict analogy to the construction of the Cantor set, we continue with the
second step of our iterative process, as shown-in Fig.3.

STEP 3. The third step is shown in Fig 4.

...and so on ad infinitum. The fractal F is obtained like the Cantor ternary, i.e. it is
the intersection of all these steps.

Note. Hereafter, with a word of two letters A and B, of length N, we will refer indistinctly
to the corresponding transformation in S(A, B), and to the corresponding segment in
step N in the construction of F just described. Notice that F is well constructed:
all segments in step N are disjoint and contained in some segment in step N-1:

They are disjoint, since C4-1 N Cg-1 = @ by the hypothesis, and since both A and B
are one-to-one.

They are contained in some segment in step N-1: let us prove, e.g., that segment ABA
is contained in segment AB:

ABA = ABJA(R)] = AB(C4-1 NR) C AB(S) = A(Cp-1 NIR) = AB

The same reasoning holds for every case, as we only use Cg-1NIR C R and C4-1NIR C

S.

Thus, the 2V disjoint segments in step N are a covering of F.

SECTION 2.3.
We will prove now that IF = F.

1) IF C F. The proof is quite easy: Let us first notice that we can associate a semicircle
- to each segment in any step N of the construction of F, as shown in Fig.5.

Par un tres grand abus de langage indeed, we will denote, with a word of N letters
A& B, three things now: the corresponding transformation, the corresponding segment
in the step N of the construction of F, and the corresponding associated semicircle, and
we will make sure that there will be no danger of confusion.

Let us now consider ¢ € IF. ¢ is, then, a point in IR, approximated by elements of a
convergent sequence {Tn(z)}NeN , where Ty is a transformation of N letters A and B,
and x is, as before, in IH— (Ca UCpg). The reader can infer that £ is in F by pondering
on the following facts:
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a) £€R,

b) Tn(z) — € as N — o0,

¢) Tn(z) belong to smaller and smaller semicircles Ty, like the ones in Fig.5,
which have to be —for big values of N— one inside the other, due to the convergence
of {Tn(z)}, N € IN.

d) The closeness of the segments in step N of the construction of F, and the inclusion
of the boundary of the semicircles referred to in ¢) completes what we need to prove

that £ € F.

2) F CIF is an easy excercise, left to the reader.

SECTION 3. THE INFINITE WORDS IN F AND THEIR o-CONCENTRATION OF
PROCACCIA. '

SECTION 3.1. INFiNITE WORDS.

Let us recall that the finite words of length N made up of two letters A and B are a
covering of F by disjoint closed segments; with Cn we will denote this covering. Each
€ € F will belong to just one such segment In(¢) in Cn . For growing values of N, there
is a unique sequence of such intervals of decreasing size, one inside the other, associated
with a growing-in-length word in letters A and B. Therefore, ¢ is represented by a
unique infinite word.

Such an infinite word in two letters can have a structure analogous to that of a rational
number written in a binary way, that is, it can have a period, indefinitely repeated,
preceded by a finite number of letters which do not necessarily show a periodic ar-
rangement. When such is the case, we will say that ¢ is represented by a “rational
word”.

Observation: if the finite word T is the period of a rational infinite word ¢, then ¢, as
a point, is the fixed point atractor £ of the corresponding transformation T.

Lemma 1:The set of rational word points in F is dense in F with the usual topology of
IR. This density is also valid if the topology of IR is replaced by the one associated with
the Hausdorff measure corresponding to the Hausdorff dimension of the fractal set F.

The proof is left to the interested reader.

SECTION 3.2. THE o-CONCENTRATION OF PROCACCIA «(¢() ASSOCIATED
WITH A POINT € € F.

Following Procaccia, Hensen and others [4], we consider the set F endowed with a prob-
ability measure P, and let us recall that the concentration of Procaccia relates lengths
of intervals Iy —in the covering by intervals Cy — to the corresponding probabilities
P(In N F) associated with each F NIy, in the following way:

P(In N F) = [u(In)}"™),
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where y is the usual measure in IR!.

Hereafter, we will consider all such intervals Iy in Cn as equiprobable, so that P(IyN
F)= 2—1,\, for any of the 2V intervals in the N** step of the construction of F.

If £ € F', then there is a unique Iy = In(€) to which £ belongs. We will define the

“N-aproximated « - concentration of £” —abbreviated as o™ (£)-— by the quotient
O(N(f) _ ln(l/?N)
7 In(p(In(€)))

We know that [4]
o(6) = Jim a(e)

when the limit exists.

SECTION 3.3. THE CONCENTRATION «(¢) OF POINTS ¢ ASSOCIATED WITH
AN INFINITE RATIONAL WORD.

We will prove

Theorem 1: Let € be a point associated with an infinite rational word, in letters A
and B. Let m € IN be the number of letters in the period of this rational word. Let T
be the period itself, a finite word of m letters. Then

m In2

al€) = 2 InlautT|’

where autT indicates the largest eigenvalue of T, in absolute value.

Proof: The author has proved this lemma in [3].

SECTION 3.4. THE CONCENTRATION «(¢) OF POINTS ¢ ASSOCIATED WITH
ANY INFINITE WORD, RATIONAL OR NOT.

The following theorem expresses the concentration a(¢), ¢ an irrational word, in terms
of the a — concentration of different rational words.

Theorem 2: Let £ € F and N € IN. Let In(€) be the only interval in Cn to which
€ belongs. Let Ty be the word of N letters A and B associated with the interval In(€).
Let us consider the corresponding transformation Ty , and let us denote by €y its fized
point (attractor).

Then we have:

Jlim_a(én) = a(¢)

Proof: We need a
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Lemma: Under all hypothesis of theorem 2 we have

laN(én) —a(€n) — 0 as N — oo .

Let us suppose the lemma already proved. Let us consider the infinite rational word of
period T . Since we saw that the corresponding associated point is precisely én (see
the observation in section 3.1), we will think of £y also as an infinite rational word,
with a period of N letters.

We will show that
a(én) — a(€) when N — oo,

that is, the concentration of ¢ will be approximated by concentrations of rational words.

Now:

la(én) = a(€)] < la(én) — a™ (En)] + e (En) — @ (€)] + ™ (€) — a(€)I-

Let € > 0 be arbitrary and fixed. By our lemma, there exists Ng € IN such that
N > Ny implies

la(éw) — o™ (em)l < 5.

Next, we observe that IV (¢) = IV(¢n) forevery N € IN. Therefore, oV (¢n)—alN (€) =
0.

Since, by> definition,
a(6) = Jim o(¢),

there exists Ny € IN such that N > N; implies

o™ (&) — ()] < €/2.

The theorem is proved.

SECTION 3.5. PROOF OF THE LEMMA IN SECTION 3.4.
We know that

In[1/2V] Nin2

N _ _ =
|a (ﬁN) - Ol('fN)l = |ln[u(IN(§N))] 2ln|autTN||

2In|autTn| + In[p(IN (En))]
2in[u(IN(EN)))in|autTn|

Let us follow the three steps shown below:

In2  In[|autTn|?u(IN(En))]

= Nin2| 5 In[u(IN(En))]InjautTn |

|=N @
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Claim I

(I (€)= 1ol T2,

where ¢,p,q,6, and L are constants depending only on A and B, and L > 1.

Claim II

)
|In|autTy|| > In|LN =],
c
where L,§, and ¢ are the same constants in Claim I.

Claim III

|nflautTn > u(IV (EN))]| < K,
where K is a constant not depending on N.
Proof of Claim I.
Let us first work with p(I™(én)).

Let p and q be the extremes of the interval C4-1 if Ty ends in A; otherwise they are
the extremes of the segment Cp-1 .

Let Tn(z) = ((CIZ Zg) (i) , where anydy — byeny = 1.

Then we have that

‘ +byv  ang+bn
IV (€n)) = |Tn(p) — Tw(g)| = | N2V =
I (Ew)) = 1T (p) = Tn(g)l = [70 == = T o]
_ lavdn(p—q) —bnen(p—g)l _ lp —q|
lenp + dnlleng + dnl e llp + 42 ||g + 2|

(2)

a) Let us deal next with |p + %;H and |¢+ %}1:—| . In order to fix ideas let us suppose
that T ends in B. We can write

dn _ dn .
pt =t (-2,

and let ué ;;lécall that —~%1;— = gry is the centre of isometric circle of 'TN.
We have that Cry C C4 since Ty endsin B, and therefore g1y € C4 —see Fig 6.

Let us define

§ = min{distances between all extremes of the segments C4, Cp, C4-1, Cp-1}
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as shown in the same figure. We can clearly observe that

d d
lp—(-X) >6and |g— (——)| >
CN CN

1
b) Let us deal now with W In order to fix ideas, let us suppose that T ends in
cN

A, i.e. let us write
Ty = Tn—1A.

Let us recall that |—clN—| is the radius of the isometric circle of T . Therefore

1 , TTn_1TA
—_— =Ty = T
len | N lga-1 — 91wy |’

3)
where g4-1 and gr,_, are the centres of the isometric circles of A™! and Tn_;
respectively.

Now g4-1 € Cq-1, but gry_, € C4 or Cp, hence

llgTN_l _gA—-ll > TA-1 =TA.

We can strengthen this fact by observing Fig.6 carefully and deducing that there exists
L > 1 depending solely on the value of §, such that

l9Tn_, —9a-1| = Lra.

Therefore
1 r TTn_1TA TTn
—_— =Ty S — = —.
|CN| N LTA L

Iterating this procedure we can write

where C is a constant which does not depend on N. Therefore

—< L>1, or |en| 2 —. (4)

L _C L
len| = L Cc

From equations (2), (3), and (4) we obtain

W(IN () = p—al 1 lp—d_ Clp=d o151

|CN|2|p+ %ﬁ-”q-l— %ﬁ| - |CN|2 §2 — [2N 42
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Since u(IN(€)) — 0 as N — oo, we can safely work with values p(I™V(¢)) <1 and
Clp—q

Tinge < 1. But |lnz| is a decreasing function for 0 < z < 1, therefore
Clp—4|

nla(IN D] 2 liml =Bl

which is claim I.

Proof of claim II

Let us suppose that is the largest eigenvalue of Tv in

any —dn ++/(any +dn)? — 4
v = 2
. 2
is the fixed point attractor of T . Then we can write

ay +dy ++/(any +dn)? — 4

any +dn ++/(any +dn)? —4
2

absolute value. Then

aut(Ty) = 5 =
ay —dn ++/(an +dn)? —4+2dn,
= CN( 2CN ) =
—dv++layn+dnE—4 , d
= CN(aN - z(aN v) — (=) = en(En — gy )- (5)
CN CN
an +dny — +/(an +dn)? — 4

The same argument holds if is the largest eingevalue of

2
T'n in absolute value.

Now én € Cy-1 or to Cp-1, and —%J‘:’T € C4 or to Cp, respectively; therefore, we
again have
|£N - gTN' > 6. (6)
We will next use Egs. (5), (4), and (6), in order to obtain
2N 2N

L
lautTn| = lenllén — 97wl 2 =5~ IEN — 91w | 2 =56 -

Therefore
|autTn| — 00 as N — oo,

and we can assume that

5
tTn| > LN = >1
Ia.u Nl_ C> y

from which s
|InautTn|| > ln(LNa),

which 'is claim II.
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From Egs.(5) and (2) we have

lp — 4|
lautTn [2u(In(€)) = len|?lén — gra|? =
Y lenPlp + xlg + x|

_ lp — qllén — g7 |? (7
= d d
lp+ cXllg + 2|

‘ Next, a glance at Fig.6 shows that Eqgs. (3) and (6) can be rewritten as
dN dN
@) A2lp— (=2 &A=lg—(-_2)
N CN
and
(6") &A= 1€n — 91wl
and from (3) and (6’) we have
Ip—gllén —grw * _ [P —gllén —grw* _ [P —q|A?
-d d - 2 — 2
lp+ 22 {|g + 2| 6 6

Also, from Eqs.(3’) and (6) we obtain

lp—allény —grwl® P~ allén —grwl® _ P — qlé?
d d = 2 - 2 :
lp+ S|lg + £&| A A

We have estimated the quotient (7) above and below.
Therefore

— q|A? — q|é6?
lin|autTn|p(In(€))] < max{|ln[|£63—|]| and |ln[|p—AZ|—]} =K,
Which is claim III.

Claims I, II, III, yield

In[|autTn|?u(IN(€))]
In[|autTn|}In[u(IN(€))]

InflautTy |u(IN(€)] |

laN(én) — a(én)| = Nin2/2 |

| <

Inf|lautTy | u(IN (€)]

< Nin2/2 < Nin2/2 IS
/ lln[|autTN|ln[f(’;|,§%ﬂr]| / lln[LNé/C]ln[%,%’;—;’,H
K
Nin2/2 - =
T =)
K ‘

| — 0as N — oo q.e.d.

= Nin2/ 2 | o T 67O (—2NInk + nlp — 4106
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Abstract

Recently, a new stability criterion for systems of differential equations with
complex coefficients has been advanced. It is based on a sequence of polynomials
associated with the system. This criterion known as the Extended Routh Array (ERA)
suffers the defect that it gets cumbersome and highly complicated as the dimension of
the system gets large. In this paper, we propose a modification of the ERA which
reduces significantly the burden of computations. The modified array requires only
computations of a set of second order determinants. The new algorithm is then applied
to produce a determinantal criterion for the stability of the above systems.
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Key Words and Phrases: Stability Criteria, Extended Routh Array, Systems of
Differential Equations.
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1. Introduction

Tests of stability of systems of differential equations are crucial in many areas
of mathematical analysis. In the case of real coefficients, the classical Routh-Hurwitz
criterion gives a quite complete solution, among many others see [1,2,3,5]. The case
of complex coefficients has recently become an active area of research. Different
approaches to this interesting problem are recorded in the literature, see for example
[4,6,7,8]. The Extended Routh Array (ERA) introduced in [7] settles the stability of
systems with complex coefficients.

However, a large amount of computations will be involved to produce the ERA
when the dimension of the system becomes high. Therefore, there is a need to work
towards more simplified versions of the ERA. The establishment of simpler and more
easily realizable criteria in practice will also further the theoretical development of the
subject. ,

In this paper we address this problem and we propose a modification of the
ERA which we call the Modified Extended Routh Array (MERA), where much simpler
arithmetic is performed. At each step of the MERA only the calculation of a second
order determinant is required. Furthermore, we exploit the MERA towards a new
determinantal criterion for the asymptotic stability of a system of differential equations
with complex coefficients.

In section 2 we give a quick reminder of the ERA and the way it is constructed.
in section 3, we introduce the MERA and we prove that it is in fact another algorithm
for testing the stability of complex systems, from which the equivalence of the MERA
and the ERA follows. A determinantal approach to the stability problem is introduced
in section 4. We end up in section S with some concluding remarks.

2. The Extended Routh Array

All the terminology of this section is taken from [7]. Suppose
f(2)=z"+az""+. +a, ,z’ +a, z+a, €))
is the characteristic polynomial of a system of differential equations with complex
coefficients and of arbitrary dimension. Consider the rational function:

z" +ilma,z"" +Rea,z"? +ilma,z"* +Rea,z"™*+.....
h(z) - 1 2 3 4

Rea,z"" +ilma,z"? +Rea,z"> +ilma,z"* +.....
The function h(z) is sometimes referred to as the test fraction associated with the
system [8].

Let f, be the numerator and f, the denominator of h. Suppose Rea, #0,
and call f, the remainder of the division of f, by f,. By induction, define the
polynomial f, to be the remainder of the division of f, , by f, , forj=3, .., n+l.
Lemma 4.1 of [7] expresses explicitly the coefficients of f, in terms of those of f_
and f,,. The ERA is the following array in which the j-th row represents the
coefficients of f, forj=1,2,3, .., nt+1 and where each row is completed by zeros to

the size of the first row. We assume no zeros exist in the first column:
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1 iIlma, Rea, ilma; Rea, ilma
Rea, iIma, Rea, ilma, Rea;

b3.| b3.2 b3.3 b3.4
b4,] b4.2 b4,3
n,1 bn.z 0
brn-l.l 0
where .
1 ilma, . .
b,, = H(Real.Reaz —-Rea,)- (R...“SZ (iRea,.Ima, —ilma,) ,
PR . Rea, . _ .
52~ Roa (/Rea,.Ima, —ilma,) - Rea )’ (iRea,.Ima, —ilma,) ,
1 1
b
b,, = b—l—-(bl] .Rea; —Rea, b, ,) —I:—z‘z(ibs_l JIma, —Rea, .b;,) ,
3,1 3.1
1 ,. bs.s .
b,, = b—(1b3_I Ima, - Rea,.b,,) ——3-—(1b3_I Ima, -Rea, .b,,) ,
3.1 3.1
and so on.

Theorem 4.1 of [7] states the following:

Theorem 1. The system with characteristic polynomial (1) is asymptotically stable if
and only if each term of the first column of the ERA is positive, where asymptotic

stability is as defined in [7].

3. The Modified Extended Routh Array

Consider the following array in which the first and second row are the same as
in the ERA. We call the new array the Modified Extended Routh Array (MERA) for
reasons to become clear later. The ¢’s and the d’s along with their respective

subscripts have been so chosen for technical purposes.

dO] d02 d03 d04 dOS
dl 1 dl 2 dl 3 dl 4 d] 5

d, dy, d, d,
€y € Cn
d, d, d,
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where
Rea,., , k23 and odd Rea, , k odd
dy =1, dy =1, ) w =9,
ilma,., , k even ilma, , k even
and
¢, = d,.dy —d, d, c. = d,.dy-d, d, Csy = d,.dy,-d,d,
’ 12 ’ 9 o oo
d, d, d,
d, :dn'clz -4y, d, =dn-c13_cn-d13 d, =d|1-c14"cn-d14
’ 2 , g o oo
d, d, d,
Cy = d, d, -d, dy C.. = dyd,-d, dy C.. = dy d,-d,.d,
» o » O IR
d, d, d,
d. = dy.cp—Cy.dy d. = dy.c —Cy .y d.. = dy).Cy =€y dy, o
" d, T d T d, ’

The following theorem implies the equivalence between the ERA and the MERA.

Theorem 2. The system with characteristic polynomial (1) is asymptotically stable if
andonlyif d,, >0Oforallk=1, .., n

Proof. Suppose the system is asymptotically stable, then by [7, theorem 3.2] the test
fraction h(zj can be expanded in the following continued fraction expansion:
1

h(z)=a, +b,z+

a +bz+
a, +b,z+.. +

where Rea, =0and b, >0fork=0, .., n-1.
The proof of theorem 4.1 of [7] makes it clear how the coefficients b, in the
above expansion relate to the first column of the ERA, namely

bk — bk+l.| ,
bk+2,]
fork =0, ..., n-1, where we suppose that 5, , =1 and b,, = Rea, .
The polynomials f,, f,, .., f,, forming the ERA are related by the

recurrence relations:
fk+| = (ak +bkz)fk+2 +f/¢+3 , k=0,..,n-1,
fn+2 = 0 .

These recurrence relations are simply another version of lemma 4.1 of [7].
Upon checking these relations, we see that the terms that arise are exactly those
contained in the MERA. Therefore, the following continued fraction expansion arises
out of the terms of the MERA,
1

n(z)=c, +d,z+ l

¢ +d1z+ ]

c, + d22+...+
+d .z
n-1

n-1
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where d, = fork=0,1, ..., n-1.
(k+1)1
From the uniqueness of the continued fraction expansion of h(z) [7, section 3],
we conclude that b, =d, fork=0, 1, .., n-1.
We claim that
dy, = bk+|,l
forallk=0,1,..,n
) 1 . b,, d,
It is clear that b, =d, =——, and the relation b, =d, leads to ——=—.
Rea, s dy
Since b,, =d,, = Rea,, we conclude that d,, = b,,.
By induction suppose that d, ,,, = b, , for some k, 3 <k <n, then
d,_ =&—N— and b, _, =bk—‘].
dkl bk+l‘l
By combining the relations d,, =b,_, and d,,_,, =b,, wegetd,, =b,,,, which
proves our ciaim.
Since b,,,, >0 forallk =1, .., n we conclude that d,, >0fork=1,..,n

4. Determinantal approach

In this section we exploit the results of section 3 to advance a new
determinant-type algorithm for the stability of the systems described above.

Theorem 3. The system with characteristic polynomial (1) is asymptotically stable if
and only if
(_l)k(k—l)/z Ak >0
for k=1, .., nand where A ,A,,...,A, are the first n principal minors indicated in the
arrangement
Reaq, i ilma, Rea, | ilma, Rea;| ilma

1 ilma, Rea, | ilma, Rea,| ilma,

0 Rea, ilma,| Rea; ilma,| Reaq;
0 1 ilma, Rea, ilma,| Rea,
0 0 Rea, ilma, Rea, | ilma,
0 0 1 iIma, Rea, ilma,

where each row is completed by zeros to the size of the first row.

Proof. Suppose the system is asymptotically stable, then by theorem2 d,, >0 for
k=0,1,

Consnder the determinant A , of order 2k-1 for 2 <k <n. Subtract 1/Rea,
times the (2j-1)-st row from the 2j-th row, forj=1, 2, ..., k-1, and with the use of the
MERA, we find that
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K 1 G2 G ]
d dlz dll
0 ¢ c
A, =d,, .det e
) " 0 dll dl2
0 0 ¢

where obviously d,, =Rea,, d,, =ilma,, d,, = Rea, and so on. Clearly the new

determinant is of order 2k-2.
Now subtract ¢,,/d,, times the 2j-th row from the (2j-1)-st row forj=1, 2,...,

k-1 and again with the help of the MERA, we obtain
A, = (_l)k_‘dlzlA(l:)—l
for k =2,3,..,n, where AY’ denotes the determinant A, with both the subscripts of
all its elements increased by j. From the last relation we find immediately that
AI: = (_])k(k—])/2d|2ld22] "‘d(zk—l)ldltl
or
(_l)k(k-w2 Ak = dlzld’.’zl “'d(zl:-l)ldkl
fork=2,3, ..., n. From theorem 2 it follows that d,, >0 fork =0, 1, ..., n, therefore
(_])k(k—l)/2 A, >0
fork=1,...,n
Conversely, suppose that (-1)**"2A, > 0 for k =1,..,n. Ifk=1, then
A, =d,> 0. Intherelation (-1)**"?A, =d}d}..d}_d, fork=2,3, .. n, put
k =2, then d,, > 0. V
Continuing by induction we get d,, >0 fork =1, ..., n, and by theorem 2 the
system is asymptotically stable and that completes the proof.

