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7 is in general non compatible with the vector space structure, it has the remark-
able advantage of a simpler description; for instance it is easy to characterize the
T -closed sets. ‘

In each case we derive some properties of these topologies; in particular we prove
that V = £ (theorem 5.1 below), and also that G = V (in a more general setting, as
theorem 4.1 shows); next, we shall be interested to find conditions that guarantee
the remainder equality 7 = G of topologies. Since it is clear that this equality is
equivalent to the assertion that 7 is compatible with the group structure, it turns
out that this question involves the continuity of the sum map E x E — E and a
full discussion of the conditions that relate in general the product topoldgy TxT
in E x E with the inductive limit of the sequence E, x E,. This can be done, for
instance, when all the maps E,, — En4; are compact mappings (theorem 2.9 and
its consequence 5.2 part b) in the locally convex setting), a condition fulfilled in

the quoted concrete applications.

1. PRELIMINARIES

We start with an ordered set I; a directed or inductive system X = (Xj, fi;) over
I is a family X; of objects of a category C, together with maps f;; of C, defined
for 7 < j, and such that: ' -

(L1) fit = fjk 0 fij, when i <j <k, and

(L2) fii = identity of X, for each i € I. ‘
A morphism &: X = (Xi, fij) — (Yi,gij) = Y is a collection of C-morphisms
u;: X; — Y; such that uj o fij = gij ou; for all © < j in I; the directed systems
over I of objects and morphisms of‘C, together with this notion of morphisms
conform a new category denoted by Dir(C,I). The directed or inductive limit.
L(X) of a directed system X = (Xj, fi;) is an object X of C, and a family of C- .
morphisms f;i: X; — X, such that fjo fi; = fi holds for each ¢ < j, and such that
for any object Y of C and any family of C-morphisms u;: X; — Y which verifies
uj o fij = u; for every i < j, there exists a unique morphism u: X — Y such that
uo fi=wu;forall¢ el '

*Clearly this X is unique, up to C-isomorphisms; however the existence of directed
limit for objects of Dir(C,I) depends on some particular properties of C and I.
We say that C admits directed limits over I when every object of Dir(C,I) has
directed limit. This fact can be stated as follows: there is an obvious inclusion
functor £ = &;: C — Dir(C, I), defined by the rule £(A) = (4, identity of A), and
EfHi=f for f: X - Y. Then the previous definition can be formulated as -

C — Hom(L(X),Y) = Dir(C, I) — Hom(X, {(Y))



for evefy pair of objects X and Y.

Hence C admits directed limits over I if and only if £ has L as a left adjoint functor;
this is the so called “universal property” of the direct limit functor.

Remarks ‘

1.1. The notation L(X) = lim X; is usual.

1.2. Assume that I has a greatest element, say w. Then for every object X we
have li_n_)lX,- = X, together with the morphisms f; = fi., for ¢ € I.

1.3. When I is discrete, that ist = j <= i < j, the directed limit is called “direct
sum”, with the traditional notation L(X) = 37, X;. We say that C admits direct -

sums over a set I when there exists the direct limit functor Dir(C, I(discrete)) — C.

From now on we assume familiarity with the standard formal facts about inductive
limits in categories (see [6] for instance); we only state here the following facts to
be used sistematically in the sequel: suppose F': C — (' is a covariant functor; if
" we denote by F the obvious extension of F' as a functor Dir(C,I) — Dir(C’, I),
then we have’ k

Lemma 1.4. If both C, C' admit inductive limits over I, then there ezists a natural
morphism li_r)nF(X.') — F(h_r_)n X;) for all X. If F has a right adjoint, then this
‘morphism i3 a natural isomorphim.