5. Concluding Remarks

The complexity of computation in the ERA stability test has been reduced by
exploiting special features of the continued fraction expansion of the test fraction
associated with the system. With the introduction of the MERA, this paper contributes
to ongoing research to finding algorithms which are computationally attractive,
numerically simple and accurate for assessing the stability of a system of differential
equations. However, the search for tests with reduced computational efforts is still
continuing. We have also applied the new MERA to obtain a determinantal criterion
for the stability of the system
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GEOMETRIA DIFERENCIAL
DE SISTEMAS DINAMICOS SOBRE C*-ALGEBRAS

Gustavo Pifneirot

ABSTRACT.

7Y axr)

Let’s call SD(G, M) the space of dynamical systems from an abelian locally compact
group G over an injective W*-algebra M. Let’s consider the natural action from
Aut(M) over SD(G,M). The first objective of this work consists of, under suitable

conditions, defining in $D(G,M) a structure of homogeneous reductive space.

The set U(G, M) containing the unitaries representations of G on M admits a bijection
with the space of *-representations of C*(G) on M. This last space will be called
R(C*(G),M). The second objective of this work consists of answering the following
question, which it was asked in[ACS 2]: which topology does this bijection induce
in U(G,M)? The answer will let us define in U(G,M) a structure of reductive

homogeneous space.

INTRODUCCION.

Un sistema dindmico es una terna (M, G,a), donde M es una C*-algebra, G es un grupo
localmente compacto (que consideraremos abeliano) y « es una representacién de G
en el grupo Aut(M) de *-automorfismos de M tal que para cada z € M la aplicacion
g — ag4(z) es continua. Si M es una W*-algebra entonces la funcién ¢ — ay(z) debera
ser 0-débil continua. Indicaremos con §D(G,M) al conjunto de los sistemas dindmicos

del grupo G en el algebra M.

Los sistemas dinamicos aparecen de manera natural en el estudio de diversas ramas
de la Matematica y la Fisica; en particular, por ejemplo, en Mecanica Cuantica son

estudiados sistemas dindmicos sobre C*-algebras. Paralelamente G. Corach, H. Porta

t Supported by CONICET (Argentina)
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y L. Recht desarrollaron con éxito una teoria geométrica inspirada en el espacio de
proyectores en una C*-algebra. Tal teoria, consistente en el estudio de la estrucura
de espacio homogéneo de dimensién infinita, se aplica a una extensa lista de espa-
cios, como las medidas espectrales, representaciones de grupos compactos, operadores
simétricos, operadores positivos y muchos otros (véase [CPR 1], [CPR 2], [ARS],
[MR], [ACS 1] y [ACS 2]).

Es nuestro interés incorporar a esta extensa lista de espacios donde es definible una
estructura homogénea reductiva al conjunto SD(G, M) de los sistemas dindmicos de
un grupo abeliano localmente compacto G en un algebra de von Neumann inyectiva
M. Con este fin vamos a estudiar la accién de Aut(M) en SD(G,M) definida por
Txay = TarT™' si T € Aut(M), a € SD(G,M) y k € G, o también esta misma

accién restringida al conjunto In(M) de los *-automorfismos interiores de M.

La pregunta bésica que nos hacemos, entonces, es bajo qué condiciones es posible
definir en SD(G, M) una estructura de espacio homogéneo. Si pudiésemos ver a
SD(G, M) en €l contexto de un espacio de Banach, entonces habremos dado un paso
importante en el camino hacia obtener una respuesta a la pregunta; pues los espacios

de Banach son el habitat natural de los objetos diferenciables.

Un tal primer paso es llevado a cabo en la primera seccién, donde se establece la
inclusién de SD(G, M) en un espacio de Banach conveniente. En particular este paso

determinari la topologia a considerar en SD(G, M).

Nuestra pregunta basica serd respondida para el caso de grupos finitos. Este ejemplo,
a primera vista puede parecer de poco interés, sin embargo serad la clave que nos
permitird estudiar los x-automorfismos de M de orden finito. Una consecuencia de
este estudio serd una demostracién de que los x-automorfismos de orden 2 admiten una
estructura de espacio homogéneo y que ademds constituyen un subconjunto abierto
de Aut(M).

Algunos de los ejemplos més importantes entre los sistemas dindmicos ocurren cuando
el grupo G es el grupo Z de los niimeros enteros. En la segunda seccién nos ocupamos
de este ejemplo. Estudiamos la accién dada por Aut(M). En esta seccién se demuestra
que si Cq,Cs € Aut(M) son automorfismos centarles distintos entonces las érbitas de
los sistemas dinamicos inducidos por C; y C; distan en mas de %.

La dltima seccién no esta dedicada a los sistemas dindmicos sino a un breve estudio
de las representaciones unitarias de un grupo G localmente compacto y abeliano
en un algebra de von Neumann M. El objetivo es responder a una pregunta que

habia quedado planteada en [ACS 2]. Explicaremos brevemente la naturaleza de la
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pregunta. EI conjunto U(G, M) de las representaciones unitarias de G en M admite
una“bi_yeccién natural con el conjunto R(C*(G), M) de las x-representaciones de C*(G)
en M. La pregunta se refiere a cudl es la topologia inducida por esta biyeccién en
U(G,M); su respuesta permitird considerar en U(G, M) una estructura de espacio
homogéneo.

Este trabajo consta de cinco secciones; en la primera, dados una C*-algebra M y un
grupo G localmente compacto y abeliano, consideraremos el conjunto SD(G,M). El
objetivo serd determinar para el mismo un contexto adecuado, que permita definir en
él una estructura de fibrado principal. En particular, responderemos a la pregunta de

cudl es la topologia que corresponde considerar en el conjunto.

En la segunda parte tomamos el caso particular en que G = Z vy, aplicando a
SD(Z, M) los resultados de la seccién previa estudiamos las érbitas de los sistemas
dindmicos de la forma n — C™ donde n € Z y C € Aut(M) es un automorfismo
central. Para ello se define en Aut(M) una nueva métrica d’ y se estudia el homeo-
morfismo resultante entre SD(Z, M) y (Aut(M),d’).

La tercera seccién estd dedicada a estudio de SD(G, M) en €l caso en que G es un grupo
finito. Fijado a € SD(G, M) consideramos la aplicacién I, : Aut(M) — SD(G, M),
definida por I14(7") = T*a y estudiamos los objetos diderenciales inducidos por ella

(esta seccién estd inspirada en [MR], seccién 12).

En la cuarta parte se aplican los resultados obtenidos en la seccién previa para efectuar
un estudio de la estructura de los automorfismos de Aut(M) de orden 2; se discutira
particularmente la existencia de secciones locales continuas para la accién II,. Una
conclusién resultante de este setudio sera que el conjunto de %-automorfismos de orden
2 es abierto en Aut(M).

La tltima seccién responde a la pregunta planteada en [ACS 2] acerca de la topologia
a considerar en el conjunto de representaciones unitariaas de un grupo localmente com-
pacto y abeliano G en una W*-algebra M. El objetivo de obtener un homeomorfismo
con el espacio R(C*(G), M) de las *-representaciones de C*(G) en M. Este conjunto
tiene, en virtud de [ACS 2] una estructura de espacio homogéneo; el homeomorfismo

indicado permite llevar esa estructura a U(G, M).

. 1. SISTEMAS DINAMICOS.

Sean M una W*-algebra con predual separable, G un grupo abeliano localmente com-

pacto. Llamaremos $D(G,M) al conjunto de los sistemas dindmicos de G en M; sea
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a € SD(G, M) un sistema dindmico. Notaremos M(G) al conjunto de las medidas
complejas definidas en Gy L(M) al conjunto de los operadores continuos de M.
Proposicién 1.1:

St o es un sistema dindmico de G en M y p € M(G) entonces para cada v € M
existe un tinico elemento de M, que llamaremos &,(z) caracterizado por la siguiente

propiedad:
#(a,(2)) = [ Blay(@)d(s) para todo p € M(G),® € M.
G

Queda asi definida una aplicacion &, : M — M que verifica las siguientes propiedades:
i) Para todo ,u € M(G), a, es un operador o-débil continuo de M.

%) Gpuy = @uéy, Vv, p € M(G).

) |G|l <l pll Vee M(G).

w) @u(z*) = ax(z)* donde F(A) = p(A) VA C G.

v) as,,, = Gs,as, para todo g,h € G.

vi) &5, (zy) = as,(x)as,(y) para todo g € Giz,y € M.

vir) [ ®(as,(z))du(g) = ®(au(z)) para todo p € M(G).

Los dos primeros puntos pueden resumirse diciendo que & es un homomofﬁsmo de
dlgebras de M(G) en el dlgebra L,(M) de operadores o-débiles continuos de M.

Reciprocamente s1 & : M(G) — L(M) verifica las siete proptedades anteriores y

definimos a : G — Aut(M) por oy = Gs,; entonces a es un sistema dindmico.
Demostracién:

Sea a un sistema dindmico de G en M, p una medida compleja en Gy = € M;
la demostracién de la existencia de &,(z) y de que se verifican las tres primeras
propiedades, puede encontrarse en [S], Proposition 3.2.2.

Para demostrar iv basta probar que ®(&,(z*)) = ®(dz(z)*) cualquiera sea ® € M,.

En efecto:

(@, (z")) = /G B(ay(z*))dulg) = /G B(ary(2)")du(g) = /G 3 (ay(@))du(g)

= [ #utay(e)inte) = TG = B(ax(@))

Donde ®.(y) = ®(y*) Vy € M.
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La propiedad v es consecuencia inmediata de iii. Las dos restantes propiedades son

consecuencia de:

 ®(as,(2) = /G B(an(2))ds, (h) = B(ay(2))

De donde se deduce que G5, = ay.

Reciprocamente; sea & : M(G) — L(M) que verifique i — vii, si se define a; =
as, Vg € G; es inmediato que oy es un sistema dinémico. e

A partir de la proposicién 1.1 podemos definir una aplicacién © que a cada sistema
dindmico « le asigne un operador 6(a) = & € L(M(G).L,(M)), que verifica i — vii,

segun la siguiente férmula:

@(O(a)u(z)) = /G ®(ay(r))du(g) para todo p € M(G),® € M,

Reciprocamente, dada una aplicacién & € L(M(G).L,(M)) que verifique 1 — vii de
la proposicién podemos definir un sistema dindmico (:)(d) = a segun la siguiente
férmula: é(&)g = as,.

Veamos que las funciones © y O son una la inversa de la otra. En efecto, si a un
sistema dindmico, entonces probemos que: ©0(a), = ay.

Para ello hay que verificar que ©(a)s, = ay, esto a su vez se deduce de lo siguiente:
®(O(a)s,(z)) = / ®(an(z))déyg(h) = ®(ay(z)) Ve € M,V® € M,
G

Para completar la demostracién hay que probar que: G)(:)I(&) p =Gy

Es decir, queremos probar que @(@C:)(&)“(w)j = ®(au(z)) Vo € M,V® € M,. En

efecto:
$(06(a),(x)) = /G 3(6(a),(2))du(g) = /G (s, (2))dp(e) = (G(z))

Definicién 1.2: Sian,a € SD(G,M) entonces diremos que o, — o uniformemente
st y s6lo st Ve > 0 Im € IN tal que || an(g) — a(g) ||< € para todon >2m ,g € G
donde a(g) = ay y la norma se entiende tomada en Aut(M) C L(M).

Veremos a continuacién que la topologia inducida por esta convergencia es la que

debemos considerar en SD(G,M) para que la biyeccién sea un homeomorfismo.

Proposicién 1.3:
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Con las notaciones anteriores; &, — & en norma de L(M(G),L(M)) s1 y sdlo si

an = a uniformemente.

Demostracién:

Supongamos que a, — a uniformemente y sean ¢ € M y ® € M, tales que || z ||[< 1
vy ®||<1. Seam € IN tal que || an(g9) — a(g) ||< € paratodon >m , g € G.

Entonces |9((én(4) — &(1))2)] < fy | an(9)e — a(g)e || diul(g) < ¢ || u || Ym < .
Reciprocamente si &, — & segin la norma de L(M(G),L(M)) entonces:

| an(g) — alg) | =l @n(6y) — &(8g) I<| @n —a [l & 1<) Gn — &|| -
De donde se deduce que a, — « uniformemente. o

La conclusién que se extrae de ambas proposiciones es que SD(G, M) es homeomorfo
al subconjunto de los operadores de L(M(G),L(M)) que verifican las propiedades i -
vii de la proposicién 1.1. Esto nos permite de manera natural considerar a SD(G,M)
como subconjunto de L(M(G),L(M)).

De esta manera hemos colocado a SD(G,M) en el contexto de un espacio de Banach
(que posee una estructura natural de variedad diferencial).

Queda pendiente el estudio de bajo qué condiciones el subconjunto de L(M(G),L(M))
‘ que verifica 1 — vii es una subvariedad en la que puede definirse una estructura de
fibrado principal.

La accién natural a considerar en SD(G,M) es la accién dada por los unitarios de M del
siguiente modo: uxay = Ad(u)ayAd(u*). Donde u € M es unitarioy Ad(u)zr = uzu*.
Es posible también considerar una accién desde Aut(M); Txa; = Ta,T7' VT €
Aut(M). |

Cualquiera de ambas acciones se extiende al subconjunto de L(M(G),L(M)) que, segin
la proposicién 1.1, es homeomorfo a SD(G,M).

2. SISTEMAS DINAMICOS ENTEROS.

Segin las notaciones de la seccién anterior consideremos el conjunto SD(Z, M ), donde
Z indica el conjunto de los niimeros enteros y M un algebra de von Neumann inyec-
tiva con predual separable actuando en un espacio de Hilbert H. Consideremos en
SD(Z, M) la métrica d(a, B) = suppez || @n — Bn ||L(M)-

Esta métrica estd bien definida ya que, por ejemplo, por la propiedad iii de la
~ proposicién 1.1 vale que || pn ||=|| fs, ||<|| 6n |< 1 Vp € SD(Z, M); ademas in-
duce en SD(Z, M) la misma topologia que la considerada en la seccién anterior para

los sistemas dindmicos definidos en grupos localmente compactos y abelianos.
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Definamos ahora en Aut(M) una nueva métrica d’(A,B) = sup,cy || A — B" |

Existe una aplicacién natural ' : SD(Z, M) — Aut(M) definida como I'(a) = ay.

Lema 2.1:

Adoptemos las notaciones anteriores y consideremos en Aut(M) la métrica d’. En-

tonces la aplicacion I': SD(Z, M) — Aut(M) es una isometria suryectiva.
Demostracion:

Si a € SD(Z, M) entonces a, = (a1)", por lo tanto d(T'e,I'8) = sup,cz || af —
Bt ||= d(a,B). La suryectividad resulta de que, dado A € Aut(M), si definimos
an = A", entonces a« € SD(Z, M) y I'(a) = A.e

De las dos acciones que pueden considerarse en SD(Z, M) queremos considerar aque-

lla definida desde Aut(M); Txa, = Ta,T~! VT € Aut(M).

A fin de dotar a Aut(M) de una estructura diferencial, considerémoslo como el espacio
de las *-representaciones de M sobre si mismo. Puesto que M es una W*-dlgebra
inyectiva, podemos aplicar los resultados de [ACS 1] y [ACS 2], que nos permiten

definir en Aut(M) una estructura de espacio homogéneo.

Ademsis, como (Txa), = Ta,T™! = (To1T7)" VT € Aut(M),a € SD(Z,M),n €
Z; entonces la acciéon de Aut(M) en SD(Z, M) se traduce, via I', en la accién de
Aut(M) sobre simismo dada por la conjugacién; TxA = TAT ' VT, A € Aut(M). Se
trata entonces de estudiar la estructura de Aut(M) con la métrica d' y la accién recién

indicada.

En esta seccién vamos a dar un primer paso para el estudio de esta estructura, es-
tableciendo un hecho y una conjetura acerca de las érbitas inducidas por la accién de
conjugacién. Recordemos las notaciones de la seccién anterior; si u € M es unitario,
llamaremos Ad(u) € Aut(M) a la aplicacién definida por Ad(u)r = uzu* Vo € M.

Lema 2.2:

Sean i = idy(y), u € L(H) unitario y Ad(u) € L(L(H)) tal que || (Adu)™ — i ||<
3 Vn € Z. Entonces Ad(u) = i.

Demostracién:

Si v = Ad(u) y c pertenece a la cépsula convexa cerrada del espectro de u, que
indicaremos co(sp(u)), entonces |c| > F(4— || v —1 [2) (véase [KR], 10.5.67 -
10.5.68 - 10.5.69). Entonces, como || ¥* — i ||< 3 Vn € Z se deduce que |¢| > 345 >
0,96 Vc € co(sp(u™)) Vn € Z.
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Multiplicando por un nimero complejo de médulo 1 conveniente, podemos suponer
que 1 € sp(u). La condicién |c| > 0,96 Ve € co(sp(u™)) Vn € Z dice primeramente
que para todo n € Z el espectro de u™ estd contenido en un arco de circunferencia

de longitud 0,57 simétrico alrededor de 1.
Supongamos que sp(u) # {1} y sea A € sp(u) — {1}. Vale que {A\",1} C sp(u™) Vn €

Z; pero, tomando una potencia de A conveniente, {A\",1} quedard fuera del arco de

circunferencia antes indicado; llegamos asi a una contradiccién. Luego sp(u) = {1}.

Como u es un operador normal de L(H) entonces para toda funcién f continua en el
espectro de u vale que || f(u) [|= supyesp(u)lf(A)|. Tomando f(t) := ¢ — 1 resulta

que v = Iy entonces Ad(u) = i.e
Observacion 2.3: El lema 2.2 es vélido aun, si reemplazamos L(H) por M.

Corolario 2.4:
La aplicacidn identidad de M, @ € Aut(M), es un punto aislado en (Aut(M),d’).
Demostracién:

Sea A € Aut(M) tal que d’(A,i) < %; luego || A" —i ||< 3 Vn € Z. Como en

particular || A — ¢ ||< 2, entonces, por [KR], 10.5.73 o [P], Proposition 8.7.9, existe
u € M unitario tal que A = Ad(u). Por el lema 2.2 se deduce que A = i Luego
1
{A € Aut(M) : d'(A4,7) < Z} ={i} e

Definicién 2.5: Diremos que C € Aut(M) es central si AC = CA VA € Aut(M).

Teorema 2.6

Si C € Aut(M) es central entonces C es punto aislado de (Aut(M),d’). Mds ain
1
{A € Aut(M) : d(A,C) < Z} ={C}

Demostracion:

Sea A € Aut(M) tal que d’(4,C) < £, entonces Vn € Z:
—n . n - _ o 1
| A" —C™ =l er(CTA" — i) = CT"A" —i |=[| (T A)" —iI<

Aplicando el corolario 2.4 se deduce que C™'A =i.e

Observemos_que,éi C € Aut(M) es central entonces para todo T € Aut(M) vale que
TCT™! = C, es decir la 6rbita de C es exactamente {C}. Si A € Aut(M) llamemos
Or(A) a la érbita de A; Or(A) = {TAT! : T € Aut(M)}.
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El teorema 2.6 puede refrasearse diciendo que si C es central y A € Aut(M),A # C
entonces la distancia (segtin d’) entre Or(C)y Or{A) es mayor o igual que %. Nuestra
conjetura es que existe un ndmero constante ko > 0 tal que si A,B € Aui(M) son
tales que Or(A) # Or(B), entonces la distancia entre Or(4)y Or(B) es mayor o igual

que un numero constante kq.

3. SISTEMAS DINAMICOS EN GRUPOS FINITOS.

Sea G un grupo abeliano finito, indicaremos por |G| al cardinal de G. Sea M un
dlgebra de von Neumann inyectiva actuando en un espacio de Hilbert separable H y

sea a : G — Aut(M) un sistema dindmico. En particular axy; = ara; Vk,j € G.

o,
qu.J ulivw ’_/

Observacién 3.1: Puesto que G es finito entonces es obvio que C(G) = L(G)

tomando en G su medida de Haar. En este contexto la convolucién de dos funciones

f,g € C(G) queda definida por f xg(j) = ﬁ Yorec f(k)g(i — k) Vi€ G.
Tomaremos como norma en C(G) la siguiente: || f ||c(o):= > req [F(F)I-
Por razones puramente de comodidad en la escritura (que seran evidentes en el teorma

3.8) y sin que esto represente una diferencia esencial omitimos en la definicién de

Il flleco) el factor I%‘T’ que era dado a esperar delante de la sumatoria.

Vamos ahora a seguir una linea argumental similar a aquella desarrollada en la seccién

1, con el fin de dotar a SD(G,M) de una estructura diferencial. Esencialmente vamos

a dar una versién finita de las proposiciones 1.1 y 1.2. Dado a € SD(G, M) queda

definida una aplicacién & : C(G) — L(M) dada por la siguiente féormula: &y =
ﬁ Lreg f(k)ax Vf € C(G).

Proposicién 3.2:

Sia € SD(G,M) y & : C(G) » L(M) es la aplicacion antes definida, entonces &

verifica: ’

i) Gfug = Gydy.

1) &g(z*) = d5(z)* Vz € M, donde (k) = f(k).

i) &5, € Aut(M) Vk € G.

) 11 Lrec f(k)as, = @;.

Reciprocamente si § € L(C(G), L(M)) verifica ¢ — 1v entonces eziste a € SD(G, M)

tal que & = f3, explicitamente o estd dada por la férmula ay = Bs, .
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La demostracién de la proposicién es completamente elemental por lo que la omitimos.
Queda definida una biyeccién entre SD(G,M) y el subconjunto de L(C(G), L(M))
dado por las propiedades i — iv. La proposicién 1.3 nos dice cual es la topologia
a considerar en SD(G,M) para que la biyeccién resulte un homeomorfismo. Esta
topologia es aquella inducida por la métrica d(a, ) = maxieqg || ax — Bk ||-

Notacién:

Indicaremos por In(M) al conjunto de los automorfismos interiores de M, es decir:
In(M) ={T € Aut(M) : T = Ad(u) con u € M unitario }.

E indicaremos por Der(M) al IR- espacio vectorial de las x-derivaciones de M, esto es,
A € Der(M) siy sélo si es lineal y para todo z,y € M vale A(zy) = zA(y) + A(z)y
vy A(z*) = Az)*.

Es bien sabido que toda x-derivacién de M es acotada.

Consideramos sobre SD(G,M) la accién de In(M) definida por (T*a)i := TapT 1.
La accién correspondiente sobre & es idéntica. Es facil probar que Tx& verifica 1 — iv

y que Txa = Txa.

Como M es inyectiva entonces In(M) tiene una estructura diferencial natural. Por
[KR], 10.5.63; T € In(M) si y sélo si existe A € Der(M) tal que T = e¢®. Luego
Der(M) es el espacio tangente natural de In(M). En particular existe un proyector
continuo IP : L(M) — Der(M).

Supongamos que A € L(M) y A = IP(A); digamos A = A + A. Si T ¢ Aut(M)
entonces TAT ™! € Der(M), de donde se deduce que IP(TAT 1) = TIP(A)T.
Dado un sistéma dindmico « indicaremos a partir de ahora con la misma letra a la
aplicacién inducida a € L(C(G), L(M)) e identificaremos ax = as,.

Observacién: Los cédlculos efectuados en gran parte del resto de esta seccién estan
inspirados en [MR].

Definicién 3.3: Dado a € L(C(G), L(M)) definimos Iy : In(M) — L(C(G), L(M))
por IIo(T) = Txa.

Notacién: Llamaremos I, al conjunto I, := {A € Der(M) : Aay = arA Vk € G}.
Proposicién 3.4:

Si Eo : Der(M) — L(M) se define por Eq(A) = ﬁ 2okec kDo

Entonces Eq(Der(M)) C Iy y EoEq = E,q. ’
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Comparese este enunciado con [MR], 12.2.

Demostracién:

Sean A € Der(M), vamos a probar que E4(A) € I,, es decir que Eo(A) € Der(M)
y que Eo(A)ag = agEqL(A) Vg € G.

Para la primera afirmacién basta observar que ayAa_; € Der(M) Vk € G y que si
{Ak}kec C Der(M) entonces > kec Ak € Der(M). Veamos la segunda afirmacién:

: 1 \ 1 1
Ey(A)ay = @(Z arAa_i)ay = |_G_| Z arAagyg = m Z arpgAa_y
keG keG reG
1 Ya
= Eag Z arAa_, = agEL(A).
reG

Probemos finalmente que EqEq(A) = Eo(A).

1 , 1 ' '
EoEq(A) = Gl kz; arEo(A)a_y = @ kZ:GEa.(A)aka_k = Eo(A). e
€G €

Llamemos @ al conjunto de los operadores 8 € L(C(G),L(M)) que verifican i — iv
de la proposicién 3.2; conjunto éste que identificamos con SD(G,M). Fijemos a € Q.
Asumamos por el momento que se verifican las siguientes hipdtesis; que nos permitiran
suponer en () una estructura de espacio homogéneo.

Hipétesis:

1) La accién I, es localmente transitiva y admite secciones locales continuas.

2) El espacio tangente a ) en o es complementado en L(C(G), L(M)).

Observacién 3.5:

Supongamos que T' € In(M) es tal que II,(T') = «; esto significa que Tay = axT Vk €
G. Derivando respecto de T obtenemos que Aoy = arA si A pertenece al tangente

de In(M)enT.
En otras palabras, si llamamos II, al conjunto II, = {T € Aut(M) : IIo(T) = a};

entonces vale que Tr(Il,) = I,. por otra parte este ltimo conjunto, por ser imagen
del proyector Eq es complementado en Der(M).

Observacién 3.6:

Si @ € Q entonces af.y = aja,, derivando obtenemos que si X € T,(Q) luego
Xfug = af Xy + Xgay. Ademss si identificamos X = X5, (k € G) entonces X 1x =
a; Xk + Xjar Vk,j € G. Por otra parte, siendo ax(zy) = ax(z)ax(y), (donde k € G,
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z,y € M), y a(z*) = a(z)* entonces Xi(zy) = ar(2)Xk(y) + Xi(z)ak(y) y ademds
Xk(z*) = Xp(z)*.

Finalmente si I, es la diferencial de I, se tiene que I, : Der(M) — L(C(G), L(M))
y o (6)f = bay —ajsé.

Las férmulas que definen a II, y E4 pueden naturalmente extenderse a L(M), indi-
caremos estas extensiones con las mismas letras Iy y E4 y haremos uso de ellas sin

mencionarlo explicitamente en el teorema 3.8.

Definicién 3.7:

Definimos Ko : L(C(G), L(M)) — L(M) por: Ko(X) = 1é"_| Yoreq Xra_,.
Teorema 3.8:

De acuerdo con las notaciones anteriores, valen los siguientes hechos:

i) Ko(X) € Der(M) VX € Ta(Q).

i) Mo(Ka (X)) = X VX € Ta(Q).

i) Ko(Tlo(A)) = (1 — Eo)(A) VA € L(M).

Demostracién:

Sean z,y € M; demostremos primeramente la propiedad i. Ya que Xi(z*) =
Xk(z)* Vz € G entonces basta ver que Ko(X)(zy) = zKo(X)(y) + Kol X )()y.

En efecto:

Kqo(X)(zy) = ZXka k(zy)) ZXka r(x)a—k(y))
| keG l keG
Z aka—k(z)Xk(a-k(y)) + Xk(a-k(z))aka—i(y))
|G| i
= 2Ko(X)(y) + Ka(X)(2)y.

Para probar ii veamos que II4(Kq(X)); = X; Vj € G.

Ma(Ka(X)); = Ko(X)a; — a; Ko(X) = ] (Z Xpaksj— Y anka_,,>

keG keEG

=G (Z Xro_pyj— Z(X]+k - Xjap)a_ k)

keG keG

IGIZX = X;.

keG
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Finalmente probemos el punto iii.

- 1 —_ 1 .
IXQ(HQ(A)) = @ E HQ(A)Ika_k = -|-GT| E (Aozk — akA)a_k
keG keG

_4- L Y arda_y=(1-Es)(A) e

Nota:

Estudiaremos a continuacién la validez de la hipdtesis 2 que afirma que el espacio

tangente T, (Q)) es complementado en L(C(G),L(M)).

Proposicién 3.9:

L(C(G),L(M)) es isométricamente isomorfo a L(M)ICl .= L(M) @ --- & L(M) (|G|
sumandos).

Demostracién:

Si Ae LM A= (4,,... ,A|g|) entonces definimos: || A [:= maxkeg || Ak || -
Sea T': L(M)ISl — L(C(G), L(M)) definida por: T(A)f := Y yeq f(k)Ak.

Entonces || T(A)f |=| Syeq F(F)4x 1< A | Seee FE =1 Al £ oo

Se deduce que || T(A4) [|<|| A ||. La igualdad de las normas resulta de considerar
que || 6k ||= 1y que I'(A)dx = Ax. Asimismo esta observacion dice que si X €
L(C(G),L(M)) entonces ' }(X) = (X5, Jkeg- ®

Observacién 3.10:

Existe una inclusién natural de L(M) en L(M)!€!l; por lo que podemos considerar
a Der(M) C L(M) C L(M)!Gl. Ademsés el teorema 3.8 nos permite asumir que
To(Q) C L(M)ICl. De este modo hemos podido colocar a los espacios tangentes de
In(M)y SD(G,M) en el contexto de un mismo éspacio de Banach.

Observacién 3.11:

Diremos que X € L(C(G), L(M)) verifica la propiedad P si valen las tres siguientes

afirmaciones:

1) Xk = 0 X + Xjar Vk,j € G;

i) Xr(zy) = ar(z)Xk(y) + Xi(x)ar(y) Vk € G Vz,y € M;

i) Xx(z*) = Xx(z)* Yz € M.

La observacién 3.5 nos dice que Si X € To(Q) entonces X verifica la propiedad P.

Veremos que también vale la reciproca.
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Proposicién 3.12:

Sea X € L(C(G), L(M)); entonces X € To(Q) si y sélo si X verifica la propiedad P.
Ademds st X € To(Q) entonces eziste A € Der(M) tal que X = Aay — arA.

Demostracién:

Sea X € L(C(G),L(M)) que verifica la propiedad P. Es facil probar que en ese caso
Ko(X) € Der(M) y en consecuencia e!F=(X) ¢ In(M) cualquiera sea t € R.

Tomemos la curva ¢ : IR — Q definida por c(t) = e!f«(X)xqa. Entonces %fi—oc(t)s =
Ka(X)ak — arKao(X).

Como X verifica la propiedad P entonces es facil ver que II4(K4(X)) = X; de donde
se deduce que X € To(Q) y que X = Ko(X)ar — arKo(X)VEEG. o

Corolario 3.13:

To(Q) = {Aa—aA: A € Der(M)}. Donde (Aa — alA)r = Aag — airA.

Consideremos el caso G = Zy = {0,1}. Combinando la proposicién 3.9 con el coro-_

lario 3.13 tenemos que T, (Q) se identifica con el subespacio de L(M)? caracterizado

por To(Q) = {(0,Aa; — a1A): A € Der(M)}.
Si A € L(M) entonces

A= AOll(Xl = (AO[](I] - alAal + OélAOt] -+—AO(1(Y]) = = (A — alAaI) + Ea(A)

BN

De donde se deduce que 3 (A — a;Aa;) = (1 — E4)(A).

Por otra parte como Der(M) es complementado en L(M), con proyector asociado
IP, entonces Der(M)a; := {Aa; : A € Der(M)} también es complementado, con
proyector asociado IP(A) := IP(Aa;)a;.

Afirmamos ademés que IP conmuta con 1 — E,. En efecto:

P(1 - Eo(A)) = P (A - %(A + alAal)) = P(A) - %(P(A) + P(a1Aay))
= P(4) ~ § (P(4) + o1 P(A)an) = (1~ Ea)P(4)

Anélogamente se prueba que IP(1 — E4) = (1 — E,)IP y en consecuencia IP(1 — E,)
es un proyector.

Ademais si A € L(M) entonces IP(A) = Aga; para algun Ag € Der(M) y entonces
P(1 - Eyo)(A) = IP(A) — a; IP(A)ay = Agag — a1Ag.
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Definamos E, € L(L(M)?) por Eo(A, B) = (0,1P(1 — E4)(A)); entonces se deduce

que E, es un proyector sobre T,(Q), que, por lo tanto, resulta complementado.
Observacién 3.14:

Hemos visto que en el caso G = Z, se verifica la segunda de las hipdtesis planteadas
(que 74(Q) sea complementado). Veremos en la siguiente seccién que en este caso

también se verifica la hipdtesis restante.

El proyector E, nos permite definir en (J una conexién, donde los espacios horizontales
se definen como H® := Ker(E,) y cuya exponencial estard dada por: ®,(X)f =

e["“(x)a'fe*}"“(x). Luego, las geodésicas de la conexion estan dadas por: cq x(t)f =
eth:a(-}()afe‘“thya(x)_

Observacioén 3.15: Acerca de las secciones locales.

Si continuasemos con la analogia con [MR] podriamos intentar definir una seccién
local mediante la siguiente férmula s,(8) = |1ﬁ| Yokeq @kB—k. Bs facil verificar que
si la distancia (positiva) entre a y § es suficientemente pequeia entonces sq(3) es

inversible y ademas sq(3)a;sq(8)7! = B Vi € G.

Sin embargo no se puede tomar a s, como seccién local pues, en general, s € Aut(M)
(no es multiplicativa). Por ejemplo, en el caso G = Zg; puede probarse que sq €

Aut(M) <= a = (. Este hecho muestra una diferencia esencial entre la seccién
previa y [MR].

4. AUTOMORFISMOS DE ORDEN 2.

Sea M una W*-dlgebra inyectiva. Denotaremos por Z(M) al centro de M, Z(M) =
{r € M : zy = yz Yy € M}. Llamaremos por otra parte Zs(M) al conjunto de
los automorfismos de orden 2, es decir Zqo(M) = {a € Aut(M) : o? = idum}.
Es evidente que cada a € Zy(M) induce de manera natural una representacion
& € SD(Zy, M). Ademads si & € SD(Z,, M) entonces &y € Zi2(M). Maés adn, la
aplicacién SD(Zy, M) — ZLy(M) dada por & — é; es un homeomorfismo. Podemos
aplicar, entonces, a Zy(M) todos los resultados expuestos en la seccidn anterior.

Veremos que en este caso la accién Iy : In(M) — Ziy(M) admite secciones locales.
Fijemos una rama del logaritmo en ' y sea r un nmero racional fijo.

La funcién € — € z — 27 = €™°9(*) es analitica en 1, luego, para todo z en un

entorno U, de 1 vale 2" = Y o7 an(r)(z — 1)".

Observacién 4.1:
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Si u € M unitario es tal que sp(u) C U, entonces el desarrollo en serie antes indicado
nos permite definir el elemento unitario u”™ € M por u” = > o> an(r)(u—1)". Ademés
si a € Aut(M) entonces sp(u) = sp(a(u)) y vale que a(u”) = a(u)".

Observacion 4.2:

Si M es una W*-algebra y a, 8 € Aut(M) verifican que || @ — 3 ||< 2 entonces existe
u € M unitario tal que a(z) = uf(z)u* Vo € M y ademas

pwc {egill=1y Rz Juma-510)}

Para una demostracién de esta observacién puede verse [P], Proposition 8.7.9.

Lema 4.3:

Dado € > 0 existe § > 0 tal que si 0 < 8y < & entonces todo z € ' tal que [z] =1y
Rz > 3(4— 62)7 werifica que |z — 1| < e.

Corolario 4.4:

De acuerdo con las notaciones anteriores, fijado un nimero racional r, existe 6 =
8(r) > 0 que depende sélo de r tal que s1 a, 3 € Aut(M) verifican || a — B ||< 6(r)

entonces existe u € M unitario que cumple las siguientes condiciones

i) a(z) = uf(z)u* Vo € M;

i) sp(u) C Us.

Las demostraciones del lema 4.3 y del corolario 4.4 son completamente elementales y

por lo tanto se omiten.

Sea ahora a € Zy(M) y, seglin las notaciones del corolario 4.4, tomemos § = 5(%)
Si || @ — B ||< &6 entonces existe u € M unitario tal que a(z) = uf(z)u* Ve € M y
ademas sp(u) C Uy .

Proposicién 4.5:

En las condiciones antes descriptas, siv =u? entonces Ad(v) taAd(v) = B.
Demostracién:

Considerando que a(z) = ufB(z)u* y que a, B € Zy(M) entonces Vr € M:
z = B(B(z)) = v*a(u*a(z)u)u = v a(u*)e? (z)a(u)u = u*a(u*)za(u)u.

Se deduce que a(u) = u*c donde ¢ € Z(M). Sea v = uz. Entonces:

o=
=

Il
IS
)

-1
a(v)'v=a (u%) u? = (u*c) 3u? =uic 3y
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En consecuencia a(z) = uf(z)u* = uc~7f(z)ctu* = a(v)*vB(z)v*a(v). Y entonces
afv)a(z)a(v)* = vB(z)v*; de donde se deduce que aAd(v)(z) = Ad(v)B(z). o

La proposicién 4.5 implica la existencia de secciones locales continuas para la accién

My : In(M) — ZLy(M). De la demostracién anterior se deduce ademads el siguiente
hecho.

Observacién 4.6: Acerca de las secciones locales

Supongamos que «, 3 € Aut(M) verifican que existe u € M unitario tal que a(z) =
ufB(z)u*. Siexisten v € M unitario y ¢ € Z(M) tales que a(v)*v = uc entonces e! tal
v verifica que Ad(v) 'aAd(v) = .

Corolario 4.7:

Zo(M) es un subconjunto abierto de Aut(M).

5. REPRESENTACIONES UNITARIAS.

Sea G un grupo localmente compacto y abeliano; y sea M un élgebra de von Neumann
actuando en un espacio de Hilbert H. Sill : G — L(H) es una repfesentacic')n unitaria
y m: C*(G) — L(H) es la x-representacién no degenerada asociada a ella, entonces
el rango de II esta contenido en M si y sélo si el rango de 7 lo esté.

Recordemos que dada Il : G -—— L(H) la representacién 7 asociada queda caracterizada

por la férmula:
() = [ Wo)o)dg ¥ € LG

Reciprocamente dada 7 : C*(G) — L(H), la representacién II estd definida por:
<II(g)p,n > = limx < w(bg * r)p,n > Vp,n € H.

Donde (®)xren es una aproximacién acotada de la identidad en L'(G); || @a |1 <
K VX € A. Para mayores detalles véase [ACS 2], seccién 4.2 y [P], capitulo 7.

Si R(C*(G), M) es el conjunto de *-representaciones de C*(G) en My S(G,M) es el
conjunto de representaciones unitarias de G en M; sea p la biyeccién recién definida.
El conjunto R(C*(G), M) tiene una topologia natural dada por la norma. La pregunta
que queda planteada es qué topologia hay que considerar en §(G,M) para que p resulte
un homeomorfismo (cf. [ACS 2]). Veremos a continuacién la respuesta.

Definicién 5.1: i II,,II son representaciones unitarias de G en L(M) entonces

diremos que II,, — II uniformemente si y sélo si Ve >0 Ing € IN tal que || M,(g) —
II(g) ||[< €e Vn > ng Vg € G.
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Proposicién 5.2:

Segin las notaciones anteriores; sean I, Il : G — L(H) representaciones unitarias y
Tn, T las representaciones asociadas. Entonces m, — m en norma de L(C*(G), L(H))

st y 86lo s1 11, — II uniformemente.
Demostracidn:

Supongarmos que m, — 7y sea (®x)rea una aproximacién acotada de la identidad,
donde A es un conjunto dirigido y || @5 |1 < K VA € A.

Entonces para cada ,n € H,g € Gy Vn € IN, < II(g),n > = limx < 7(by *
2 )¢,n >y <Ialg)p,n > = limx < ma(bg * Ba)p,n > .

Como 7, — 7 en norma, entonces para cada ,n € H y para cada A € A :
limp < mp(bg x ®a)p,n >=< w(bg * ), n > .
Tenemos ademas que si ,n € H, || ¥ ||< 1,]| n ||< 1 entonces
| <ma(bg x P2, > — < m(bg x Ba)h,n > [ =| < (mn — m)(6g x Ba)p, 1 > |

S =) (g *x@X) N Nl n IS =7 [ || bg*@x ([ b [ I IS K [ mn—7].
Nétese que la acotacién anterior es independiente de A. Por lo tanto si Y,n € H,
[ I<L1inll<1 | < (Ta(g) —(g))p,n > | = lima| < mn(bg * Ba)tp,n > —

< 7m(bg*x @), >|< K| mp—7| .

La conclusién es que Ve > 0 dng € IV tal que si n > ng entonces

| < (In(g) = T(g))sn > [ <eVge GV ||| ¥[<1.

Recordemos que si B € L(H) es tal que | < By,n > | <eV | % |,|| 7 ||< 1 entonces
| B llms e

Aplicando esta observacién a B := II,(¢g) — II(g) obtenemos que:
Ve > 0 3ng € IN tal que || I,{g)—I(g) ||< € Yn > ng Vg € G.

‘Para probar la reciproca, supongamos que II,, — II uniformemente. Dado € > 0 sea
no € IN tal que || I,(g) — [I(g) ||[< € Vg € G, n > ng. Sea f € LX(G), || f 1< 1. Si
n > no entonces || mn(f) = 7(f) 1< fy | Tnlg) = (o) || 1F(9)ldg < € [ |f()ldg = €.
Por la densidad de L!(G) se deduce que || 1, — 7 ||< e VR > ng. @
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Observacién 5.3:

A partir de lo demostardo en [ACS 2], la proposicién 5.2 nos permite definir en
el conjunto de representaciones unitarias de G en M una estructura de espacio ho-

mogéneo.
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ESTHER GALINA  JORGE VARGAS
Presentado por Juan lirao

ABSTRACT. In this paper, on the space of smooth sections of a SL(2, R)—homoge-
neous vector bundle over the upper half plane we study the SL(2, R) structure for
the eigenspaces of the Casimir operator. That is, we determine its Jordan-Holder
sequence and the socle filtration. We compute a suitable generalized principal series
having as a quotient a given eigenspace. We also give an integral equation which
characterizes the elements of a given eigenspace. Finally, we study the eigenspaces
of twisted Dirac operators.

§1. Introduction

Let G = SL(2,R) and K be a fixed maximal compact subgroup K of G. Let
(7,V) be a representation of K, we denote

C*(G/K,V)= {f G-V [fis C™ and f(gk)=7(k)"'f(¢g) forallke K}
LXG/E,V)={f:G =V [f(gh)=r(k)"f(g) forallkeK, [If|l} <o}

where || |2 is computed with respect to Haar measure. On L? (G/K, V') we fix the
obvious topology. On C* (G/K,V) we fix the topology of uniform convergence on
compacts of the functions and their derivatives. Both spaces are representations of
G under the left regular action L,f(z) = f(¢ 'z) forall g,z € G.

Let Q the Casimir element of the universal algebra U(yg,) of the Lie algebra g,
of G, Q define a G-left invariant operator on C®(G/K,V). Here, we obtain the
G-module structure of each eigenspace of the Casimir operator

Q: C®(G/K,V) — C®(G/K,V)

whenever V is an irreducible representation of K. Actually, we prove that whenever
an eigenspace is irreducible, then it is infinitesimally equivalent to a principal series
representation, and when an eigenspace is reducible then we have an exact sequence
0—- W — AY - M — 0, where A} is the A—eigenspace of Q@ in C*(G/K,V), W
is a Verma module and M an irreducible Verma module.
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As a corollary we obtain the eigenvalues and eigenspaces of
: L*(G/K,V) — L*(G/K,V)

From this, it results that if A is an eigenvalue of { the corresponding eigenspace is
a proper subset of the respective one of . We also compute the L2-eigenspaces of
the Dirac operator D.

Knapp-Wallach [K-W] obtained an integral operator which sends an adjusted
principal series onto the K —finite vector of the L?—kernel of the Dirac operator D.
In this work we obtain a similar result for each L?-eigenspace of D (c.f §4).

Let ¢ n be the Eisenstein function (cf. ***) in C*(G/K,V) that belongs to
the A—eigenspace of 2, we prove:

(%) a continuous function that satisfies the integral equation

[ faka)dk = f@)pn for all g2 € G

is smooth and is an eigenfunction of Q corresponding to the eigenvalue .
(é3) Any A—eigenfunction of  satisfies the integral equation in (z).

- Now, we stablish some notations,

K={r=(_5p mp) © 0<R]

A OREES
b (00 )

v{(3 1) + ven)

-{at€A : 1<t}
AT ={ar€Ad : 0<t<1}

:z:.

H

We will use the decompositions G = KAN and G = KAK = KATK = KA™K
[K]. If we denote by

01 01 1/1 0
(1.3) X—(-1 0) Y=(0 0) Hzi(o —1)
the Iwasawa decomposition of the Lie algebra g, of G is g, = ko, @ ao ® n, where
ko =RX, a, =RH, n, = RY. We denote by g, k, a, n their complexifications.