Proof. The first assertion is obvious; for the second one we consider the right
adjoint G of F', and observe that Gy is a right adjoint of F;. Then

C' — Hom(L'(Fy(X)),Y") = Dir(C’, I) — Hom(F(X),£(Y"))
= Dir(C,I) — Hom(X, ¢(G(Y"))
= ¢ — Hom(L(X), G(Y"))
= C — Hom(F(L(X)),Y")

holds for every pair of objects X and Y'. Hence L' 0 F; = F o L, as desired .OJ

Example 1.5. a) In the category of sets the inductive limit of any directed system
X = (Xi, fij) can be obtained by a standard process (see [2]).

b) If A is a commutative ring with identity 1, and A denotes the category of A-
modules and homomorphisms, we can construct the inductive limit of any object
E = (E;, fi;) in Dir(A, I) as follows: first we construct the direct sum ;c; Ei =
~ S(E) as the submodule of the product module [, E; which consists of all families
z = (zi)ier such that supp(z) = {¢ € I : z; # 0} is finite, together with the
monomorphisms h;: E; — S(E) defined by (hi(z))x =z if ¢ = k, and 0 otherwise.
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Now, for i < j we set d;j: E; — S(E) as djj(z) = hi(z) — hj(fij(x)); let N;; be the
image of d;;, and let NV be the submodule generated by all the IV;; with 7z < j in
I. Finally the quotient module ¢: S(E) — E = S(E)/N and the homomorphisms
fi = qoh;: E; = E give the inductive limit of E. Note that E is generated by the
submodules f;(E;), so that E = (J;c; fi(Ei) when I is a directed set. This shows
also that the set E coincides with the inductive limit of the inductive system X of

sets, when [ is directed.

2. INDUCTIVE LIMITS OF TOPOLOGICAL SPACES

We consider here inductive limits in the category 7 of topological spaces and
continuous maps. Let X = (Xj, fi;) be a directed system in 7 and let X be its
inductive limit in the category of sets. We obtain the inductive limit of X in 7 if
the finest topology for which all the maps fi: X; — X are continuous is given to
X (the so-called final topology on X for the family f;).

In particular, if I is discrete, then we obtain the “topological sum”, that is the set
2 ier Xi with the obvious topology: a set U is open < U N X; is open in X; for
every t € I. : , :
It is clear from the definitions that the topology of X is also the quotient topdlogy
of this topological sum via the canonical map p: YierXi = X, since A C X is
open (closed) < f7!(A) is open (closed) in X; for every i € I.

Lemma 2.1. Let (u;): X — Y be a map of inductive systems of topological spaces,
and suppose each map u;: X; — Y; ts a quotient map. Then the induced map
U l_iL)nX,' — l]_rx}Y, i8 also a quotient map (here “A — B 13 a quotient” means

that B has the finest topology which makes the map continuous).

Proof. This follows from the definition of the open sets iﬁ the inductive limit - O

Now suppose X is the limit of an inductive system X = (Xj, fij) of topological
spaces and continuous maps, together with the maps fi: X; —» X (1 € I). If A
is a subspace of X, then we have an inductive subsystem A = (A;, fij|A4i), where
A= f,-_l(A). Hence the identity map li_rI)lA,' — A is a bijective continuous‘ma,p;
in other words, the induced topology of A is surely weaker than the limit topology

derived from A. We note that in general these two topologies in A are distinct.

However:

Lemma 2.2. In the previous situation, assume that A is locally closed in X. Then

h_rr)lA,' =A as topologch,l spaces.

Proof. This is very easy if A is open, or if A is closed. The general case follows

from this since a locally closed set is closed in an open set O
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These kind of complications mean that the analogous of 2.1 is false when we replace
“quotient” by “subspace”; in fact, if X is any T, (Hausdorff) space and we consider
the directed system of the finite subspaces F' of X, then liﬁ}’F = (X, discrete).
On the other hand, now suppose for each : € I we have a subspace S;, in such
a way that fij(Si) C S; when ¢ < j in I, and consider the inductive system
S = (Si, fi;15:)-

Lemma 2.3. In the previous situation, assume that I is a directed set and that
all S; are open. Then the subspdce S = Ujer fi(Si) of X is open and it identifies
with the topological space hg Si.