The Casimir operator 2 is an element of the umversa.l algebra U(g) of g, more-
over, the center of U(g) is C[Q] [L]. It is defined by

(1.4) Q=1 (H*-H-YX)
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If
as  w=(2 ) m=3(} ) E-

¢
another expression of Casimir operator is
(1.6) Q=L (W?+2W +4E_Ey)
W, E4 and E_ satisfy the relations
W=-W Ei=E; |[E;,E_]=W  [W,Ei]=+2E,

Let 8 be the usual Cartan involution on g,. Therefore, k, is the subspace of fix
points of 8. Let p, be the (—1)—eigenspace of 6.
The Killing form in g, is

B(X,Y) = 4Trace(XY).
Thus {£E,2E_} is an orthonormal base of p with respect to the hermitian form
—B(X,8Y)

The Iwasawa decomposition for E4 and E_ is

. 1 0
%E+:41W+§(0 _1)+%<

0
0
(1.7) _ 0
se=—wi(p 0)+4()

§2. Eigenspaces of Q

Since K is abelian, the irreducible representations of K are onedimensional.
They are (Tn, Vn) with n € Z, where

dimV,, =1 and mp(ke)v = ey forall veV,

Given n € Z, the elements of the center of the universal enveloping algebra of ¢
will be considered acting on C*®°(G /K, V,) as left invariant operators.
For all A € C define

(2.1) f{:{feC°°(G/K,Vn) / Qf:i}“—lf}

Since 2 is a continuous linear operator on C®(G/K,V,), it follows that A% is a
closed subspace of C*®°(G/K, Vy). Thus, A} is a subrepresentation of C*°(G/ K, Vy)
with infinitesimal character x», , where é is the linear functional of a, such that

A?—-1
-

6(H) = -12- and xas is the character of C multiplication by
We denote by A%[m] the K-type Tm of A}.
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PROPOSITION 2.1.

Giwen n € Z, A € C, the representation A} of G 1s admissible and finitely
_generated. Moreover,

(i) dimA%}[m]<1 forall meZ

(i) If A} [m] # {0}, then n-and m have the same parity.

Remark: The converse of (1) is also true. It follows from proposition 2.4.

We need some results to prove the proposition 2.1
Let f € AY[m], f is a spherical function of type (m,n) because

flkogky) = e ™0 f(g)e™™¥  for all g € G, kg, ky € K

Since G = KAK , the values of f are determined by its values on A. Besides, if
m # n then flx = 0. In fact, the equallity f(kg) = f(kg.1) = e~"™% f(1), implies
that f|ln # 0 & f(1) # 0, now since f is spherical of type (m,n) we have that
Flke) = f(L.kg) = f(1)e™ = f(1)e™'™% therefore if f|x were nonzero we would
have that m = n.

The subgroup A4 is Lie isomorphic to RT (positive real numbers with the usual
product) by the isomorphism a(«,) = 2.

Lemma 2.2.
If f € AY[m], the function F : RT — C associated to f gen by F(a(a)) =
fla)  for all a € A satisfy the differential cquation

B2 d 2(1+2%) A1
5 , 47 a oz 2 Arre) _
(2.2) =z IO 1= :_) ~(m* +n?) + 1=y nm 1

=0

The equation has regular singulurities at the points 0, %1, co.
A proof of this lemina is in [Ca-M].

Proof of the Proposition 2.1. Since 2 is an elliptic operator in C*°(G/K, Vy,), if
f € A%, f|4 is real analytic. Therefore, the function F' : RT — defined in (2.2)
is a real analytic function. Hence there is a holomorphic extension of F' to a
neighborhood of R* in the right half plane.

On the other hand by the Frobenius theory for differential equations with reg-
ular singular points [C-page 132] the equation (2.2) has an analytic solution on a
neighborhood of 1 if and only if m and n have the same parity. Moreover, any
holomorphic solution of (2.2) is a multiple of the power series

(2.3) (z —1)zlm=l ic,-(z —1)Y =1
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In fact, the indicial equation of (2.2) is

s(s=1)+s — i(m—n)2 =0
and its roots are +3(m — n). Thus, as the roots differ by an integer, the exponent
of the first term of (2.3) is §|m —n/, if this number were not an integer the function
(2.3) would not be analytic on a neighborhood of 1, this forces the same parity for
n and m.
As the other singularities of (2.2) are 0,—1,00, there is an extension of the
analytic solution on a neighborhood of 1 to an analytic solution en a neighborhood

of R*. So (i) and (4) holds. O

Remark. Since AY has infinitesimal character yxs and A% is admissible by Propo-
sition 2.1, A} has finite length by a known rwsult of Harish-Chandra [V,Corollary
5.4.16].

AAAAAAAAA

CUIUllal'y 2-3.
Given n € Z, A\ € C, the K-type T, occurs in any subrepresentation of AY.
Moreover, A} has a unique irreducible G-submodule.

Proof. Let W be a nontrivial closed submodule of A} and denote by Wi the set
of K-finite elements in W, we consider the map

Homg(W,A}) ——— Homg(Wk, Va)
®) T — (v T = Tv(l))
This map is well defined. In fact, if v € W, |
T(kv) = T(kv)(1) = (Lp.Tv) (1) = To(k™') = m,(k)Tw(1)
Moreover, it is inyective. In fact, suppose that T =0, so Tv(1) = 0 for all v € Wi
As T is a continuous linear transformation, Wi is a dense subset of W [L-page 24],
and there exists a sequence {v,,} in Wi such that v, — w for each w € W, then
Topm —Tw = 0=Tum(1) — Tw(l)
that is, Tw(1) = 0 for all w. Now, for w € W,
Tw(g) = (Ly-1.Tw) (1) =T(¢ 'w)(1) =0 for all g € G,
so T =0. If W is a closed submodule of A}, by (*) W[n] # 0, and by (3) W[n| =

A%[n]. This concludes the first statement of the corollary. The second follows from
the equality Wn] = A%[r]. O
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Fix n € Z, A € C, let § be the linear functional on a, such that §(H) = 3,

10 4y

loga; =t H, and denote by (—1)" the character of M such that 0 1

As usual, define
(24) Ian(-D)" @M @1) =
={f:G— C (C* such that

Flaman) = ¢~ A FD8ogd)(_1\n(m =1y £(2) for all z € G, man € MAN)
the representation of G induced by the representation (—1)" @ e* ® 1 of MAN.
G acts by left translation. Recall that I§, ,5((—1)" ® e*® ® 1) has infinitesimal
character xxs and I§; , x((—1)" ® e* ® 1) is irreducible if and only if A # (n +
1)mod(2) [B].

Define linear transformations

o an(Crecten A
f —— (2> Tf(2) = fye f(zk)ra(k)dE)

Whenever it becomes necessary to sea which is the domain of the operators, we will
write Ty, otherwise we will write T'. ‘
The linear transformation T is well defined because

TF(zk') = I_f(mk'k)rn(k)dkzr(k')—l /I_f(:ck)rn(k)dk.

Besides, since 1§ 4y ((—1)" ® ¢**% ® 1) has infinitesimal character x5, T is a left
G-morphism and left infinitesimal translation by €} agrees with right infinitesimal
translation, (Lo.f = Ro.f for all f € C®°(G/K,V,)). Hence the image of T is
contained in A%.

T is not zero because

Tr_n(1) = / T—n(k)re(k)dk = dk #£0
K K
Note that A% and A%, is the same eigenspace of  if A2 = (\')2. So, if A € Z we
will always assume that A >0 .

PROPOSITION 2.4.

Gwen n € Z,

(i) If A€ C\Z, or A\ € Z and A\ £ (n + 1)mod(2), A} is infinitesimally
“equivalent to I, (m1)" @ e @ 1).

(1) If X € Z>o , A+1 = nmod(2) and A > |n|, A} is infinitesimally equivalent to
fan (FD"@e M @1).

(111) IfA€Z>o, A+ 1=nmod(2) and A <n , the (g, K)-module structure of
AY 18 the following

ELAY[m] #£0  for all m such that AX[m] #0
E_AY[m] #0  for allm # £\ such that A\[m] # 0
E_AM4A+1]=0
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() If A\ € Zyo, A+ 1 = nmod(2), n < 0 and A < —n , the (g, K)-module
structure of A% s the following

E_AX[m|#0  for all m such that A\[m] # 0
E{A%[m] #0  for allm # £\ + 1 such that AY[m] # 0
E4AT[£X +1] = 0.

Remark 1: Under the hypothesis (2i1) or (1v) we have that A} is not a quotient
of I 4y (F1)" ® e ®1).
Remark 2: A% is irreducible if and only if A # (n + 1) mod(2).

We need the following lemma to prove (i) of proposition 2.4.

Lemma 2.5.
Givenn € Z, let \ € Zyo , A+ 1 = nmod2 and A < n, there exist m € Z ,
m < —X such that AY[m] is not zero.

Proof of Lemma 2.5. Let m be an integer such that
(2.6) m = nmod2 m < —A 3(n—m) iseven

The conditions on m and n ensure the existence of a smooth solution F' of (2.2)
on the interval (0, 00). In fact, using the Frobenius method for differential equations
with regular singularities, that (2.2) has a analytic solution in a neighbordhood of
1 if and only if m and n have the same parity. Besides, the singularities of (2.2)
are 0,41, co. Therefore, this solution extends to a solution on the interval (0, co).
Moreover, any smooth solution of (2.2) in the interval (0,00) is a multiple of the

power series

(z=1)Fm 3 ez -1y =1
=0

Therefore, F has a zero of order 3|m — n| at 1.

We have to prove that F' extends to an element of A%Y[m|. This will take some
work.

Let Nk (A) be the normalizer of A on K.

Consider C2°_ (A) to be the set of smooth funtions on A such that

() d(kak™) = Tp_m(k) d(a) foralla€ A, k € Ng(A)
(1) ———d’—(iﬂ—j— is a smooth function and even on A.
o(loga)Z(“ ™)
Let f: A — C given by f(a) = F(a{a)) , with « the isomorphism between A
and R* defined in (2.2). Let’s prove that the function f is in Crf_m(A). In fact,
the normalizer of A on K, is exactly .

Nk(A) = {+I} = {ks, k-z

2
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As n—m and %—(n — m) are even numbers,
Tn—m(i[) == Tn_m(ki%) = eii(n_m)% — 1

So, f satisfy (j) if and only if f(a) = f(a™!) for all a € A, or equivalently
F(z) = F(z7!) for all z € R*. Let’s prove that F(z) = F(z7!). Let h be
the function given by h(z) = F(27!), we want to prove that h = F. We claim that
h satisfies the same differential equation that F' does. In fact, let w = 27!, then

dh dF
() = o(w)w

od
= —w? 2 (w)
d’F dF d’F
17 —(2) = —2ww'—(w) + w4—2(w)
dF d’F
3 4_ ,
| =2w*— T w) + w* ——(w)
and
3 220 B 2w 2w7!
1—22  1—-w=?2 1-—w?
B 22 L w2 L w?
(=27~ (I—wiF  (1-w)
z(142) wl(l4+w™?) ww?+1)
-7~ (I-wiF ~ Q-w)
So,
d2h 223 dh

@@ T Tt

P s oy 2(1+2%) A2 —1 _

dZF 2w ! dF
= w?— —_ —_—

i 1+ w?) A2 -1
+ (—'_'—’—(1 —’l.l)wz)z(m2 +TL2) + ’L(Ul( 1:)2)”'” T T )F(w)

The right hand side is exactly the equation(2.2) on F, so it is zero. Both h and F'
are smooth functions on (0,00) and solutions of the differential equation (2.2). So,
by (2.6) they are muitiple of each other in a neighborhood of 1. Hence, we write,

h(z) = (» = 1)3I" "™y (2)
F(z)={(z— 1)%‘"‘midvp(z)
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with 9, and ¥r power series, such that cpn(z) = Yr(z) for a suitable nonzero
complex number. Therefore,

h(z) = F(z7') = (27" = 1)5I"mlgpp(27!) = (2 = 1) 5nm)p =3 Inmly o (71
Thus, Ya(2) = (z — 1) ¥ =™ hp(z~1). This imply that

cpn(z) = (2 — 1)"%("—m)¢,F(z—1)

Hence, F(z) = F(z7!) in a neighborhood of 1. As F is real analytic in (0, 00),
F(z) = F(271) for all z € R*. Equivalently, f(a) = f(a™!) for all a € A. Thus, f
satisfies (7).

We want to prove that f satisfies (jj). The function §(log a)~ (=™ is even on
A because

§(logay) "5 ("=™) = (t §(H))~=(n=™)
= (~t §(H)"2"™™ by (2.6)
= 6(log a; 1)~ (*~™)

Thus, the function f(a)é(log @)~ ("™ is even. The function f(a)é(loga)~z(*~™
is smooth because f is real analytic and has a zero of order 2(n—m) at 1. Therefore,
we have proved that f € C2°_ (A). We want to extend f to an element of A%[m]
Let C®°(G/K)[Tn—m] be the space of smooth complex valued functions on G /K
such that f(kz) = Th—m(k)f(z) for all k € K, z € G.
We need to prove:

Sublemma 2.6. :
The restriction map from C°(G/K)[Tn—m] to CZ__(A) 1s biyective.

Tn—m

Proof of sublemma 2.6. : The equallity G = K AK implies that the restriction map
is inyective. To prove that is suryective we appeal to a theorem of Helgason. Let
'H be the set of harmonic polynomial functions on p,. We consider the usual action
of K on H. That is, the one determinated by the isotropy representation of K in
Po. We now set ourselves in §10 of [H-1], with § = 7,—. Since n = mmod(2), we
have that 7_, € K,. Let deg@Q®(\) = p(8). A formula due to Kostant and cited
on pag 203 of [H-1] says that p(6) = d(6) =degree of the harmonic homogeneous
polynomials in the §—isotypic component of H. To compute d(§) we proceed as
follow: If e1, ez is an orthonormal basis for p,, we know that k(6)é; = cos(26)e; —
sin(26)ez, k(0)é2 = sin(20)e; + cos(26)e;. Since (n — m)/2 is a whole number the
polynomial function on po, (e1 + ez ){(n=m)/2 is harmonic and has degree (n—m)/2,
moreover k(8)(ey + iez)(""™/2 = {("=m™(¢; 4 jey)("~™)/2 Thus, we have that
-p(8) = (n — m)/2. Therefore, our space CZ°. (A) contains the space D™~ (A)
of page 211-in [H-1]. Hence, lemma 10.1 of [H-1] implies that the restricction map
from D™»-m(G/K) into D™-m(A) is a linear homeomorphism. We remark that
D»-m(G/K) C C®(G/K)[Tn—m]: A density argument together with the fact that
K is compact imply sublemma 2.6. O
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We proceed with the proof of lemma 2.5. For this end, we now have that the
function f admits a smooth extension f: expp, — C which satisfies

F(kak™) = Tu_m(k) f(a)

2.7 "
(20 = m(k) ™' f(a)7n (k)

The diffeomorphism between G and exp p, K ensures that the function f G—-C
given by

f(pk) = f(p)Tn(k)‘ for all p € exp p, ,k €K

is well defined and it is smooth. Also, f is in the K-type T of C>®(G/K,V,). In
fact, for x € G we write ¢ = kzak;1k1 with k1, ke € K, and a € A, hence

(Lif)(z) = F(kkoaks  ky) = F(k ™ kaaky k) ra(k™ y)™?
= Tn—m(k_lk2)f(a)7'n(k_lkl)_l
= Tnem(k ™) Tn—m(k2) f(&)Ta (k™ k1)
= Tn-m(k™")f (kaaky " )ra(k™") " 7 (k) ™!
= T (k)T (k) f(0)Tn (B~ T 7 (Fer) 2
= Tm(k) f(p)Tn (k1)
= (k) f(2) 0

A comutation like the one in [Wa)] page 280, implies that

(@F)@) = rulky by B2 T 1) = 0

because F' satisfies the equation 2.2.
This concludes the proof of lemma 2.5

Proof of the Proposition 2.4. (1) As T is not the zero function and since A #
n+1 mod(2) the module I§; , v ((—1)" ® €*® ® 1) is irreducible. Thus T is inyective.
The K-types 7, which occur in I§; 4y ((—1)" ® e*® ® 1) are indexed by all the m
with the same parity as n. Since T is one-to-one they must occur in A}. By
proposition 2.1 (1), (ii), they are exactly the K-types of A}. Thus, T is suryective
at the level of (g, K ) modules.

(1) Since A > 0, I 4y (F1)"® e * @ 1) has only one irreducible submodule F'
which is finite dimensional and whose K- -types are parametrized by {m : —(A—1) <
m < X—1, m=n(2)}. The structure of I, .,y (-1)" @ e ®1) is

D W4
n ® —Ao P
15 an (FD" ® ®1) Sw. 2 > 0

where #/; is the G-submodule spanned by the K-types {—(A—1), —(A=3),...,A—
I, A+ 1,...} and W_ is the one spanned by the K-types {...,A —3,A —1}. As
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A > |n| the K-type 7, occur in F. On the other hand, we have verified that T
maps non trivially the K—type 7, so F is not a submodule of KerT. Since F is
contained in every nonzero submodule of I, ,x ((-1)" ® e** ® 1). T'is 1:1; by a
similar argument to the one used on (i) we get that T is suryective.

(#11) Suppose that n, A > 0 A < n, A # n + 1(2). Then the image of T_ is
the discrete serie H)ys of infinitesimal character x,s. We recall that the K-types
of Hys are parametrized by {A + 1, A + 3,...}. In fact, the nonzero quotients
of I%AN ((—1)" Re M 1) are Hys, H-»s, Hys ® H-»s or itself. Now, the irre-
ducible finite-dimensional submodule occurs in Ker7"_, otherwise T (F') would be
an irreducible submodule of A} and do not have the K-type 7, (A < |n|! ), that
contradicts corollary 2.3. This contradiction ensures that 7_ is not inyective. By
corollary 2.3, A} has only one irreducible submodule, ImT # Hys @ H-»s. Fur-
thermore, since the irreducible submodule contains the K-type 7, ,s0 ImT_ = H ;.
Therefore Hys is the irreducible submodule of A%. '

The structure of I§; 45 ((—1)" ® e*® ® 1) is the following

. D Hys
G 1\ by -
Ian (F1)" ® e ®1) D Hxs @ Hoxs S Hoss 0

Ty is not inyective; otherwise Ty (H_)s) is an irreducible submodule of A} and
does not have the K-type 7,. Also Ker T4 # Hxs ® H_»s; otherwise, the finite
dimensional representation F' is a subrepresentation of A%, contradicting corollary
2.3. Thus,

ImT} 21§40 (F1)"®@ e ®1)/H-xs
This implies that

(ImTy )= | ARm]
m=n(2)

which is the Verma module of lowest weight —(A — 1). Thus,

EfAY[m]#0 forall m > —(A —1)
E_A%[m]#0 forall m>—(A—1)and m# —-A+1

By lemma 2.5 there exists a K-type A%[m] # 0 for some m < —A\. This en-
sure that A%Y[m] # 0 for all m < —\ and m = nmod(2), on the other hand, A}
would have a lowest weight submodule with lowest weight less than —Aé. The in-
finitesimal character of this lowest weight submodule would be different from x s,
giving a contradiction. Following the same argument, E acts nontrivially on each
A%[m], m < —A.

For the case A = 0 and A + 1 = nmod(2) the proof is easier.

(4v) It has the same proof of (#:z). This concludes the proof of proposition 2.4. O

Remark I: Given n € Z and A € C, the K-types A%}[m] are not zero for all m
with the same parity of n.
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Remark 2: In view of [S] , in cases (7) and (i1) A} is equivalent to the maximal
model of I, , v which is the induced representation with hiperfunctions coefficients.
In case (117) A} is a quotient of the maximal model of a generalized principal series.

Remark 3: Givenn € Z>o and A > 0 as in (112) of proposition 2.4 , the G-module
structure of AY is

2, 2,
(] —(A41) ® ‘_._ ®_(A-1) e A—10 P ®)\+1 L]
0 o

the right arrows represent the action of E; and the left ones the action of E_.
That is, we have proved

Corollary 2.6. :
Let X\ € Z»o and A =n+ 1 mod(2). A composition series for A} 1is

0-V-oAY > M0

where V is the Verma module of lowest weight —(\ — 1) and M is the irreducible
Verma module of highest weight —(\ + 1).

PROPOSITION 2.7. :

Given n € Z and X\ as in (113) of proposition 2.4 (i.e. A\ = n+ 1 mod(2) and
A >0 an integer), then A} is quotient of a gemeralized principal series 1, 4 n(Wo)
where Wy = R? and the representation of MAN 1is

(0 1) (5 2 G D)oo L)

Proof. For f =(f1,f2) € 15 4n(Wo) let
S 1§ an(Wo) — C=(G/K,Vy,)

defined by
(SF)(z) = / fr(@k)ra(k) d + / fa(ak)ra(k) d
K K

Since I, sy ((—1)" ® e} ® 1) is contained in I, , y(Wo) via the map f — F =
(f,0) and S restricted to I, ,5(Wo) is equal to T, hence Im(S) contains Im(T} ).
An easy calculation shows that Im(S) contains properly Im(T}). Now, corollary
2.6 implies that any K-finite vector in A} outside of Im(T; ) is cyclic in A} /Im(Ty).
Therefore, S is onto. O '
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Now, consider the Casimir operator acting on the subspace of compactly sup-
ported functions in C®°(G/K,V,). We denote by 2 the unique essentially selfad-
joint extension of {2 to a dense subspace of

f(zk) = Ta(k) ™" f(2)

2 _ Q-
L (G,Vn) =4 f: G C / / |f(;1;)|2 dz < oo
G

(cf [A-S]).

PROPOSITION 2.8.

FWe ={f € L*G/K,V,) | Qf = %f} , then W} is non zero if and only if
A€Z—-{0}, A+1=nmod(2) and |A| < |n|. Moreover, W} = W, is isomorphic
to the discrete series of Harish-Chandra parameter A\6. '

Proof. Suppose that A € Z—{0} , A+1 = nmod(2) and |\| < |n|. As Q is elliptic, a
Connes-Moscovici result [C-M] ensure that W7 is a sum of discrete series, actually ,
it is irreducible by the Frobenius Reciprocity. The K-finite elements of L?(G /K, V;,)
are in the set of K-finite elements of C°(G/K,V,), so W}[m] C A%[m] for all
m € Z. By proposition 2.4, A} has subspaces infinitesimally equivalent to a discrete

series for \ such that
AEZ A =n+ 1 mod(2), 0<|A < |n|

This ”discrete series” subspaces are really contained in L*(G/K,V,). In fact,
if f € A}[m] and 1t belongs to a ”discrete series”, then f satisfies the differential
equation (2.2) or the one which results from the identification of A with R via
a; < t. Then the theory of leading exponents as in [K] says that f(a;) e”(*~V*
at t = co . Now, the integral formula for the Cartan decomposition together with
A > 0 imply that f is square integrable. For negative A we have a similar proof.

For the converse we use the structure of the discrete series, Frobenius Reciprocity
together with proposition 2.4. This concludes proposition 2.8. O

§3.L? and C-eigenspaces of the Dirac operator

Let g, = ko, @ p, be the Cartan decomposition of g,, then p, is the subspace of
symmetric matrix of g,.