Proof. First note that 4; = U}'Z:‘ fi;l(Sj) is oben in X;, S; C A;if 1 € I, and that
';‘1 (Ar) = A; for i < kin I. Hence S = Uier fi(Ai) and fi_l(S) = A; for each
"t € I and the remainder follows from 2.2 O

Corollary 2.4. If I is a directed set, and ®: X — Y is a morphism in T such
that all the maps u;: X; — Y; are open, then the map u: li_r,nX — limY is also

open.

Remark 2.5. By the construction above we can define a basis for the neighbor-
hood system of a point a € X when I is directed, as follows: pick an ¢ € f and a
point a; € X; such that fi(ai) = a. Then for any j > ¢ we set a;j = fij(a;), and
select for each j > 4 an openset U; C X in a basis of the neighborhood system
of aj, such that f;jx(U;) C Uk when i < j < k, and finally set U = U;5; £i(U;).
Then U is a neighborhood of a, and any neighborhood of a in X contains a set of
this kind. _

The difficulties encountering when questions of subspaces appear in inductive lim-
its occur also when we consider cartesian products. In fact, suppose X and Y are
‘inductive systems of topological spaces, and set X = liﬁ}X LY = hﬂ} Y;. Then we

have another inductive system X x Y, and hence a natural contiriuous bijection
§: lim(X; xYj) — X xY

.1nduced by the obvious map of 3 ,.(Xi x Y;) onto (35, Xi) x (3=;Y;), which is
compatlble with the equivalence relatlons in both spaces.

In the sequel we analyze this map under suitable conditions.

.Theorem 2.6. IfY is a locally compact space, then for any mductwe system X

of topologzca.l spaces the natural map

lim(X; x Y) - (m X;) x Y



18 @ homeomorphism.

Proof. A direct argument is possible, but we prefer a more structural one, following
the ideas of lemma 1.4: let F: T — T be the functor given by F(X) = X x Y
on spaces and F(u) = u x idy on maps. Now F has a left adjoint functor,
which associates to each space Z the space Cc(Y, Z) of continuous maps with the

compact-open topology (see 1) O

It should be noted that any attempt to develop further results of this type require
some assumptions on the spaces X; or else on the maps f;; involved. In this sense,

a very useful notion is the following:

Definition 2.7. A continuous map f: X — Y between T, (or Hausdor(f) spaces
is compa,ct if for every x € X there ezists a basis B(z) of neighborhoods of © such
that f(U) has compact closure for every U € B(z).

Remarks 2.8. a) If f is a compact mapping, K C X is compact, and Qis a
neighborhood of K, then there exists a neighborhood V of K suchthat K C V C Q2
and f(V)~ is compact in Y. .

Proof. We have an open covering V; (z € K) such that V, C Q and }(V,)' is
compact for each z € K. Then we have a finite subcovering V; (: = 1,...,n) and-
V =Ji, Vi solves the problem.

b) If u;: X; —= Y; (1 = 1,2) are compact mappings and K; Q X are compact sets,
then for any neighborhood 2 of K1 x I{; in ¥ x Y3 there exist neighborhoods V3
of K1, V3 of K3 such that K3 x K2 C Vi x V2 C £, and also each u;(V;)~ (: = 1,2)
is compact. ‘

Proof. Since each K; (1 = 1,2) is compact, we have open sets U; (¢ = 1,2) such
that K; x K C Uy x Uz C Q. Then a) gives the desired V; C U; for i =1, 2.

Theorem 2.9. Let (X;, fi;), (Y:, gi;) be inductive systems of T, topological spaces,
and assume that
(1) I is a denumerable directed set, and
(2) All maps fij, gij are compact mappings.
Then the nﬁtuml continuous bijection ,
hm(X; x Yj) — (lim X;) x (lim Y;)
18 @ homeomorphism.

Proof. Since any countable directed set has a cofinal sequence, we can assume
without loss of generality that .= N. Let a € X = li_r’an,' beY = li_x)nYn and



7

let W be a neighborhood of (a,b) in lm(X, x ¥3); we must show that there exists
a ncighborhood U (resp. V) of a (resp. b) such that U x V. C W.