If we fix a minimal left ideal S in the Clifford algebra of p,, the resulting represen-
tation of so(p,) brakes down in two irreducible representations. Such representation
composed with the adjoint representation of k, restricted to p, lift up at a represen-
tation of K called the spin representation of K. Let {X;,X2} be an orthonormal
base of p,, let ¢ be the Clifford multiplication and fix an integer n. The Dirac
operator

D: COO(G/K, Vat+1 ® S) — COO(G/K, Voa+1 ® S)
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is defined by

(3.1) D =) (1®cXy))X;

where X; act as left invariant operators for all 7. The spin representation S de-
compose into a sum of two irreducible subrepresentations S = St & S~ (c.f. 4.2
bellow). If X € p,, then ¢(X)S* = S¥F, so

(3.2) D* :C*(G/K, V. ®S%) — C=(G/K,V,®SF)

are well defined.
We also consider

D: LG/K,Vat1®5) — L*G/K,Var1®35)

Some properties of the Dirac operators D and D are: both are elliptic G-invariant
differential operator. As the Rimannian metric of G/K is complete, D and D? are
essentially selfadjoint in L?(G/K, Vya41 ® S) [W], that is, the minimal extension is
the unique selfadjoint closed extensmn over the set of smooth compactly supported
funtions. Thus, we consider D equal to this extension which coincides with the
maximal one [A]. The eigenvalues of D are defined as the eigenvalues of the unique
selfadjoint extension.
The following proposmon is a corollary to proposition 2. 8

PROPOSITION 3.1.

If o 1s an eigenvalue of D, then the a-eigenspace W (D) 18 1rreducible and it
18 a proper subspace of the a-eigenspace Wo(D) of D. The eigenvalues of D are
o € R such that a® = §(n + 2)* — A? with X integer and 0 < [A| < n + 1.

Proof. For G = SL(2, R) The Parthasarathy equality [A-S] is

DZ=-Q+ %2;1 Id
e D? = -Q+ % Id
If a is a non-zero eigenvalue of D,
(3.4) Wa2(D?) = W, (D) ® W_o(D)

(cf [G-V]). Because of (3.3), the left hand side of (3.4) is the —a? + (n + 1) -1 =
%(/\2 — 1) eigenspace of the Casimir operator. Now, since S = V_; & V;,

LY(G/K,Vu41® S) = L3(G/K,V,) ® L} (G/K,Vpy2)
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Hence proposition 2.8 implies that 0 < A <n +1 and

o = (n+1)2 - )2
- 8

Moreover,
Wo2(D?) = A3 N LX(G/K, Vo) ® AYT' 0 LH(G/ K, Vay2)

Thus, W42(D?) is equal to the sum of two copies of the discrete series Hs.
Since, W4(D) is isomorphic to Hys we get that W4 (D) is properly contained in
Wo(D). O

Corollary 3.2. i
(Tn, Vn) and (Tn42, Vat2) are K-types of Wo(D) for every non-zero eigenvalue
a of D. For the case a =0, (Tnht2, Vat2) @8 contained in KerD and (7, Vy,) is not.

§4. Szego kernels associated to the eigenspaces of D

In [K-W] Knapp and Wallach gave an integral operator to explicitly obtain a
discrete serie as the image of a nonunitary principal serie when the discrete serie
is realized as the kernel of Schmid operator. In §3 we have obtained that each
eigenspace of the Dirac operator

D: L*(G/K,Va11 ®S) — LYG/K,Vay1®S)

is a discrete serie. The purpose of this section is to give an integral operator for
each non zero eigenvalue o of D which will realize the eigenspace Wo(D) as a
quotient of an appropiated principal serie. From §3 it is easy to deduce which will
be the principal serie corresponding to each eigenspace Wa(ﬁ), the problem is to
obtain the G-invariant integral operator onto W, (D). Let G = SL(2,R) and K
the maximal compact subgroup defined as in (1.2).

Let V41 be the n+ 1 irreducible representation of K, we assume that n+1 > 0.
In §3, given an orthonormal base of p, it was defined the Dirac operator D. If we
take {X;}2_, an orthonormal base of the complexification p of p,, another expresion
of Dis

(4.1) D=) (1®cX:))X;

where bar is conjugation with respect to g,.
One form to obtain the representations S* is choosing the left minimal ideals of
the Clifford algebra of p,

St =CE, S~ =CE_-E,
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where the product is Clifford multiplication. In Clif f(p) the following set of rela-
tions holds: '

(4.2) E:=E*=0 E,E_E,=-E,
Hence S = V_; @ V;. Thus, we have that
Vn+1 ® S = Vn @vvn+2

The set of K-finite elements of a principal serie I% an(e® erM® 1) defined in
(2.4), is the representation of K induced by € of M, hence

Inf(e) = & V; ® Homy(Vi,¢€)
ieK

So, if the representation € occur at V, and V42 as M-submodule, then € = (—1)".
We denote by ¢; the inclusions
i (eWe) — (V) Jj=n,n+2
As W, and V; are one dimensional
We=Cw V;=CvQu
where w € W, , v € Vg1 and u € S*.
Then the inclusions ¢; are determined by the constants a; such that
. Ef j=n
(4.3) tj(w)=ajv@u Whereu:{E_E+j=n+2

If sg « is the sign of the real number «, fix
.- = A+n+1
"TA\-A+n+1
Gny2 =1

Let G = KAN be the Iwasawa decomposition of G. According to this decom-
position we write an element of G by

z = k(z)e ®n(z)

Let S(z,t) be the function on G x K defined by

1
2
) sg a con0#AeZ, A\ <n

(4.4) S(z,t) = eAVHET (1 k(@72 ))in + Tsa(5(2 7 ))ins2)
Let 7 = 7 + Tpy2 on Vi @ Vige, so (4.4) implies
(4.5) S(zk,t) = 7(k)"1S(z,1) forall k € K

We will call S(z,t) the Szego kernel associated to the parameters (A, n + 1). If
fe I%AN ((—1)" ReM® 1), the Szego map associated to the parameters (A, n+1)
is

S(f)e) = [ S feya

= /K eADEHET ) 1027 18)) (i, + Gnga) F(E) dt

The equation (4.5) ensure that the image of the Szegd map is in C*°(G/K,V, &
Vat2).
Let D defined as in §3

(4.6)
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PROPOSITION 4.1.

Given n '€ Z , a a non zero eigenvalue of D, and \ a negative integer which
satisfies the equality

az%(—/\z-}—(n—{-l)z)%sga

Then, the Szegé map of parameters (A,n + 1) is a G-invariant operator onto the
eigenspace Wq(D).

Before proving this result we will see that Szegé map is not the zero map. Let

f € C*(K/M,W,) where € = (—1)", given by
f(k) =i (k) L ipw

Extend f to G so that f € I%AN ((—1)" ReM® 1).

(S(f)(l), W) = /I; (T(t)(ln + int2) (1" Tn(t)—l inw),inw) dt

= / (an + Tn+2(t)in+2 (i_l Tn(t)_l inw),inw) dt

K
= [ limol?
K
£0

because Tp42(t)int2 (171 Tn(t) ! inw) € Vyq2 which is orthogonal to V.
To see that the Szego map is G-invariant we need next lemma

Lemma 4.2.
Let S be the Szegé map with parameters (A, n+1). If f € I .5 (-1)" ® M 1)
then

() (z) = /K P(t)in + ins2) f(zt) dt

Proof of Lemma' 4.2. Using the change of variable
/ h(k) dis = / h(x(z~14))e=20H G0 gy
K K
for h(k) = 7(k)(in + in+2) f(zk) the following equality holds

/ 7(k)(in + in+2) f(zk)dk =
K

- /K (@ )T HHE iy i) fan(a M) de
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As A normalize N,
z 7t = n(x_lt)eH(I_lt)n(x_lt)
zh(z ) = tn(w_lt)_le_H(”_lt)
= te~HET 0y withn' € N

So, f (zr(z™1t)) = f (te_H("lt)n’) = e()‘+1)5H(‘_1t)f(t). And
/ 7(k)(in + ins2) f(ek)dk =/ 7(s(z 1)) ATVHET (G iy 40) £(8) dt
K K
- / St f®ydt O
K

Proof of the Proposition 4.1. By the lemma 4.2 the Szegd map is G-equivariant for
left regular actions. As D also commute with the action of G, it is enough to see

that if f € I§ v ()" ®@ X @1)

D(Sf)(1) = aSf(1)
If f el v ((-1)"®e* ®1), the image of f is in W, = Cw with e = (—1)",
then f(t) = h(t)w with kb a complex valued function. So,

f(z) = /I; S(z,t)wh(t)dt
DSF() = [ D(S(athw)em1h(t)d

from which we only need prove that
D(S(z,t)w)z=1 = aS(1,t)w
= a7(t)(inw + int2w)
Let X7, X2 be an orthonormal base of p. Then,

D(S(z,t)w);=1 =

=(I®c) (Z(X‘S(:c tw)z—1 @ Xi)

2

=@,

(
oo
o

=Ie)lrt)® Ad(t) Z(Ad(t‘l)X )S(1, 1w @ Ad(t~ l)x)

=1

%Ig~

eQ—DSH(exp(—u X)) (o (exp(—uX; )t)) (in + int2)w @ X;

I\
o

%Is

M

(A 1)6H (exp(—uAd(t™ ) X; )‘r(n(t exp(—uAd(t_l)X ))>

I
-

(in + 2.rz-i-2)w ® X:’
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As {Ad(t71)X;}i=1,2 is another orthonormal base of p, and
TN ®c) = (I ® c)(7(t) ® Ad(t))
then :
D(S(z,t)w)z=1 = T(t)f)(S(:c, 1w)z=1

So we must prove
D(S(z,Dw),=; = aS(1,1)w
= (X(in + in+2)w’

Let %E-, %E+ be the orthonormal base of p given in §1, then

D(S(z,t)w),—=; =
1
A DSH(EX(~u3 B-)) 1 (o(exp(—ut E-)))(in + int2)w ® B4

d
=(I —
( ®c)'(du .
d 1
+ ™ e(’\_1)6H(exP("“2E+))T(n(exp(—u%E+)))(in +ing2)w ® %E.;.)
U lu=0 :
By (1.7)

D(S(z,t)w)z=1 = (I ®c) (—(A —1)6l ((1) _01') (in + ins2)w ® LE4—

1 0 . .
—(A—l)ﬁi (0 _1>(zn+zn+2)w®%E+—

-7 (l (0 —OZ)) (in + in42)w @ 3E4+—

4\

(12 )rsmete)

4\

By (4.2) and (4.3) applying I ® ¢, the following holds

c(%E.*.)inw = c(%E_)in_i.gw =0

and by (4.4) -
¢(2E_)inw = Lapn inpaw
c(%E’+)in+2w = —%;l:iw
So that
D(S(z,t)w)p=y =
= —%(—/\ + l)za-i,,w + (=2 + 1)antntow + %(n + 2)a—ln-z',,w + %—nanin_ﬂw

= g0+ n 4 Dgminw + §(=A+ 1+ Danintow
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because
1 0
i(p &)=
0 — . . . :
Tj(i 0)1}:]1} siv € Vs J=n,n+2

The coefficients of 1,w and i,4ow are

1
- 1\ 2
%(A+n+1)i=%(/\+n+l) (—-)\—_}:i-n—n_—'_%—) sga
1
=1 (-N+(n+17?)%sga
=a

1 -A+n+Dan =1 (- )\2+(n+1)2) sg a

=«

That is, 3
D(S(z,1)w)e=1 = a S(l, Dw

Now, we will prove that the Sezgd map of parameters (A,n + 1) for negative
A maps onto W,(D). We know by proposition 3.1 that W4(D) is irreducible.
As S is non zero, if Im(S) is square integrable, then Im(5) = a(D) Im(S) is a
subset of the eigenspace W (D) of the Dirac operator D. But W4(D) is a subset of
Wz (D2) According with the notation of §2, as D? differ with the Casimir operator
Q by a constant, Waz(f)z) is isomorphic to A} @ A"'*'2 But the only quotient of .
I AN (( @M e 1) isomorphic to a subspace of AY @ A"+ is infinitesimally
equivalent to a discrete serie. Let ¢ € Im(S) in a non zero K- type as the action of
this K-type is one and the set of K-finite elements of the square integrable function

space is a subset of the K-finite elements of the C'°°, then ¢ is square integrable.
So Im(S) is a subset of W4 (D). The irreducibility concludes the proof. O
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COMPARISON OF TWO WEAK VERSIONS
OF THE ORLICZ SPACES

Bibiana Iaffei

Presentado por Carlos Segovia Ferndndez

Abstract: In this work two versions of weak Orlicz spaces that appear in the

literature, M 4 and M4, are analyzed. One of those include the weak Lebesgue
spaces for 1 S p < o0, while the other version gives theao annces o

the other version these spaces only for p > 1,
resulting the stronger space L! in the extrem case p = 1. Necessary and sufficient
conditions about the growth function A in order that both spaces coincide arc

given. Moreover we prove that these same conditions characterize the normability
of the M 4 space.

1.INTRODUCTION.

We shall denote by M, the weak Orlicz space associated to A, defined as in
the work of O’Neil, [O], where he makes use of this kind of functions to obtain a
generalization of the Hardy-Littlewood-Sobolev’s theorem on fractional integration
into the context of Orlicz spaces. This version of weak Orlicz spaces generalizes
the weak L? spaces, L%, but only for p > 1. In fact the class M4 for A the identity
function gives a proper subspace of L!.

Our aim in this work is to present an alternative definition of a weak Orlicz space
associated to the function A, denoted by M4, in order to include all L} for 1 <
p < oo. In this way our spaces M 4 give L] for A the identity function and they
coincide with M4 for A(t) = t?, p > 1. Moreover we shall prove that both spaces
are exactly the same as long as A keeps a “little bit away” from the identity. In
fact we establish in theorem (4.8) the necessary and sufficient conditions on A to
guarantee the equality M4 = M 4.

We would like to point out that the spaces M4 are easier to handle since they
‘are defined in terms of a norm while in turn, M 4 is given by means of a quantity
which is not necessarily a norm. It is well known that the weak LP spaces are
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normable for p > 1 while L. is not. Following this line we shall give in theorem
(4.11) the necessary and sufficient conditions on A for M 4 to be normable.

As’a last remark we may say that the usefulness of one version or the other it
would depend on the type of problem we are dealing with. On one side the spaces
M4 seem to be the appropriate ones when generalizing the Hardy- Littlewood-
Sobolev’s theorem, while on the other side the spaces M 4 would fit better for a
theorem on interpolation of operators for example.

2.THE ORLICZ SPACES.

(2.1)Definition: Along this work, for a Young function A we shall mean a non-
negative, convez and nmon decreasing function defined on [0,00] with A(0) = 0,
A(o0) = oo and such that it is nesther identically zero nor identically infinity. We
notice that A may have an jump at some z1 > 0, but in this case limz_ﬂ,l_ A(z) =

0o and A(z) = 0o for x > z; . Under these assumptions the inverse function A~!
18 well defined and it 13 also increasing and continuous.

We introduce now some notions related to the role of growth of non-negative
functions as above.

(2.2)Definitions: We shall say that two non-negative functions are equivalent if
and only if their ratio 1s bounded above and bellow by two positive constants.

A non negative function A defined on IRY is of lower type p (upper type p) if
A(st) < CsPA(t) for any s <1 (s > 1).

We notice that lower and upper types are preserved by equivalence of functions
and also for any function we may choose another for which the definition of type is
satisfied with C' = 1. In particular A is of lower type zero if and only if is equivalent
to a non decreasing function.

(2.3)Definition: For a Young function A we define the Orlicz space La = L 4(X)
as the linear space of those measurable functions acting on the measure space (X, )
for which there i3 a finite number K > 0 such that

1)l
/X A ( I dp <1
The infimun of such K 18 a norm which will be denoted by || f|| 4.
3.WEAK ORLICZ SPACES.

For a complex or real valued and measurable f, defined on a measure space (X, ©),
we will denote by p¢(t) the distribution function of f given by

ps(t) = p({z : [f(z)| > t}).

Then for t € [0,00), us(t) is a non increasing function taking non-negative values.
Therefore we may define its inverse f* by

£1(s) = inf{t : us(t) < )
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where s > 0. This function f* usually called the non-increasing rearrengement of
f, has the of property being equimeasurable with f in the sense that they share the
distribution function. »

By f** we shall denote the average of f* over the interval [0,z], that i3

1[* .,
;/of(t)dt z>0

f**(z) — { v
f*(0) z=0.

Given a Young function A, it is possible to define a class of functions M4 in terms
of the size of the f**, wider than the Orlicz space L 4. The following definition of
a version of weak Orlicz spaces is taken from the work of O’Neil [O], where the
author used this class in connection with the boundedness of convolution operators
on strong Orlicz spaces.

(3.1)Definition: For a Young function A we will say that f defined on (X, p)
belongs to M4 if and only if there exists a real number A large enough so that for
z>0

£* () < A7 (1> .
z
We define ||f||m, as the infimum of such A. Therefore

_ f*(s)
”f“MA —'iglg A—l(l/s) .

In [O], O’Neil shows that the quantity |[f||ar, is indeed a norm wich makes M4 a
Banach space.

For A(t) = t? with p > 1, it is well known that M, agrees with the space L% or
weak LP, defined as those functions satisfying

1 £1l; = sup#'/? £*(¢) < oo
>0

since for 1 < p < oo both quantities ||f||; and ||f||am,,, are in fact equivalent.
Moreover it is known that for p > 1 the Lebesgue spaces LP(IR™) are proper
subspaces of LY(IR™) (see for example [SW]. However the situation changes for
A(t) =t, that is for p = 1. In this case the O’Neil version of weak L! is no longer
the same that L!; it rather coincides with the strong L! space. In fact if A(t) =t,
f € M, if and only if for some A

1
*¥% \< -
=) < Ao

which means

/ " P )dt <A
0
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This is equivalent to f* being integrable, that is, f in L!.
At this point it appears in a natural way another version of weak Orlicz spaces as
to include all the L% spaces for p > 1.

(3.2)Definition: We will say that a u-measurable function f defined on X belongs
to the weak Orlicz space M 4 if and only if there i3 a constant C so that for t >0

At)p({z : |f(z)l > t}) < C.
This definition implies that the quantity

Il =it {3 > 0/suprs ()0 < 1}

is finite. Moreover the following properties hold
a) [lefllma =le| [ fllma

b) [|F + gllma < 2001 fllamea + llgllaea)
We notice that the factor 2 in b) does not allow to say that || || s, is a norm.

The proof of a) is immediate. On the other hand we observe that b) will follow if
we are able to prove the inequality

) ( { |f(z) + g(a)| >-t}) Aty <1

(I fllma + llgllaa)
for all t > 0. But

(e Pt > #1)20 < (i Hotn > 1) 40

U@L 1l 0@l ol
e ({cnfum (Tt + laTaes) T+ ellalTacy U Tatn + loTaca) > t}) At)

:ﬂ({ f@) 4, _lot)l 92>t}) AQ)

cllflima  eligllama

< (i > ) 20+ ({ais > 1) 40

since #; + 6 = 1. The convexity of A implies A(st) < sA(t) for 0 < s < 1. Then,
if ¢ > 1, we can bound the above sum by

(Ui =) 72 o (s> ) 722

IN -
S
o=
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which in turn is bounded by one as long as we take ¢ > 2.m
4 RELATIONSHIP BETWEEN THE TWO DEFINITIONS.
As we already apointed out L!(IR"™) is a proper subespace of Li(ﬂ%") Consequently

the spaces M4 and M 4 are not always the same. Indeed when A is the identity
function there are functions on IR" for which

p({z : [f(2) > 1)) <

for some finite constant C, even though they are not integrable. Such is the case
of for example f(z) = |11|,,. However M4 is always a subspace of M 4. In fact we
have the following result.

(4.1)Lemma: For any Young function A, we have
My C My

Moreover we have the inequality

[Fllaea <11 Fllaes

First we will find an expression for ||f| s, in terms of the non increasing rear-
rengement of f. From this lemma (4.1) will be an obvious consequence.

(4.2)Lemma: If f 1s a measurable function and by pg(t) and f*(s) we denote its
distribution and rearrengement function, then the following identity holds

sup s (A0)A() = supsit (L),
t>0 :9>0

and hence ()
*(s
||f“MA - ?i%) A_l(l/s)'

Proof:

First, let us assume that f is a non-negative simple function. Then it may be

written as
n
f= E CiXE;,
=1

where p(E;) > 0,E; NEx = 0if j # kand ¢; > ¢ > ... > ¢y > 0. Set d; =
p(E1) + ... + (Ej), 1 < j < n, and let us define dg = 0,¢cpn41 = 0. Then, if we
set pus(t) = [{z : |f(z)| > t}|, this function and its inverse f* are given by

Sl 4 Y

d;
ﬂf()d):{ D A
0 tZCl
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. c; di—1 <s<d;
f(8)={(’) N ’

§ > dy.

Therefore, using that A is non-decreasing we have

sup A(t)ug(At) = supA ( 3 ) dj = ﬁ‘;gA (f*;s))

Now, for a general measurable function f, we can find a non-decreasing sequence

of non-negative simple functions f, such that lim,_. fn(z) = |f(z)|, for each z in

the domain of f. Therefore, for each ¢t > 0, the sequence {x,(t)} is non-decreasing

and lim, o tn(t) = p(t), where p, and p denote the distribution functions of f,

and f respectively. Likewise, for each s > 0 we also have that f}(s) increases to
*(s) and the first claim of the lemma follows immediately. i

As for the second equality we just notice that

| fllm, = inf {)\ > 0/sup pr(At)A(t) < 1}
>0

(4.3) = inf {A >0/ supsA <f*(8)) }

= su f*(s)
5 A1(1/3)

where in the last equality we have used that sA(@) <1 is equivalent to f*(s) <
AT ( % )=

Proof of lemma (4.1):

From of definition of f** it follows that for any s > 0 we have f*(s) < f**(s).
This observation together with lemma (4.2) give the desired conclusion.m

As we shall see the difference between the spaces M 4 and M 4 may appear in other
cases besides A(t) = t. In fact if for z > 0 we denote by log* z the maximum
between logt and zero and for z € IR" we take the function

9¢?
wale]" (3 + log" (b))’

f(z) =

then f belongs to the space M 4 for A(t) such that A=1(t) = 9e¢(3 4 log™ t)~2.
First, A(f) is a Young function because we have chosen the constants in such a
way that A~ is increasing, continuous and concave on [0, 00]. Also,it is not hard
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to check that A(t) behaves at infinity like t(log™ ¢)2. Second, for any increasing
function A~?, the function defined on IR™ by f(z) = A~} E.'IIIT) is such that

f*(s) = A~1(1/s) proving our assertion that f € M4. Finally let us see that f is
not in M 4. If it were, there would be a constant A > 0 such that

%/, A7 (1/t)dt < AATI(1/s).