Now we can assume that a € fo(Xo), b € go(Yo), hence (fa X gn) Y (W) = W,
is open in X, X Y, for each n. In particular (ao,bo). € Wy, where fo(ao) = a,:
¢o(by) = b; then we have an open neighborhood Uy (resp. Vp) of ag (resp. bg) such
that Uy x Vo C Wy, and fo1(Up) X go1(Vo) C Wi is compact in X7 x Y.

If we assume that there are open neighborhoods U;, V; of foi(ao), goi(bo), defined

for 0 <7 < n in such form that
(lw) Ui x Vi C W; (0 <4 < n),
(2n) fi;(Ui) C Uj, 9i;(Vi) C V5 (0< i < j <),
(3n) frn+1(Un) X gn,nt1(Va) C Wiyt is compact in Xny1 X Yogg.

By using 2.8 we can define Uy, 41, Vo41 in such a way that 1,41, 2541, 3n+1 hold.
Finally we set

v=rw), v=UauW
1=0 1=0

in order to complete the proof (see 2.5) O

Corollary 2.10. Let X = (X,, fam) be a directed system over N of Hausdorff
topological spaces, such that every fn nt1 18 @ compact mapping. If we denote by

Ry the equivalence relation

("L‘v y) € Rpm &= fnm(-'l?) = fnm(y)

well defined for n < m, then the following assertions are equivalent:
(i) X = lirl}Xi 18 Hausdorff,
(11) Usoe,, R 18 closed in X, x X,, for each n > 0.

In particular, lix_r}X,, 18 Hausdorff if all the maps fy ny1 are injective.

Proof. According with 2.8 the diagonal A C X x X is closed if and only if it is
closed as a subspace of h_rr’l(Xn X Xn), and this occurs if and only if (fn X fn)~1(A)
is closed in X, x X, for each n > 0. ‘Now observe that this set coincides with

U°° n an O

m=

3. INDUCTIVE LIMITS OF TOPOLOGICAL ABELIAN GROUPS

Here we consider the category- TAG of abelian topological groups, with morphisms
the continuous homomorphisms of groups. As we have seen in 1.10, with A = Z,

if (Gi, fi;) is an inductive system in TAG, then we can form the abelian group



G = li_r_)nG,- and consider in G the finest topology compatible with the group
structure that makes continuous all the homomorphisins f;: G; — G. This shows
that the category TAG has inductive limits over any ordered set I.

Alternatively we can form first the “TAG-direct sum” S = @;¢; Gi, that“is, the
algebraic direct sum of 1.11 with the finest topology compatible with the group
structure which makes all the homomorphisms h;: G; — S continuous. Secondly,
recalling that the quotient topology is comipatible with the group structure, we see
that the quotient topological group S/N coincides with the inductive limit G.
Remarks

3.1. From general considerations it follows that if (G;, fi;) is an inductive system
in TAG, and for each 1 € I we have a subgroup H; C G; such that fi;j(H;) C H,
when ¢ < j in I, then the homomorphisms p;: G; — G;/H; induce a quotient
homomorphlsm p: hm Gi— hm G,/ H;; the kernel of p is the -algebraic- subgroup
hmH of hmG

We note that in general the topology of this subgroup is weaker than the topology
of lim H; in TAG (see 5.2 c)).

3.2. If (Gi, fij), (Hi,gij) are inductive systems in TAG, then we have a natural
isomorphism h_n)l(G,' x H;) ~ (l_lr_)n Gi) x (11_11)1 H;); this is clear, since in the category
TAG the finite sums and finite products coincide.