But then, for any s < 1 we have

s 962 —log s 1
/ im o [ L,
o (3 + log(1/t)) o  (3+u)

= 9¢%(3 — log S)_l

This together with our assumption would lead to
9¢2(3 +log(1/s)) ™" < M9e%(3 + log(1/s)) >

- for some A > 0. But this impossible because it would imply that —logs is a
bounded function on (0,1).

This example shows that when X = IR"™ and p is the Lebesgue measure there are
other Young functions different from A(t) = ¢ for which the space M, is strictly
contained in M 4. In our next step we will characterize all the Young functions for
which both spaces are exactly the same. In what follows we shall restrict ourselves
to the case of X = IR"™ with p the Lebesgue measure. Nevertheless the main
results contained in theorems (4.8) and (4.11) could also be derived working in
more general measure spaces.

We start by giving two real functions lemmas; the first can be found in [M], and
the second is an stronger version of a result proved by Viviani in [V]. This last
result will be an essential tool in looking for necessary and sufficient conditions on
A to ensure that M4 = M 4.

(4.4)Lemma: Let h(t) be a non negative and non decreasing function on [0, ] for
which there ezists a constant D such that for 0 < s < j/20, [; h(t)dt < Dsh(s).
Then if 1<r < D/(D -1), ’

(4.5) / [h(t)]"dt% (20)' - s [ / h(t)dt]
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4.6)Lemma: Let n be a non negative function such that X2 is non increasing.
( n g : g
Then n(t) is equivalent to 7j(t) = fot ﬂsﬂds if and only if n has a positive lower
type.

Proof:

Since ﬁtﬁ is non increasing the inequality n(t) < fot —"—(f-)-ds is always true no matter

what the lower type of 5 is. Also, the fact that the inequality fot ﬂsﬂds < Cn(t)
holds whenever 7 is of positive lower type is proved in [V]. Conversely the equiva-
lence between n and 7} implies that fot h(s)ds < Cth(t), for h(t) = ﬂtﬁ and Vt > 0.
This allows us to use (4.5) from Muckenhoupt lemma for any finite interval in or-
der to obtain that 7 is of positive lower type. In fact, if r > 1, as in the conclusion
of the previous lemma, 0 < u < 1 and s > 0 we have

ush™(us) < /0 Chrwa < /0 “RT@)dt < st [ /0 | h(t)dt] "< oshr(s)

Therefore .
h(us) < C (l) ' h(s)
U

Since r > 1 we arrive to the desired conclusion.m

Now we make an useful remark on the relationship between the types of a Young
function and its inverse.

(4. 7)Lemma: Let A be a Young function. Then A has a lower type m if and only
if A7 has an upper type 1/m.

Proof:

The Young function A has a lower type m if and only if there is a constant C > 0
such that : :
A(st) < Ct™A(s) forany 0<t<1 .

Now taking a pair t < s the latter inequality can be written
Al = AGsHy < C (3) " AGs)
s’ S

which is equivalent to say
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for any t < s. Setting a = A(t) and § = A(s), by the continuity of A the above
inequality can be written

o 8
A = A

Since A is non decreasing we get that the inequality

1(ﬂ) oA (@)

B o
holds for any a < 8, but this is to say that A~! has an upper type = .=

Now we are in position to state and prove the anounced characterization.

(4.8)Theorem: Let A be a Young function. Then the following statements are
equivalent
) MA - -MA;
i) 1 [0 ATI(1/t)dt is equivalent with A71(1/s),
1) A'has a lower type greater than one 1.

Proof:
Let us assume i) is true. Since by (4.1) M4 C M4 always holds, we must obtain
ii) from M4 C My . Take the function f(z) = A™? (

non increasing it is easy to check that its rearrengement is f*(s) = A7!(1) and
hence f € M 4. Now, our hypothesis implies that f belongs also to M4 which
means that for some A > 0 the inequality

[ ()=o)

holds for any s > 0 giving one of the inequalities in ii). Finally, the other inequality
follows using that A=!(1/t) is a non increasing function.

To check that ii) = iii) we set n(t) = tA7!(1/t) and we make use of lemma (4.6)
to conclude that n has a positive lower type, say a. Therefore we have

e ) since it is radial and

1 1 :
n(ut) = utA™! (7) < Cu®tA™? (?> O0<u<1,t>0yya>0)
u
which implies

1
A»-l( ) < Cu® 47! G) (0<u<1,t>0anda>0)

ut
setting o = L and z = 1 the above expresion is equivalent to

A (02) < Co'™®A(z) (6>1,z>0ya>0)
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which means that A~! has an upper type less than one. By using now Lemma 4.7
we may conclude that A has lower type greater than one.

In order to prove iii) = ii) we use again lemma (4.7) to conclude that A~! has
an upper type, say b, less than one and that, in consequence, the function 7(t) =
tA~1(1/t) has a positive lower type. In fact, if 0 < u < 1 and ¢ > 0 we have

n(ut) = utA™? (%) < cutG)bA*l G) = Cu'7by(2).

Since 1 — b > 0 we may apply lemma (4.6) to get ii).
It remains to prove that ii)=1). First we observe that by lemma 4.1 it is enough
to check M4 C M4. Let us assume f € M4, that is f*(s) < AA™! (%) Then we

have \
1 [* e 1
*k P * < Z -1 { = .
o= [ 1 (t)dt_:cA 4 <S)ds
But, using ii) we get
(@) < KA (1)
T

and hence f € My.a

(4.9)Corollary: If A has a lower type greater than one, then there ezists a con-
stant C' such that

[fllaea < Clifllama

holds for any f € M4 and moreover M 4 i3 normable.

Proof:

@ =1 [ 5w

N A () N
fmfo T AT

<Clflay [ A7 /0

< Cllfllma A7 (1/2),

where we have used iii) = ii) from theorem (4.8). Taking supremum over all z, we
get

[ fllma < Cllfllaa-
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Finally, since by lemma (4.1) the reverse inequality between | f|im, and || f]|am,
always holds, our space M4 is normable so that the proof of the corollary is
complete.»

(4.10) Remark: As we have just seen the space M 4 is normable, with the norm
||.l| a4, whenever A has a lower type greater than one. For A a Young function
without this property (i.e. A has lower type cne and no greater than) we already
know that our space M4 is much bigger than M, and consequently the quantity
Il m, 1s not longer equivalent to the norm ||.||ss, . A natural question then arises:
is there a norm on the space M4 equivalent to the quantity ||.[|a«,?. In other
words we would like to know whether or not this spaces M 4 are normable for
Young functions A without a lower type greater than one. It is known that the

T 1 . . 1
space L, is not normable. Our next result shows that this situation extends to all

M 4 with A having a lower type at most one.

(4.11) Theorem: Let A be a Young function. Then the weak Orlicz space My
is normable, with a norm equivelent to ||.|\m, if and only if A has a lower type
greater than one.

Proof:

By corollary (4.9) we only have to show that M 4 normable implies that A must
have a lower type greater than one. For simplicity we will work out the proof only
in the one dimensional case. For higher dimensions it follows the same lines. For
given s > 0 and N € IN we define the function

f(z) = ZA ( ks])

If we call fi (z) = A7! <2|z = |) it is easy to check that they all belong to M 4

forany 1 < k < N and s > O and moreover we have ||fk,s|lm, < 1 since all of
these functions sheare the same distribution Therefore, if by ||.|| we denote a

W
norm equlvalent to the quantity ||.||m,, we get

: N N
A< D N ksl S C1 Yl frslla, < CLN
k=1

k=1

However, elementary computations show that the derivative of f is negative on

[0, s + %] which implies that f(z) < f(0) for z € [0,s 4+ 7], . Then if we set
1N 1N 211
= fO) = AT )+ AT ) o+ AT
Hy,s = f(0) (2s)+ .(225)+ + (23)

we obtain

1
1< ,u'f(HN,s); = P'f()‘N,sts)A(ts)
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where t, = A_l(%) Y AN, = Then

HNA
A-1(Ly:
AN,s || fllm, < CoN
Thus 1
Hy, < CZNA_l(—)
s

and " )
+
ZA I(st Z/N 1 o)™

Since A™! is non decreasing we obtain
N N(N-+—l)
/ “1(1/2u)du < CoNAT(1/s) .

Letting N go to infinity we get that for any fixed s > 0

/3 A7H(1/2u)du < CysAT(1/s).

Changing variables v = 2u we get

v “(1/v)dv < CsA™(1)s).

0

Finally since A™! is non negative we arrived to the inequality
y g

/s A7 (1/v)dv < CsATY(1/s)

which by theorem (4.8), implies that A has a lower type greater than one.s

REFERENCES

[M] Muckenhoupt, B. Weighted norm inequalities for the Hardy Maximal Func-
tion, Trans. Amer. Math. Soc.,165(1972), 207-226.
[O] O’Neil, R. Fractional Integration in Orlicz Space, Trans. Amer. Math. Soc.,
115
(1965), 300-328.
[SW] Stein, E. and Weiss, G. Introduction to Fourier Analysis on Euclidean Spaces,
Princeton University Press(1975).
[V] Viviani, B. An Atomic Decomposition of the Predual of BMO(p), Rev. Mat.
Iberoamericana, 3, (1987), 401-425.

Recibido en Octubre 1995



Revista de la 203

Unién Matemitica Argentina
Volumen 40, 1996.
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Abstract: We give a molecular characterization of the Hardy-Orlicz spaces H,,(IR"™)
(Theorem 2.18), which generalizes similar results for the Hardy spaces HP(IR") for
p < 1. This result is applied to provide a proof of the boundedness of singular integral
operators on Hy,(IR"™). (Theorem 3.10).

INTRODUCTION. The purpose of this work is to study the Hardy-Orlicz spaces
H,,. The usual Hardy spaces H? can be obtained as particular cases taking w(t) =
t?. In [V] Viviani gives an atomic decomposition of H,,. The molecular theory
can be found in [GC-RF]. Several authors have used this technique to deal with
operators defined on Hardy spaces, see for instance [C], [C-W], [M], [M-S], [T-W]

1 .

In this paper we obtain a molecular characterization for H,, with a general w,
see section 2, Theorem (2.18). Then, in section 3, we apply this result to study
the boundedness of singular integral operators on H,(IR"). One of the main
difficulties is to define a suitable gauge, that is a notion of molecular “norm”, in
the context of Orlicz spaces. The one we introduce in (1.41) it is not the same as
that considered in the papers above when w(t) = t?. However, in view of Theorem
(2.18), they turn out to be equivalent. In the first section we give the notation,
definitions and some properties that we shall use in the sequel. We introduce the
maximal spaces H,,, the atomic spaces H”9, 1 <.¢ < oo and the molecular spaces
M(p’q,e),l <g< o0, €>0.

1. NOTATION AND DEFINITIONS

Let w be a positive function defined on IR = {z € IR;z > 0}. We shall say that
w is of lower type [ (respectively, upper type [), if there exists a positive constant
C such that :
w(st) < Ctlw(s)

for every 0 < t < 1 (respectively, t > 1). It is easy to see that if w is of positive
lower type [, then lim, o+ w(t) = 0, therefore we define w(0) = 0. '

* The author was supported by: Consejo Nacional de Investigaciones Cientificas
y Técnicas de la Reptblica Argentina.

Keywords and phrases: Molecular, Hardy-Orlicz spaces.
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We shall say that a positive function w defined on IR" is quasi-increasing (respec-
tively, quasi-decreasing) if there exists a constant C such that

w(s) < Cu(t)

for every s <t (respectively s > t).

We shall understand that two positive functions are equivalent if their quotient is
bounded above and below by two positive constants.

Let w be a function of positive lower type ! such that w(s)/s is non-increasing.
Then the following functions are well defined

(1.1) w™(s) = sup{t : w(t) < s} ,
(1.2) =

P(t)=;_T(t_—1) ,

(1.3) w@):/o wls) g5

S

(1.4) w1 (s) = sup{t: w(t) < s} and
-1
(1.5) :

0= G

We state the basic properties of these functions, the proofs can be found in [V].
(1.6) The lower type [ is less than or equal to one.

(1.7) w 1s of upper type 1 with constant C = 1.

(1.8) w™! is of lower type 1 and of upper type 1/1.

(1.9) @ is a continuous function equivalent to w.

(1.10) @ is strictly increasing.

(1.11) w is subadditive.

(1.12) w(s)/s is non-increasing.

(1.13) @ is of lower type ! and of upper type 1 with constant C = 1.

(1.14) @! coincides with the ordinary inverse function of W and is equivalent to
w1,

(1.15) p is a function of upper type 1/I — 1 equivalent to the non decreasing
function

p.
(1.16) p(t)/t? is quasi-decreasing for p > 1/1 —1.
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In order to introduce the atomic spaces H”*? and the molecular spaces M, 4.y, 1 <
g < 00, € > 0, we need the following definition.

(1.17) DEFINITION. Let w be a function of positive lower type l. Assume that
b= {b;} is a sequence of functions in LI(IR"),1 < q < oo, and c= {c;} i3 a
sequence of positive constants such that

(1.18) > cjw(llbsllee; V) = A < oo
J
We define
. 1185llge; '/
(1.19) Aq(b,c):mf{/\>0:2ciw (—’/\ﬁ/+ <1%.
\ J \ / J

We observe that

(1.20) Ay(b,c) = 0 if and only if b; = 0 for every j.
If L is the lower type constant of w, then

(1.21) 0 < Ag(b,c) < maz(LA,1).

If we also assume that w(s)/s is non-increasing, we have
(1.22) 0 < A4(b,c) < maz(LA, A"

and
1185114/
(1.23) Z cjw (A b o7 =1

Moreover, arguing in the same way as in the proof of Lemma (4.7) in [V], we can
show that if a; = ||b;||s¢; 1/q/w‘l(c ), then

(1.24) Y a; < C (Ag(b,e) + )M,
J
with C independent of b and c¢. If Ay(b,c) > 8 > 0, we get
(1.25) s < Cp(Aq(b, )"
J
.where Cs depends on 8 but not on b and c.
REMARK. In the following we shall assume that
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(1.26) w 8 a function of positive lower type | such that w(s)/s is non increasing
and

p(t) is defined by (1.2).
Given G € IN, we define the G-maximal function of a distribution f on S by

f&(z) = sup|f(¥)],

where the supremum is taken over all functions ¢ belonging to C°(IR™) satisfying
dist(z, supp(v)) < |supp(s)| and

/ [4(z)| dz + |supp(x)|EH! Z / |D*(z)| dz = 1.

la|=G+1

(1.27) DEFINITION. Let G € IN such that Gl > 1.
We define

H, =H,(R") = {fES' : /w(f&(x))dm =A<oo}

I fllm, = inf{)\ >0: /w (ffl(ﬁ)> dz < 1}.

It is easy to verify that if f € H,, then
(1.28) 0 <||fllg, < maz(LA,AY,

and we denote

(1.29) [|f|lz, = 0if and only if f =0 and
fg(z) —

It is easy to see that H, is a complete topological vector space with respect
to the quasi-distance induced by || ||g,. Moreover H,, is continuosly included
in §'. Clearly, when w(t) = t?, 0 < p < 1,w satisfies (1.26) with [ = p and
H,(IR") = H?(IR™).

In this work we shall denote N = [n(1/l — 1)], where [z] stands for the biggest
integer less than or equal to z.

(1.31) DEFINITION. A (p,q) atom, 1 < ¢ < oo 8 a real valued function a on IR"
satisfying:

(1.32) /a(a;)xﬂ dz =0,

for every multi-indez B = (B1,...,Bn) such that || = P1+ ...+ fn < N, where
B — B . B2 . pBn
o =zt -z . LTl
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(1.83) the support of a is contained in a ball B and

llallg|BI7*/2 < [IBlp(IB)]™*  if g < o0, or
(1.34)
llalloo <[IBlp(IBI)]™"  if g = co.

Clearly, when w(t) = t?, p € (0,1], we have that p(t) = t?» and a (p,q) atom

is a (p, q) atom in the usual sense.

Let us observe that, in view of (1.24), if {b;} is a sequence of multiples of (p, q)
atoms such that there exists a sequence of balls {B;} satisfying supp(b;) C B; and
(1.18) with ¢; = |Bj|, then the series Y b; converges in §'.

J

(1.35) DEFINITION. We define HP9 = HPI(IR"), 1 < q < oo, as the linear
space of all distributions f on S which can be represented by

(1.36) F=Yb in S8,
J

where {b;} is a sequence of multiples of (p,q) atoms such that there exists a
sequence of balls {B;} satisfying supp(bj) C B; = B(zj,rj) and (1.18) with
cj = |Bj|. We denote b= {b;}, B = {|B,|} and let

||fHHp,q = 1nf Aq(b, B),

where Ag(+,-) is as in (1.19) and the infimum is taken over all possible represen-

tations of f of the form (1.36).

(1.37) REMARK. It can be proved that H,(IR") = H”(IR"), 1 < ¢ < 0co. More-
over, if we define HP%9* k> N, as in (1.35) but taking atoms satisfying (1.52)
for all |B| < k, we also have H,, = HP%* 1 < g < oco. In particular, this implies
that definition (1.27) does not depend on G. The atomic descomposition of H,,
and the density of L? in H,, will be important tools in this work.

The Remark can be proved following the lines of [V]. However, in our case, since
the space of homogeneous type involved is IR", it is possible to consider Hardy-
Orlicz spaces for a larger range of p, ¢, by using atoms with vanishing moments as
in (1.32). The necessary modifications can be carry out.

We are now in conditions to introduce the main object of study of this work, the
(p, g,€) molecules and the molecular Hardy-Orlicz spaces.

(1.38) DEFINITION. Assume that € > 0,29 € R" and 1 < ¢ < 0. A (p,q,€)

molecule centered at zo 13 a real valued function M on IR™ satisfying

nle -1,-
(1.39) 1M ||| Mp(] - —zo|™)| - —2o|"F37)|, < C,
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where ¢' = q(¢ —1)71, and
(1.40) /M(m)zﬂ dz =0

for every multi-indez B such that |B| < N.

Given M, a (p, q,€) molecule centered at z,, and B, a ball with the same center,
we denote

M®B = MXg and
n(e+L
_ MXcpp(] - —zo|™)(| - —mo|" T
- 1
p(IB)|BIF* 7

MCB

(1.41) DEFINITION. Assume 1 < ¢ < o0 and 0 < €. We define M, 46) =

Mpq,e)(IR"), as the class of distributions f on S which can be represented by

(1.42) f=> M, in S8,
J

where {M;} is a sequence of (p,q,€) molecules centered in {z;}, such that there
ezists a sequence of balls {B;} = {B(zj,r;)} satisfying

B; — CB; —
> 1Bslw(l1M, 7 || B4l 1/q)+Z|Bj|w(||Mj [1gBj1 1) < oo

J J
Let MB = {M;"}, M® = (M P} and B = {|B;|}. We define
||f“M(p,q,c) = inf(Aq(MB7 B) + A(I(MCB’ B)a )

where Ag(-, ) @s as (1.19) and the infimum is taken over all possible representations

of f of the form (1.42).
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2. MOLECULAR CHARACTERIZATION OF H,,

In order to prove the molecular characterization of H, (Theorem 2.18), we need
some previous lemmas. Let us observe that, in view of the equivalences stated in
(1.9) and (1.14), we can assume, without lost of generality, that w satisfies (1.9)
through (1.13). -

(2.1) LEMMA. Assume that p is a Borel measure on IR" and E 1s a bounded set
such that u(E) = 1. Suppose that {2} q|<m 18 linearly independent on E and V
is the linear space generated by {z°Xg(z)}a|<m- If u € LY(E),1 < g < oo, then
there exists a unique v € V such that

(22 [@)Xs@) ~ o(@)e du(e) =0, for cvery B, 18] < m.

@)= Y / u(y)Xs(y)y™ dily) - va(),

la|<m

where vy, 1s the unique element of V which satisfies
(2.3) /v“(x)ﬂﬂﬂd#(z) =ba,5  for every B, |B| <m.

PROOF. Let v(z) = ¥jj<m ca®®XE(2), ca € R. Clearly, v satisfies (2.2) if and
only if -

T N f P 2 - . f N 4 o ~ VoA .

b ca/ z%zP du(z) = j u(z)z? dp(z), for every S, || < m.

lal<m 7 F B

Then, since {Z4}|a|<m is linearly independent on the bounded set E, there exists
a unique v € V which satisfies (2.2). On the other hand, arguing as before, we

have that for each a, |a| < m, there exists a unique v, € V which satisfies (2.3).
Thus, if Z|a|<m dove =0, do € IR, we have

dg = Z dqo /Ua(z)zﬂdp,(:c) =0, for every S, |8 < m.
laj<m

Therefore, {vq4 }ja|<m is a basis of V and we can write v = E|a|<m GoVq, @y € IR.
Finally, in view of (2.3) and (2.2), it follows that

ag = Z do | va(z)2z? du(z) = [ v(@)zP du(z) = [ v(2)XEe(z)z? du(z)
X / /

for every £, |8| < m.

(2.4) LEMMA. Suppose that M i3 a (p,q,€) molecule centered at xo, with 1 < ¢ <
oo and € > 1+ — 1. Let o be a positive constant and By = B(zo,2%0), with k a
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non-negative integer.  Then there ezists a sequence of multiples of (p,q) atoms
{br}, supp(br) C By, such that

(2.5) M=) b S,

k>0
(2.6) llbolly < ClIMPe||,  if k=0, or
(2.7) llbklly < CIIMCEBo||, 27™EFk >

where C' 13 a constant independent of M and . When w(t) = tP,p € (0,1], we
have, without restriction for € > 0, (2.5), (2.6) and

1 1

(28) belly < CIIMCBell 273 =DE for k> 1.

PROOF. Clearly, we can suppose that M is a (p, ¢, &) molecule centered at 0. Let
Ey = By, Eyx = By — Bg_1,k > 1, and My = MXE,. Let Vi be the linear space
generated by {z*Xg, }|a|<n- From Lemma (2.1), with E = Ex, dp = Iflﬂ dz,m =
N and u = My, there exists a unique Px € Vi which verifies

(2.9) /(J\/Ik(:c) — Pi(z))zP dz =0
for every 8,|0] < N. Moreover,
1
: Py = —— | Mi(z) z%dz. Quk
>0 k IO:IES:N'|Ek|/ {e) o do. Qoo

where ),k is the unique element of Vi such that
(2.11) /Qak(m) 2P dz = |E|64p for every B,|B| < N.