3.3. If (Gi, fij) is an inductive system of abelian topological groups, the topol-
ogy of the topological group G = li_r)nG,- can be defined by a set of invariant
seudometrics: the set of all translation invariant seudometrics d in G such that
z — d(z,0) = Ng(z) is continuous in 0. Equivalently, the set of all invariant
seudometrics d in G such that Ngo f;: G; = R is continuous in 0 for each ¢ € I
3.4. If (Gy)iers is a family_of topological abelian groups, then their direct sum G in
TAG is simply tlic algebraic direct suin, with the finest compatible topology such
that all inclusion maps G; — G are continuous. Clearly G is also the inductive
limit TAG—li_}m SF, where Sp = ®keF Gy, for every finite set F' C I.

Now we can also consider the algebraic direct sum as a subgroup (with the induced
topology T) of the topological abelian group P, the cartesian product of the family
G with the so called “box-topology”, a neighborhood basis of 0 in P is the family
of all products [];c; Ui ([4]), where U; is a neighborhood of 0 in G; for eachi € I.
In general this topology 7 is weaker than the topology of the TAG-direct sum.
Nevertheless we have: '

Proposition 3.5. If I is a denumerable direct set, then the topology T induced

by the boz-topology in the algebraic direct sum S is equal to the direct sum topology
. TAG.



?

Prbof. Again we can restrict ourselves to the case I = N, and of course it suf-

fices to show that every O-neighborhood U in the direct sum topology G is a

0-neighborhood in 7. There exists a sequence U, (n > 0) of 0-neighborhoods in

the direct sum topology such that Uy = U and Uy, 41 + Uny1 C Uy foreach n > 0.

Now let S, = H?=1 Gi (n 2 1), and also let i,: S, — G be the obvious map

for each n > 1. Clearly all ¢, are continuous, hence for each n > 0 there exist

0-neighborhoods V;* (1 <7 < n) in G; such that V* x -+ x V.* C i;;1(Uy,). If we

set V =5NT]re, V&, then clearly we have V C U, since Uy + +++ + Um C U for
every m >0 0O ' '

Now let (Gi, fij) be an inductive system of abclian topological groups, and let G
be the topological group h_n)l Gi; we denote by G' the inductive limit of the groups
G; as topological spaces. Clearly the identity map G' — G is continuous, since
this means that the finest group topology defined by the f;; is weaker than the
finest topology defined by the same maps.

Note that in G the maps z = ~z and 2 + z +a (a € G') are both continu-
ous. However G’ is not a topological group; in general, more precisely: G' is a

topological group & these two topologies are the same.

Theorem 3.6: Let (G;, fij) be an inductive system of topological abelian groups,
and assume that ‘

(1) I is a denumerable directed set, and

(2) The homomorphims f;; are compact mappings.

Then G' is a topological group, and G = G'.

Proof. This follows from theorem 2.9, since under these hypothesis the continuity
of the sum map G' X G' — G, (z,y) — z +y is a consequence of the conlinuity of

all the sum maps G; x G; = G; O

Remark 3.7. With minor modifications all the previous considerations are also

true for general, non necessarily commutative, topological groups.

4. INDUCTIVE LIMITS OF TOPOLOGICAL.VECTOR SPACES

We denote by TVS; the category of topological vector spaces over a valuated non
discrete field k, with continuous linear maps as morphisms; for E, F' topological
vector spaces over k, we denote by Li(E,F) the vector space of all continuous
linear maps u: E — F.

The category TVSy has inductive limits over any ordered set I; for (E;, fij) an

inductive system in TVSk, we can form first as in 1.5 b) the algebraic limit E
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" of the vector spaces and then we consider in E the finest topology of topological
vector space which makes continuous all the linear maps f;: E; — E. It is easy to
see that this topology can be described by the set of all quasi-norms ¢ in E such
that go f; is continuous for each i € I (8-
We precede the proof of the following result by a formal argumentation. First, we
define a functor v: TAG — TVSy by the rule v(G) = TAG— Hom(Ok, G), where
O denotes the forgetful functor TVS; — TAG; here v(G) is a k-vector space when
we define (ah)(z) = h(az) for a € k, z € k, h € v(G). The topology of v(G) has
the sets W (e, U) as a basis of neighborhoods of 0, where W (e, U) is the set of all
h € v(G) such that h(A.) C U; here we set A, = {A € k: || < €}. This topology
is compatible with the vector space structure, since:

(i) W(e,U)+ W(e,U) C W(e,U +U),

(il) W(e, Uy NU,) C W(e,Ur) N W (e, Uy),

(iii) W(e, U) is balanced (or “equilibrée”),

(iv) W(e,U) is absorbing; \
in fact, the continuity of h € v(G) implies that for a given neighborhood U of 0
in G, there exits 7 > 0 such that h(A,;) C U. Since k is non discrete we can take
a € k, a # 0 such that |aje < 7, hence Ajh € W(e,U)if 0< t < |al.
Of course we define v(u) for a homomorphism u: Gy — G by the rule v(u)(h) =
u o h, for every h € v(G1). '

Note that the natural transformation in the TAG category
I'c: O(w(G)) =G

is well defined by I'g(h) = h(1), for every h € G. Clearly KerT'g is a closed
subgroup of v(G), and if S is a subspace of v(G), then S C KerI'g implies S = 0.

Note also the natural transformation in the TVSy category
je: E - o(Q(B))

defined by the rule jg(z)(A) = Az (z € E, A € k).
Now v is a right adjoint of O. In fact we can define two natural group homomor-

phisms

f: TAG — Hom(O(E), G) — Li(E,v(G)),
g: Li(E,v(G)) — TAG — Hom(D(E), G),

according with the following formulas:

f(@)=v(@®)ojr,  gu)(z)=u(z)(1) =Teou(z) (z € E).
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Clearly g o f is the identity, and it is easy to see that f o g is injective (since
f(g(u)) = 0 implics that u(E) is a subspace of KerI'g). Hence f, g are reciprocal

isomorphisms.

Theorem 4.1. Let (E;, fij) be an inductive system of topological k-vector spaces
and continuous linear maps. Then TA Gfli_r)nDE,' = TVSk —li_n)lE,-, in other words
in the algebraic inductive limit E, the finest topology compatible with the group
structure which makes continuous all the f; is also compatible with the k-vector

space structure.

Proof. 1t is a consequence of the preceeding construction and lemma 1.4 O

Remarks

4.2. A direct and more elementary method of proving 4.1 is to show -in a previous
lemma- that the balanced hull V of a neighborhood of Q in the topological group
Ey, = TAG—limE- is also a neighborhood of 0, since the maps A — Az, T — Az are
continuous in thls topology. After this lemma, it follows that Ej is a topologlcal
k-vector space, hence the result 4. 1.

4.3. When £ is a locally compact field, 4.1 is a direct consequence of 2.6, which
imiplies the automatic continuity of the map k x Ey — Ej. _

4.4. For (E;)ier an arbitrary family of topological vector spaces, the box-topology
in [[;e; Ei in general is not cdmpatible with the vector space structure (the sets
[1;c; Ui fails to be absorbent); but it is easy to see that the restriction B of this
topology to the algebraic direct sum S makes this subspace a topological vector
space; in general (S, B) is weaker than the TVSg-direct sum topology. But when .
I is a denumerable directed set it follows from 3.5 and 4.1 that (S, B) is the direct
sun in the TVS;, -category. :

. INDUCTIVE LIMITS OF LOCALLY CONVEX TOPOLOGICAL VECTOR
SPACES

Here k = R or C, and we look the category LCS of locally convex topological
vector spaces as a full subcategory of TVSy. For (E;, fij) an inductive system
in LCS, we consider in the algebraic inductive limit Ep the finest locally convex
topology which makes continuous all those maps f;; this construction shows that
LCS has inductive limits over any ordered set.