If we denote mqr = ﬁ J Mi(z)z* dz, then we can write

M(z) = Mi(e) =) (Mi(z) = Pa(2)) + ) Y marQak(2).

k>0 k>0 k>0 |a|<N

Since Y, 5 |Er|mar = [ M(z)z® dz = 0, applying summation by parts, we obtain

3 Y makQui(@) = 3 S makl Be)(|Bx 7 Qui(2))

k>0 |a|<N |a|<N k>0
= Z E(EmorlEr|_ Z Mar Er)(|Ek| 7 Qar(2))
|| <N k>0 r>k r>k+1
= > > (1Bl Qarra(e) = 1B Qar(2)) Y marlErl
[a|<N k>0 ' r>k+1

= . D fakRei(z) |

|a)<N k>0
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where nqr = E Mmar|Er| and Rak(x) = |Ek+1|_1Qak+l(m) - |Ek|—1Qak($)-
r>k+1

Then, since supp(Mi — Pi) C Ex and supp(fakRak) C Ex U Eg41, it follows that

(2.12) M=) (My—P)+ > Y nokRak, locally in LY.
k>0 la|<N k>0

Clearly, by (2.9) and (2.11), My — Pi and nqkRok are multiples of (p,¢) atoms.
Furthermore, by (2.11), we get

(2.13) |Qak(z)| < C(2%0) 1ol

Thus, by using (2.10) and Holder’s inequality, we have

P(e)] < c/%dm <c (_/|Mk(a:)|“lg—i|)%,

which inmediately yields
(2.14) |My, — Pi||, < C||Myll,, for every k > 0.

Then, for k > 1, since p is increasing and of upper type 17 — 1, we obtain

LAY "@+%0
1My Pelly < Cl[Mil, < ¢ ezl DLl
(215) (10 )Y (2t 10)

< C||MOBo| 27"k

On the other hand, applying Hélder’s inequality, (2.15) and the restriction on &,
we have

ekl <Y /|Mr(m)|z||°‘|dx

r>k+1

1
< S M |lg(27 ) |7
(2.16) r>k+1

< Colel||MOPo||y Byl Y 2rtlel=ne)
r>k+1

< Col*l||MOPe] || Bo| 7 211,

From (2.13), we get
Rai(2)] < C(2k0)lo1n

and, applying (2.16), we obtain

=1 5—n(e
Iak Raklloo < C|IMEE0|y|Bo| T 27+ DE,
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Hence, since supp (Nak Rak) C Bk+1, it follows that

(2.17) |7k Raklly < C||MOBe]|, 27k,

Finally, if we define by = My — Py, by = ZIGISN NaoRao, bk = My_1 — Pr_1 +
2o lal<N Nak—1Rak-1,k 2 2, by (2.12), (2.14), (2.15) and (2.17), we get (2.5), (2.6)
and (2.7). When w(t) = t?,p € (0, 1], we can improve (2.15) and get

My = Pillq < C|[Milly < C|[MOPol]y 27"+~ 0% for k> 1.
Thus, arguing as before, but without restriction on €, we have
InakRaklly < Cl[MEPel, 275 =05 for k> 0
which proves (2.8).

(2.18) THEOREM. Assume that w is a function of positive lower type | such that
w(s)/s 1s non increasing. Let p(t) be the function defined by p(t) =t~ /w1 (¢71).
Then Hy = My qe) with1 < g<oo ande > 1 —1. When w(t) =t?,p € (0,1],
we have Hy = M, 4.6 for 1 < ¢ < oo and every € > 0.

PROOF. By (1.37) is sufficient to prove that H”? = M, .).

Furst inclusion: H?? C M, 46)- Let f be a distribution in H?9. Assume that
b = {b;} is a sequence of multiples of (p,q) atoms such that f = 3°.b; is a
representation of f as in (1.35). Clearly, b; is a (p, ¢,€) molecule centered at z;.
Moreover, if we denote M; = b;, in view of (1.35), (1.38) and (1.41), we have

11| Mepgey < Ag(MP,B) + A,(M®,B) < A (b, B).
Thus, we have that f € M, .y and

A Mg ey S [IF M0

Second inclusion: M, 4.y C H”?. Let f be a distribution in M(, ,.). According
to definition (1.41) suppose that {M;} is a sequence of (p, ¢,€) molecules centered
at {z;} and {B,} is a sequence of balls, B; = B(z;,r;), such that

2.19 f=Y M; inS8 and 0 < A,(MB,B)+ A, (M®B B) < .
i V) q 9

J

In view of (1.20), we can assume that A,(M®B,B) > 0 and A,(M®B,B) > 0.
Applying lemma (2.4) to each M; with ¢ = r;, from (2.19), we have

(2.20) F=3340 &,

i k>0

where bfz is a multiple of a.(p,q) atom, supp (b)) C 1_13_1 = B(xj,zkrj), and ||b}]], <
ClM ||y if & =0 or [|b}ll; < ClIM; P |27 % i k > 1. Let > 1 be a
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constant to be determinated later. Since w is an increasing function of lower type
l and of upper type 1 we have

LA
ZZIB < (Aq(MB,B)+Aq(MCB,B))]1/I)

J k>0
B.
C [ M;7 g |B;| /1
< ; I:Z]: |Bj|w ( Aq(MB,B)l/I

kn(1—(e1)D) 1M ] |By| /e
+222 |Bj|w A,(MOB B)/! ’

7 k>1

which, by the restriction on ¢, is less than or equal to
B; - CB;j —
¢ (<, Py 1B s (1M 1B 2c
\/_4' A (MB,B)/! - \ A,(MCB B)1/l = n

Choosing n = 2C, we get

o (BB
(2.21) 2D |Bilw <[2C(Aq(MB,Ilc3) + fk\q(MCB,B))]”’> =t

i k>0

From (2.20), (2.21) and the observation above (1.35), we obtain
(2.22) 1fllres < C(A((MP,B) + A,(M®, B)).

Then, since we have (2.22) for every possible representation of f in the form (2.19),
we get

fllmee < CllFlMep,q.0r-

Note that the restriction ¢ > % — 1 was only used in the proof of the inclusion
Mp,qey C H?9. When w(t) =t?,p € (0, 1], we can apply (2.8) and, following the
same lines as above, we get H,, = M, 4.) withe > 0and 1 < ¢ < co.

3. APPLICATION OF THE MOLECULAR CHARACTERIZATION OF H,,
In this section we shall assume that T is a singular integral operator in IR™ with a
kernel K of class C¥*! outside the origin with k¥ a non-negative integer, satisfying

(3.1) |/ . K(z)de|<C, O<r<R,
<|z|<R

(3.2) lim - K(z)dz exists, and
. r—0 7‘<|.‘E|<1
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(3.3) |DPK(z)| < Clz| "7 1A1,

for every multi-index 8 such that |8| < k+1, and every z # 0. It is well known that,
under these conditions, T is a bounded operator on LY, 1 < ¢ < co. Moreover, if
we define the maximal operator '

T*f(z) = sup |Tsf(=)] ,
5>0

where

Tof(o) = [ K@fe-v)dy,
6<|y|
we have that T™ is bounded on LY, 1 < ¢ < oo and

(3.4) Tf(z)= %i_rg Tsf(z) ae. z

The purpose of this section is to show the boundedness of T on H,,. The main tool
will be the molecular characterization obtained in section 2. In [H-V], Harboure
and Viviani, using another technique, proved a similar result in the context of the
spaces of homogeneous type. In that work, the cancellation property of the kernel
K is stronger than (3.1). Moreover, since in our case the space involved is IR",
we can impose more regularity to the Kernel and by using atoms with vanishing
moments as in (1.37), it is possible to consider Hardy Orlicz spaces for a larger
range of w.

(3.5) LEMMA. Let w and p be as in theorem (2.18). Let T be a singular integral
operator with a kernel K satisfying (3.1), (3.2) and (3.3) with k+1 > n(§ — 1).
Assume that b is a function belonging to LY, 1 < q < 0o, with vanishing moments
up to the order k and supp(b) C B = B(zo,r). Let0<e<1—1+ k%, then T'b
is a (p,q,€) molecule centered at xo and

(3.6) ITbllq < C1lbllg,

(3.7) T p(| - —zo|™)| - —ao"F37 |, < Cp(IB]) |BIT7 |Ibl]

where C 18 a constant independent of b.
PROOF. Since T conmutes with translations we may assume that b is supported
in a ball B = B(0,r). Clearly Tb satisfies (3.6). Let B = B(0,2r), then
ety
ITb (1 ™)L M1

B (/ <. ) ITb(z) plJe|")lel" |7 dz = I + 1.
B CB

Since p is increasing and of upper type, applying (3.6), we have that I; is bounded
by
1
Clp(1BI) IBIF7 [[b]]]°.
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On the other hand, if z € CB we have

Th(z) = /B (K(z — ) — P(z — y))b(y) dy,

where P is the Taylor polynomial of K at z of degree k. The typical estimate for
the remainder in Taylor’s formula for this function, (3.3) and Holder’s inequality
yield

Jyl*+! 1Bl B+ * 7 o
(3.8) |Tb(z)| < C |b(y)|| [ FETT dy < CW ,# €CB.

From this estimate and (1.16) we have that I is bounded by
k411491 f (el _kEtl 1 _
Cl(BNIBI ) [ Jajremi= gy,
cB
Then, sincee < 1 — % + %’;—1, I, is less than or equal to

Clo(IB) |BI** [[8]l]7

which completes the proof of (3.7). In order to prove that T'b has vanishing
moments up to the order k we shall use the following partition of unity. Take
functions ¢;(t), 7 = 0,1,2,...,C* in (0, c0) satisfying ¢; > 0, Z] 0 ®i(t) =1
for every t in (0, 00). Moreover we can assume that supp(dg) C [O 2r], supp(¢;) C
[277tr,20% 7] for j > 1 and |¢§-k)(t < Cyt™* for every t > 0, every k =0,1,2,...
and every j, with Cj depending only on k. Now, we define for each j, K;(z) =
K(z)¢;(|z|), and observe that all the K’s satisfy the same estimates as K with a
uniform constant. Moreover, we have

szupp(Kj*b)(m) <4, at each z € IR".
>0

Then we can write

(3.9) /Tb(z)wﬂdw = /ZK]- x b(z)zP dz, for every B, |B| < k.

720

Clearly,
1> Kjxb(a)z?| <Y 1K xb()lle|Plxg(2)+) | |K*b(@)l|z|Plxp5(2) = Ai+As
=0 =0 j=0

For j > 1, by Holder’s inequality, thete exists a constant C, independent of j, such
that

“Kj *b|foo < ClBI—I/q”b”q .
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On the other hand, arguing as in (3.8), for z € CB, we get

|lbllg|B] =+

|K; +b(z)| < C |z[nFrH

for y >0,

where C' is again independent fo j. Thus, since the overlap of the supports of
K * b is uniformly bounded we have that )

Ay < C(|Ko *b(z)| + |[bllg| BI7/9)|2|Plx 5 (=)

and i1 )
|b||q|B| n 1/

|
A2 =C |z [P RFI=1A] Xc5(2)-

Then, by (3.9) and the dominated convergence theorem, we obtain

[Tt az=0, <k,
since K * b has vanishing moments up to order k.

(3.10) THEOREM. Letw and p be as in theorem (2.18). Let T be a singular integral
operator with a kernel K satisfying (3.1), (3.2) and (3.8) with k+1 > 2n(} —1).
Then there exists a constant C such that

T fllm., < ClIfllA,-

PROOF. By (1.37) and (2.18) it is enough to show that

(3.11) ITf M a0y < Cllfllm00x

foreveryf€L2ﬂH”’q’k,Where%—1 <e< 1—%+k% and 1 < ¢ < co. Let
f € LN H»?* and b = {b;} be a sequence of multiples of (p,q) atoms with
vanishing moments up to the order k, sup(b;) C Bj = B(zj,rj), such that

(3.12) f=) bins"
i

From the previous lemma we have that T'b; is a (p, g,€) molecule centered at z;
satisfying (3.6) and (3.7). Let M; = Tb;. Arguingin a similar way as it was done
in the proof of Theorem (2.20) in [H-V], it can be shown that

(3.13) Tf=> M; in§"
j

Let 1 a positive constant to be determinated. In view of (1.35), (1.38) and (1.41),
applying (3.6), we have

1M ||| B;| /9 (C||b-|| |B.|~1/q)
B.|lw J < Bilw EALL L .
2.1 ( g, By ) < 21\ o b, By

J
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Then taking n = C' we obtain
A, ((M)B,B) < C'A,(b,B).
In a similar way, from (3.7), we get
Aq((M)CB,.B) < C'A (b, B).
Then, by (3.13), we have
T f1l(p,q,y < CAg(b,B),
which completes the proof of the Theorem.

(3.14) REMARK. When w(t) =t?, p € (0,1], since from (2.18), H,, = M(p,q,¢),
with € > 0, we have that T 1s a bounded operator in H,, with the only restriction
k+1>n(;—1).
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FOURIER VERSUS WAVELETS:
A SIMPLE APPROACH TO LIPSCHITZ REGULARITY

Hugo Aimar and Ana Bernardis

Abstract: We give a very simple proof of the caracterization of Lipschitz regu-
larity of a function by the size of its Haar coefficients.

It is well known that given a real function f periodic with period 27 satisfying
a Lipschitz a condition for 0 < a < 1, its k** Fourier coefficient is bounded by
|k|~®. More precisely, the following result holds (see for example Chapter 12 of

[9D)-

(A) Let f be a 27 periodic real function satisfying a Lipschitz a condition for 0 <
a <1, ve., there exists a positive finite constant M such that, [f(z +h) — f(z)] <
M|h|*, for every pair of real numbers h and z. Then, there ezists a constant C

such that, for every k € Z, |Ci[f]] < Clk|~%, where Ci[f] = 3= Oh f(z)e *=dz.

The result is an easy consequence of the fact that f;" e"*2dz = 0, for k #
0. Nevertheles, it does not constitute a characterization of Lipschitz a. This
fact can easily be observed by taking the Fourier coefficients of the characteristic
function of a subinterval of [0,27]. Moreover there is no way to characterize the
regularity of a function in terms of the size of its Fourier coefficients, this is a
very deep fact implied by the results in the article “Sur les coeflicients de Fourier
des fonctions continues” by J.P. Kahane, Y. Katznelson and K. de Leeuw, see
[4]. On the other hand, we can easily obtain an analogous of (A) for the Haar
coefficients. We define the Haar coefficients of a locally integrable function f as
- Cap = g f(z)Hay(z)dz, where H, y(z) = a */2H(%2), > 0, b€ IR and H is
the Haar function i.e., H is defined by 1, for 0 <z < 1/2; by —1,for1/2<z <1
and 0 otherwise. More precisely we get the following result

Supported by: CONICET and Programacién CAI4+D, UNL.
Keywords and phrases: Fourier Analysis, Wavelets.
AMS Subjet Classification: 42C15
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(B) Let f be a Lipschitz a function for 0 < a < 1. Then, there ezists a constant
C such that |Cqp| < Cal/?** for every a >0 and b € IR.

Proof of (B):
Capl =| /IR H, 4(x)f(2)ds|
—a'/?| /0 H(u)[f(au + b) — £(b)ldu|

SCa1/2+°’. -

Clearly we have the following general version of (B):

(B’) Let ¢ : RY — IR be a non-decreasing function and let f be a function
satisfying a Lipschitz (p) condition, i.e., there ezists a constant C such that |f(z)—
f(y)| £ Co(|lz — yl|), for every z, y in IR. Then, there exists a constant C such
that

(1) |Capl < Ca'?p(a); a>0, belR

The aim of this note is to give a very simple proof of the converse of the preceding
result, moreover, we shall prove the Lipschitz (1) regularity of a function whose
Haar coefficients C, 3 satisfy (1), with (t) = fot ¢(s)/s ds. Notice that if ¢(t) <
C(t), condition (1) is equivalent to Lipschitz (¢) regularity, which is certainly
the case for ¢(t) = t*, 0 < a < 1. The proof of this converse can be extended
to get a characterization of ‘Lipschitz spaces with some non-isotropic metrics in
higher dimensions.

By using the inversion formula for the continuous wavelet transform, Holschnei-
der and T'chamitchian prove in [3] that Lipschitz o regularity of a function is
completely characterized by the size of the wavelet coefficient, see also [2]. The
inversion formula itself relies on the Fourier transform. Nevertheless the notion
of Lipschitz regularity can be naturally extended to metric spaces and generally,
wavelet coefficients can be computed for functions defined on spaces of homoge-
neous type where Fourier transform is not available. Since the work by Campanato
[1], Meyers [5], Spanne [6] among others it has become classical the integral char-
acterization of pointwise regular functions such us Lipschitz a or more generally
Lipschitz (¢). A simple proof of these facts for one dimension as can be found
in the book [8], can be adapted to give a direct proof of the desired result. The
adventage of this approach is that it can be used to get an analog of this result
for some families of non-isotropic dilaticns in dimension higher than one whithout
an explicit inversion formula.

Let us first observe that the inequality |C, 3| < Ca'/?¢(a) can be rewritten as
(2) Im(I7) = meIt)| < Co(|1)),

where I = [b,b + a], I is the left half of I, It is its right half, m(J) =
T-lf—l J; f(z) dz, and |J| is the measure of the interval J.
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(3) Theorem: Let ¢ : Rt — IRT be a non-decreasing function such that

1

/ @(t)/tdt < co.

Let f be a locally integrable function. If the Haar coefficients of f satisfy (1), then
f is Lipschitz (), with (t) = [} ¢(s)/s ds.

Proof: Let z and y be two real numbers with z < y. Let us now construct two
sequences of subintervals {I; } and {I}} of I = [z,y] in the following way: I] is
the left half of I and I its right half, I, is the left half of I, I the right half of
L +. And so, I is the left half of I,_; and I the right half of I+~ Notice now
tha.t

k .
[f(@) = F()l <If(2) = m(I) + E Im(I7) = m(IZ )l + Im(I7) — m(I7)|

+ Z Im(L) = m(If )| + Im(I) = f()]-

By an application of (2) with 6 = z and a = y — z we get that the central term
|m(I7) — m(I{)| is bounded by C¢(|I]). In order to estimate the general term of
the first sum |m(I;) — m(I;_;)| with 2 < ¢ < k, notice that

Im(I7) = m(I_y)| = Im(I]7) — 1/2m(I7) = 1/2m(I_, \ I )]
=1/2im(I7) — (I, \ I7)l-
Since I; and I;_, \ I; are contiguous intervals with the same length, we apply (2)
to the last term in the above equality to obtain |m(I;”) — m(I_,)| < Co(|I;_,]).
In a similar way, we can estimate the general term of the second sum by <p(|I,+ ).
Therefore
k—1

|f(2) = f(W)I <If(z) — m(Ly )I+CZ¢(II I)+C<P(II|)+CZWII+|)
+Im(L) — f(y)l

<|f(z) — m(I)| +2C Zso( hy 4 Im(IF) — f(y)l.

1=0

Now by Lebesgue Differentiation Theorem, when k tends to infinity, and the prop-
erties on ¢ we get

@) - f)l <20 Y ()

=0
|I 2| 1

< 2 ,0g2 z / w(t)ft dt

/2

IN
bl
(3]
&
—
~
;
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for almost every z and y. So that, after redefining f on a null set, we have a
Lipschitz () function. =

To ilustrate the applicability of this method to the regularity problem in the
parabolic setting, even when our method applies to more general situation, we
shall restrict ourselves to the case of dilations Thz = e4?92z with A > 0 and
A the diagonal matrix with eigenvalues 1 and 2 in two dimensions. Actually
Taz = (Az1,A%zp), for = (z1,22). The associated translation invariant metric
p(z) on IR? is the only solution of |T}/,;)z| = 1 (see for example [7]). Let us

introduce the following two wavelets in IR?
m(z,y) = x(z)H(y)

n2(z,y) = H(z)x(y),

where x is the characteristic function of the one dimensional interval [0,1). Per-
forming the usual translations in IR?> and the parabolic dilations induced by A
we get an L%-normalized family of functions n®%(z) = a3/ (Tyjo(z — b)) =
a3 (= ﬂa_—z—bz), for a > 0 and b € IR?.

(4) Theorem: Let ¢ : Rt — IRT be a non-decreasing function such that

/1 o(t)/tdt < oo,

Let f be a locally integrable function on IR:. Assume that there is a constant C
such that

(5) | < finf? > < Ca®?p(a);  a>0, beR?, i=1,2

then f satisfies the Lipschitz () condition with respect to p, i.e., |f(z) — f(y)| <
Cp(p(z - y)-

Proof: Let us first notice that the inequalities in (5) can be written as follows

(5.a) |m(I x J7) —m(I x JT)| < Cyp(a),

(5.b) Im(I” x J) — m(I* x J)| < Cep(a),

where I and J are two real intervals conforming a parabolic rectangle, i.e. |I|? =
|J|, I~ is the left half of I, while It is its right half. Similar notation applies
to J. Given ¢ = (z;,22) and y = (y1,¥2) two points in the plane, in order to
estimate |f(z) — f(y)|, we introduce the point z = (y1,z2) which satisfies both
plz — 2) < p(z —y) and p(z — y) < p(z — y), so that we look for the following
inequalities

(8) |f(2) - f()| SC¥(p(z—2)) and  [f(z) - f(y)| < C(p(z —y))-
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We shall work out with some detail the proof of the first inequality in (6) and we
shall only sketch the similar proof of the second. Let us assume that z1 < yi,
call I = [z1,y1]- As in the proof of Theorem 3 we are lead to two subinterval
sequences of I, {I;7} and {I;'} with k; = |I[| = |I;"|. Let J; = [22, 22 + (2k:)?],
Ry =1I7 x J; and R} =TI} x J; for i € IN. For each k € IN we have

|f() — f(2)| <If() — m(Ry)

k
+ 2 Im(BD) = m(Bi_)| + Im(By) = m(BY)|

k-1
+ 2 Im(BE) = m(RE )|+ Im(BE) — f(2)].

By (5.b) the central term in the right hand side above satisfies the desired bound.
). we
..... i), we

proceed in the following way: decompose R;_, into eight equal parabolic rectangles
Ry,...,Rg with R, = R, so that

For the general term 1in each of the sums, for examp]e for !m(RI_) — m\R

SO0 LAl glitiar sCLidl 111 Calil 01 wilc

8m(R;_;) = m(R1)+ m(R2) + ...+ m(Rs).

Clearly we Iﬁay assume that the R;’s are indexed in such a way that R; shares
one side with R;;1. Now, since

Im(R;) —m(R_,)| < ) Im(R;) — 7”(Rj+1)|7

i=1

we only need to show that each of the terms Im(R;)—m(R;j41)| satisfies the desired
inequality. Let us first observe that if R; and R;;; have a commor vertical side we
can apply again (5.5). On the other hand, when R; and R4 share a horizontal
side the rectangle defined by the union R; U Rj41 of both is not a parabolic
rectangle, so that we divide both of them in eight equal parabolic rectangle by
dividing only the vertical sides of R; and R;;, in eight equal intervals. Let us
write R, R},..., R} to denote these new rectangles and assume that they are
indexed from top to bottom. Hence

Im(R;) — m(Rj41)l = 1/8] Y _m(R}) — Y _ m(R})|
k=9

k=1

<1/8Y " Im(Ry_) — m(R3,)|

=0

7 2
<S1/8% % Im(Ri_iyx) — m(Rs_ipe)l-

i=0 k=0

Now, since each R} is parabolic, the general term in the last sum can be bounded by
(5.a). Fihaﬂy, by the Differentiation Theorem, which is still valid in the parabolic
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setting, we may obtain the first inequality in (6). The proof of the second follows
the same lines provided we change the iteration of the diadic decomposition on the
x-axis by the iteration of the procedure of dividing in four equal parts the vertical
intervals containing z, and y,. =
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XLV REUNION ANUAL DE COMUNICACIONES CIENTIFICAS DE LA UNION
MATEMATICA ARGENTINA Y XVIII REUNION DE EDUCACION MATEMATICA

En la Universidad Nacional de Rio Cuarto, desde el lunes 16 de octubre hasta el viernes 20
de octubre de 1995, se realizaron la XLV Reunion Anual de Comunicaciones Cientificas y la
XVIII Reunién de Educacion Matematica, con el auspicio de las Universidad Nacional de la
Plata, Universidad Nacional del Litoral, Universidad Nacional de la Patagonia “San Juan
Bosco”, Universidad Nacional de Rosario, la Municipalidad de la ciudad de Rio Cuarto y del
Consejo Nacional de Investigaciones Cientificas y Técnicas.

En el marco de estas se efectué ademas el VII Encuentro de Estudiantes de Matematica.
Hubo un total de 672 participantes de los cuales 162 fueron estudiantes.

Las actividades de la XVIII Reunion de Educacion Matematica comenzaron el lunes i6.
Durante su transcurso se dictaron 10 cursillos sobre temas variados, dos talleres sobre los
Contenidos Basicos Comunes del E.G.B. y la Educacion Polimodal. Del 18 al 20 de octubre
se expusieron 11 Posters sobre la Ensefianza de la Matematica y se preseniaron 37
Comunicaciones.

La XLV Reunion Anual de Comunicaciones Cientificas se inicio el miércoles 18 de octubre
con la inscripcion de los participantes, efectuandose por la tarde el acto inaugural en el Aula
Mayor, en la oportunidad hicieron uso de la palabra el Decano de la Facultad de Ciencias
Exactas Fisico-Quimicas y Naturales, el Presidente de la Unidon Matematica Argentina v el
Rector de la Universidad Nacional de Rio Cuarto

También se entregaron sendas plaquetas recordatorias por su trayectoria a los socios
honorarios de la Unidn Matematica Argentina Dr. Félix Herrera e Ing. Roque Scarfiello. Se
realizo la entrega de los premios del concurso “Rodolfo Ricabarra” a las mejores menografias
sobre el tema “Teorema del Punto Fijo.”

A continuacién actué el Grupo Instrumental de la UNR.C. Después de un cuarto
intermedio el Dr. Rafael Panzone pronuncio la conferencia “ Dr. Julio Rey Pastor” sobre el
tema “ Conjuntos y curvas notables del planc”. Luegc los participantes y autoridades fueron
agasajados con un vino de honor.

Los dias jueves 19 y viernes 20 se expusieron 106 Comunicacicnes, distribuidas en los
siguientes temas: Geometria Diferencial y Grupos de Lie, Ecuaciones Diferenciales y
Modelos, Ecuaciones Diferenciales Parabolicas, Analisis Numérico, Control, Optimizacion,
Teoria de Juegos y Convexidad, Logica, Analisis Real y Armonico, Conjuntos Borrosos,
Grafos y Topologia, Algebra y Teoria de Numeros y Analisis Funcional. Ademas se dictaron
6 cursos para estudiantes de Matematica.

Se realizo una mesa redonda en la que se discutieron los planes de estudio de las licenciaturas
en matematica.
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El viernes 20 a las 16:30 hs. tuvo lugar la Asamblea Anual de socios de UM A, en cuyo
transcurso se elegieron nuevas autoridades.

El congreso se clausurd el viernes 20 a las 19 hs. con la conferencia “Alberto Gonzalez
Dominguez” sobre el tema “ Mejor Aproximacion de funciones”, a cargo del Dr. Felipe Z6
Para terminar, el presidente de la Union Matematica Argentina Dr. J. Tirao hizo uso de la
palabra y el Rector de la UN.R.C. entregé al presidente de la Unidon Matematica Argentina
una medalla recordatoria.

Posteriormente se agasajo a los participantes.
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NOMINA DE LAS COMUNICACIONES PRESENTADAS A LA XLV REUNION
ANUAL DE LA UNION MATEMATICA ARGENTINA

NOTA: Las comunicaciones que van precedidas por un asterisco no fueron expuestas.

Geometria Diferencial - Grupos de Lie

Jorge Lauret. (FaMAF. UNC.) “ Grupos de isometrias de una nilvariedad homogénea.”
Cristian Sanchez, Walter Dal Lago, Alicia Garcia, Eduardo Hulett.(FaMAF. UNC.)
“Algunas propiedades que caracterizan a los R-espacios.”
D. Alekseevky, I. Dotti. { FaMAF. UNC. ) “Variedades de Einstein homogéneas”.
Alfredo O. Brega.( FaMAF. UNC.) “ Sobre el dual unitario de Spin (2n, C ).”
‘Carina Boyallian. (FaMAF. UNC.) “D-mddulos y Operadores diferenciales G-invariantes”.
Jorge Vargas.( F aMAF. UNC.) “ Restricciones de representaciones.”
Leandro Cagliero, Juan Tirao (FaMAF. UNC). “Los residuos de los operadores de
entrelazamiento de Kunze-Stein.”
José I Liberati. (Fa MAF. UNC.) “ Propiedad biespectral y la Grassmanniana Gr™.”
Guillermo Keilhauer, M. del Carmen Calvo (FCEyN. UBA). “ Tensores de! tipo (0,2) sobre
fibrados tangentes (1)”
Cristian Sanchez ( FaMAF:. UNC.) “ El I-niumero de un R-espacio.”
Marcos Salvai ( FAMAF. UNC). “Geodésicas asintoticas en el cubrimiento universal de S|
2R
Mirta S. Iriondo ( FaMAF. UNC) “ Superficies de curvatura media constante en espacios
Lorentzianos.”
Ana Forte Cunto, Maria Piacquadio ( FCEyN. UBA.) “ Continuidad de la funcion de
visibilidad en R".”
Alejandro Tiraboschi ( FaMAF. UNC.) “ Algebras reales mnilpotentes matabelianas
regulares.”
Javier Fernandez, Marcela Zuccalli ( FCEyN. UBA.- UNLP) “ Grupos de Loops y la Orbita
Coadjunta del 0.”
J. P. Rossetti, P. Tirao (FAMAF. UNC.) “ Variedades compactas planas con grupo de
holonomia Z, @ Z,
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Walter Dal Lago, Alicia Garcia, Cristian Sanchez ( FAMAF. UNC) “ Espacios proyectivos en
la variedad de secciones normales.

Graciela S. Birman (U.N. del Centro de la Pcia. Bs. As. - CONICET) “ Métrica para un
modelo homegéneo, isotrdpico, 5-dimensional.”

Liliana Gysin, M. Cristina Lopez ( FC EyN. UBA). “ Esperanzas de funciones definidas
sobre el transporte paralelb. ”

(*)Salvador  Gigena ( UNR - UNC) “ La curvatura escalar Riemanniana de
hipersuperficies descomponibles.”

Sergio Console, Carlos Olmos ( FaMAF. UNC) “ Subvariedades que admiten un campo
normal paralelo isoparamétrico.”

Carlos Olmos, Adrian L. E. Will ( FaMAF. UNC.) “ Subvariedades Homogéneas del
Espacio Hiperbdlico.”

Maria J. Druetta ( FAMAF. UNC) “ Meétricas invariantes en el ejemplo generalizado de
Pyateiskii-Shapiro.”

Guiilermo Keilhauer ( FCEyN. UBA) “Tensores del tipo (0,2) sobre fibrados tangentes
an.”

Berriardo Molina, Carlos Olmos (FaMAF. UNC. ) “ Rango y Simetria de Variedades

Riemannianas.”

Ecuaciones Diferenciales y Modelos

E. Lami Dozo, M. C. Mariani (FCEyN. UBA. - IAM. CONICET) “ Soluciones al problema
de Plateau para la ecuacion de curvatura media prescripta via el Lema del Paso de la
Montaria.”

M. Mariani, D. F. Rial ( FCEyN. UBA- IAM. CONICET) “ Soluciones de la ecuacion de
curvatura media prescripta mediante técnicas de punto fijo.”

T. Godoy, E. Lami Dozo, S. Paczka. ( IAM. CONICET- UBA- FaMAF. UNC) “El
problema parabdlico periédicos de autovalores con peso L™

Marcela C. Falsetti (UN. Gral Sarmiento) “Aplicacion de un nuevo modeio funcional al

andlisis de imagenes.”
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Maria E. Torrés, Lucas Gamero, Carlos D’Attellis (UN. Entre Rios Fa'c de Ing. y
Bioingenieria- UBA. .- Fac. de Ing.) “Deteccion de pairones en sefiales no lineales mediante
entropia multirresolucion.”

Monica Bocco (FCA. UNC) “ Andlisis y Medida de la Mortalidad a través de los Afios de
Vida Perdidos. Su relacion con la Esperanza de Vida.”

Graciela A. Canziani ( UN Centro de la Pcia. Bs. As.) “ Modelo matemdtico de dindmica
poblacional para copepodos calanoides.”

(*)Nora E. Muler ( FCEyN. UBA.) “ Cota Uniforme para una discretizacion de una

Maria A. Dzioba, Juan C. Reginato, Domingo A.Tarzia (FCEFQyN. UNRC- U.Austral -
PROMAR) “ Efectos de cinéticas de Sorcion-desorcion sobre el crecimiento de raices de
cultivos a través del método del balance integral.

Adriana M.Gonzalez, Juan C. Reginato, Domingo A. Tarzia (FCEFQyN. UNRC- U. Astral.
PROMAR) “ Soluciones de los casos iongitudinal y radial del problema de aereacion de
raices.”

L. T.Villa, G. V. Morales, O. D. Quiroga ( CIUNSa- INIQUIL. CONICET ) “ Sobre un
modelo matemdtico en procesos conveccion-reaccion quimica-transferencia de calor en
reactores tubulares.”

Pedro Morin, Rubén D. Spies INTEC- PEMA. CONICET) “Parameter Continuity of the
Solutions of Mathematical Model of Thermoviscoelasticity.”

Gabriel Acosta Rodriguez (FCEyN. UBA) “ Un modelo para “Junctions” en elasticidad
lineal.”

Enrique G. Banchio, Luis A.Godoy, Dean T. Mook ( FCEFyN UNC- Virginia Pol. Ins and
State University) “ Un método de menor degeneracion para problemas de perturbacion

singular.”

Ecuaciones Diferenciales Parabolicas

Diego F. Rial, Julio D. Rossi (FCEyN. UBA.) “ Localizacién de los puntos de blow-up para

’

una ecuacion parabolica con condiciones de bordes no lineales.’
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Lucio Berrove, Domingo A. Tarzia, Luis T. Villa (PROMAR- CONICET. UNR. U. Austral -
INIQUI. CONICET) “Comportamiento asintético de problemas de conduccion del calor
no clasicos para materiales semi-infinitos.”

Julio D.Rossi, Noemi Wolanski ( FCEyN. UBA) “ Existencia global o blow-up para un
sistema de ecuaciones parabolicas con condiciones de bordes no lineales.”

Julio D. Rossi ( FCEyN. UBA) “Existencia global o blow-up para un sistema N-dimensional
de ecuaciones del calor con condiciones de bordes acopladas.”

Domingo A Tarzia, Cristina V. Turner ( U Austral. FaMAF. UNC.) “ Condiciones
Suficientes para un cambio de fase en coordenadas esféricas.”

(). L Etcheverry (FCEyN. UBA) “Sobre la solucion perturbativa de un sistema de
ecuaciones de difusion con fuentes singulares.”

L. Caffarelli, C. Lederman, N. Wolanski (IAS. Princeton.- FCEyN . UBA) Soluciones
viscosas de un problema de frontera libre de evolucion a dos fases.”

Adriana C. Briozzo, Domingo A Tarzia (FCE. U. Austral) “ Solucion espliciia de un
problema de frontera libre para un medio saturado- no saturado con difusividad no
lineal.”

Marianne K. Korien (FCEyN. UBA- IAN CONICET) “Un teorema de Fatou para la
ecuacionu . = A (u-1),

Adriana C. Briozzo, M. Fernanda Natale, Domingo A .Tarzia ( FCE, U. Austral)
“Determinacion de coeficientes térmicos desconocidos en materiales de tipo Storm a través

de un proceso de cambic de fase.”
Analisis Numérico

(*)Ricardo G. Duran (FCEyN. UBA-) “Estimaciones de error para la interpolacion lineal
de funciones en R’ .”

Ricardo Duran, Elsa Liberman ( UN.LP) “ Sobre la convergencia de un elemento finito
triangular de tipo mixto para el mcdelo de placas de Reissner-Mindlin.”

Domingo A. Tarzia ( FCE. U. Austral) “ Andlisis Numérico de condiciones suficientes para
obtener un casc estacionario del problema de Stefan-Signorini a dos fases a través de

inecuaciones variacionales”.
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Dirce Braccialarghe, Elina M. Mancinelli { FCEIyA. UNR) “Sobre un problema de
optimizacion térmica.”

M. P. Beccar Varela, M. C Mariani, A.JMarzocca ( FCEyN. UBA - Lab. de propiedades
mecanicas de polimeros y materiales compuestos) “Determinacion de propiedades térmicas
en distintos compuestos.”

J. Alvarez Julia, A. L. Maestripieri, M. C. Mariani (FCEyN. UBA) “ Resolucién numérica de
la ecuacion de curvatura media prescripta.”

J. C. Cesco, C. Denner, A. Rosso, J. Pérez, F. Ortiz, R. Contreras, C. Giribet, M. Ruiz de
Azda ( CREA. IMASL- UNSL. FCEFQyN . UNRC. FCEyN. UBA) “Un conjunto completo

de funciones como herramienta para calcular cierta clase de integrales.”

Control, Optimizacion, Teoria de Juegos y Convexidad

R. L. V. Gonzalez, P. A. Lotito ( FCEIyA. UNR) “ Control de sistemas con informacion
incompleta y controladores con memoria finita.”

i(*)L. S. Aragone, R. L.V. Gonzalez ( FCEIyA. UNR) “ El principio de mdximo de
Pontryagin para problemas de contro! optimal de tipo minimax.” '
Silvia C. Di Marco, Roberto L. V. Gonzalez ( FCEIyA, UNR): “Problema de control dptimo
de tipo minimax con horizonte infinito.”

Luis Quintas, Jorge A. Oviedo (IMASL. UNSL): “Implementacion de cooperacion en
juegos estrictamente competitivos lineales.”

Juan C. Cesco, Neélida Aguirre ( IMALS. UNSL. CREA. FCEFQyN. UNRC) “Una
aplicacion del modelo de Gale-Shapley a un problema de asignacion de aulas.”

Néstor Aguilera, Graciela Nasini ( UNL. PEMA. CONICET- FCEIyA. UNR) “Disefio de
redes . Un nuevo problema combinatorio y su complejidad.

(*)Telma Caputti (FI. U. Austral) “ Sobre la monotonia de Ia multiaplicacion
subdiferencial.” .

Juan C. Bressan ( FF y B. UBA.) “Construccion de la cdpsula conexa en espacios de
conexidad.”

Mabel A. Rodriguez, Fausto A. Toranzos ( Inst. Ciencias. UN. Gral. Sarmiento - FCEyN.

UBA) “Estructuras de conjuntos finitamente estrellados.”
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Mabel Rodriguez ( Inst. Ciencias. UN. Gral. Sarmiento) “Teorema tipo-K para rayos

salientes.”
Légica

Luiz F. Monteiro, Manuel Abad, Sonia M. Sabini, Julio Sewald (INMABB- UNS-
CONICET) “ Q-digebras de Tarski libres.”

Manuel Abad, José P. Diaz Varela (UNS.) “ Free Double Ockham Algebras”

Héctor Gramaglia (FaMAF.UNC.) “ Representacion por Haces de Estructuras
Reticuladas.” ’

Aldo V. Figallo, Alicia Ziliani (UNS) “ Una nota sobre reticulados distributivos
monddicos.”

Alicia Ziliani (UNS) “ Dualidad de Priestley para las dlgebfas monadicas modales 4-
valuadas.”
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RESENA DEL LIBRO ALGEBRA
DE MICHAEL ARTIN

NICOLAS ANDRUSKIEWITSCH

Algebra, M. Artin. Birkhduser, Basel, 1993, 720 paginas. ISBN"3-7643-2927-0 ‘

Important though the general concepts and propositions may be with which the
modern and industrious passion for aziomatizing and generalizing has presented
us, 1n algebra perhaps more than anywhere else, nevertheless I am convinced
that the special problems in all their complezity constitute the stock and core of
mathematics, and to master their difficulties requires on the whole the harder
labor.

HERMANN WEYL

Este libro, una introduccion al dlgebra disefiada para los primeros cursos universitarios

de esta materia, estd basado en notas de clases dictadas por el autor a lo largo de veinte

aflos. La fuente de esta resefia es la edicién en alemdn de Birkh&user (1993), traduccién
de la versién original en inglés publicada por Prentice Hall en 1991.

El enfoque adoptado para la eleccion de los temas y su presentacién se sustenta, como
lo expresa el autor en el prefacio, en los siguientes principios:

1. Los ejemplos fundamentales deben preceder a las correspondientes definiciones.

2. El libro no es una obra de consulta, de modo que puntos técnicos son desarrollados
Gnicamente si son necesarios.

3. Los temas tratados deben ser significativos para todo matemaético.

En este espiritu, ilustrado por la cita de H. Weyl que sirve de epigrafe al Prefacio del
libro- y a esta resefia-, se privilegia el estudio de temas particulares, como simetrias, grupos
lineales y extensiones cuadraticas de Q.

El libro consta de catorce capitulos y un apéndice, donde se presentan algunos resultados
y nociones de uso en el texto principal. A continuacién se describen someramente los
contenidos del libro.

Los primeros cuatro capitulos (”Matrices”, ”Grupos”, ”Espacios vectoriales”, ”Trans-
formaciones lineales”) cubren definiciones y resultados bésicos.

La segunda parte del libro atafie a los grupos y sus relaciones con la geometria. Asi,
en el capitulo quinto (”Simetrias”) se estudian las acciones de los grupos ortogonales en
dos y tres dimensiones, y sus subgrupos discretos. Por ejemplo, se clasifican los subgrupos
discretos de SO;. El capitulo sexto ("Més sobre grupos”) incluye, entre otros tépicos, los



237

teoremas de Sylow, la clasificacién de los grupos de orden 12, los grupos simétricos y la
presentacién de un grupo por generadores y relaciones. El capitulo séptimo estd dedicado
a las formas bilineales: clasificacién de las formas bilineales siméiricas y antisimétricas,
formas hermiticas, teorema espectral. En el capitulo octavo (”Grupos lineales”), se de-
finen los grupos clésicos y se estudia en detalle la estructura geométrica del grupo especial
unitario SU,;. Se discuten los subgrupos monoparamétricos y las dlgebras de Lie de los
grupos clasicos. El capitulo noveno contiene los elementos basicos de la teoria de repre-
sentaciones de dimensién finita: caracteres, relaciones de ortogonalidad, lema de Schur. Se
clasifican las representaciones irreducibles del grupo de! icosaedro y de SU,.

La tercera parte del libro concierne a la aritmética y al dlgebra conmutativa. En el
capitulo décimo se introducen nociones bésicas de la teoria de anillos; se esboza la relacién
entre algebra conmutativa y geometiia algebraica. En el capitulo undécimo se considera
la factorialidad, a través de ejemplos- anillos de enteros en extensiones cuadraticas de
los racionales- y de condiciones axiomaticas- dominios de ideales principales, dominios
euclideos. Se discute la factorizacion en ideales primos y el grupo de clases. En el capitulo
duodécimo ("Médulos”) se parte de la definicién y se llega a la clasificacién de los grupos
abelianos finitamente generados; la prueba de este resultado es adaptada para obtener
las formas racional y de Jordan de un endomorfismo de un espacio vectorial. El capitulo
decimotercero esta consagrado a la teoria de cuerpos e incluye, por ejemplo, la clasificacién
de los cuerpos finitos, una prueba del teorema fundamental del algebra y la determinacion
de los puntos del plano constructibles con regla y compds. El capitulo decimocuarto y
dltimo (" Teoria de Galois”) aborda el teorema de Galois y aplicaciones: ecuaciones solubles
por radicales, ecuaciones de quinto grado, extensiones de Kummer y ciclotémicas.

Cada capitulo concluye con una larga lista de ejercicios; aqui también, como en el texto
principal, se enfatiza la consideracién de ejemplos y casos particulares.

El estilo del autor es claro, ameno y abundante en motivaciones. Asi, por ejemplo, la
definicién de grupoe en el capitulo 3 ocupa las péginas 40 a 42. La exposicidén de algunos
temas se complementa con enunciados de tecremas més avanzados, sin demostracion.

Hay una permanente intencién de desarrollar en el estudiante una adecuada intuicién
mediante ejemplos e interpretaciones geométricas, asi como de relacionar al algebra con
otras ramas de la matematica; por caso, en la seccion 7 del capitulo 4 (Transformaciones
lineales) se explica la resolucién de sistemas lineales (diagonalizables) de ecuaciones diferen-
ciales. En contrapartida, se minimiza deliberadamente el empleo de métodos axiomaticos;
asi por ejemplo, el principio de induccién es presentado en la pagina 397, capitulo 10.

Indudablemente este libro es un aporte valioso a la ensefianza del dlgebra en el inicio del
ciclo universitario y su uso, de provecho para el docente como fuente de ejemplos, permite
acceder a las definiciones fundamentales del algebra moderna a través de importantes
problemas particulares de enunciado sencillo. Sin embargo, el autor de esta resefia vacila
en sugerir cefiirse estrictamente al punto de vista mantenido en esta obra; a su juicio, un
matematico moderno precisa también manejar con soltura las técnicas axiomaticas y no es
desdetiable la idea de familiarizar al estudiante con ellas desde su ingreso a la Universidad.

FAMAF, Avs. MEDINA ALLENDE Y HAvA DE LA TORRE, 5000 CiuDAD UNIVERSITARIA, CORDOBA,
ARGENTINA
E-mail address: andrus@mate.uncor.edu, andrusl@famaf.uncor.edu
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