A basis of 0-neighborhoods in the inductive limit E can be found by taking the
convex hull of the sets [ J;c; Ui, where each U; is an absolutely convex neighborhood
of 0 in F; for cach ¢ € I.
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Alternatively we can describe the topology of the inductive limit as the topology
defined by all the seminorms p in Ep, such that po f;: E; — R is continuous for
each i € I. '

For instance, in any real or complex vector space V we can consider the topology of
lbiI_’nE,', where the E;’s run over all the finite dimensional subspaces of V' (provided
with the unique compatible Hausdorff topology); this topology is the finest locally
convex tbpol_ogy in V, and it is defined by all seminorms in V. In special, the
LCS-direct sum C) equals_lii)l(CF (here F' denotes all finite subsets of I'), and it
is defined by all seminorms p: CY) — R.

For (E;, fij) an inductive system in LCS, in gcn_crul the identity map TVS, —
lill}E,- - LCS— ll_II)l E,; is only continuous; the two topologies in the algebraic limit

- Ey are in general different. The best result in this direction is the following:

Theorem 5.1. In the previous situation, assume that I is a denumerable directed
set. Then the two topologies in E, are equal; in other words the inductive limit is
the same in TVSy and in LCS.

Proof. Again we can restrict ourselves to the case I = N, and we must prove
under this hypothesis that TVS; — lill’)lEi is locally cgnvex. We give. the steps of
the proof: '

a) First case: here we assume that the order of I is discrete, in other words we
must prove that the TVSg-direct sum E is locally convex. But this follows quickly
from 4.4 since the sets E N [[;c; U; are convex when all the U; are convex.

b) General case: Note that L = TVS; — lir_’nE,- can be identify with E/N, where
N is the kernel of the natural map (z;)ie; — Ez‘ef fi(zi), and f;: E; — L are the
canonical-maps. Since thie quoticnt of a locally convex space is also locally convex

the general case follows from a) above O

Remarks 5.2. a) Let E, (n > 0) be a sequence of locally convex épaces, and
let un: B, & Epq1 (n 2 0) be a continuous linear map. We obtain an inductive
system E, by setting unm = Um-10---0u, for n < m. If E denotes the algebraic
inductive limit, with the maps f,: E, — E, then 4.1 and 5.1 show that the three
limit topologies (defined when we consider E alternativelyvin the categories TAG,
TVSk or LCS) are the same.

b) If we assume that all maps u, are compact, then 3.6 implies that these topologies
- are also equal to the topology of 7 — l'irben.-—In particular a set A C E is closed

& fi1(A) is closed for every n > 0. This is a very streng-form of theorem 6 of

[5].
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¢) In the situation of b), if S C E is a closed vector subspace, and we consider
-the inductive system defined by the subspaces fi7'(S) = Sy, then lenuna 2.2 and
the previous remark imply that the topology of LCS- hm Sn coincides w1th the
induced topology of S. This fact is in general false, even in the case of strict
inductive limits, if we drop some hypothe31s about the maps un (see (7] for an

example).

Remark 5.3. In especial, in the vector space R™ (or in C™M™)) the topology
defined by saying that a set A is closed (resp. open) when ANV is closed (resp.
open) for each finite dimensional subspace V' is a locally convex topology. This

fact fails when the algebraic dimension is not countable (sec below).

6. SOME EXAMPLES

6.1. Thcorem 5.1 is in general false when I is a non-denumecrable set.” For instance,
if I is non-denumerable, then we can considerin E.= R the two topologies T, T3
defined as the inductive limit over the finite dimensional subspaces in the category
~TVS and LCS respectively. Then T} is defined by all the invariant seudometrics
continuous on finite dimensional subspaces (or else by all the quasi-norms in E,
[8]), and T is defined by all the seminorms in E; they define the direct sum of
I-copies of the scalar field in the two categories and we can see that they are

different topologies. In fact, T is not locally convex.

Proof. Let q(z) = X ;¢ |zil'/?, a continuous invariant metric in E; then the set
{z € E : ¢(z) < 1} is not a O-neighborhood in T;. On the contrary, if p is a
seminorm in E with ¢ < p, then we must have 1 < p(e;) for each vector e; of the
canonical basis of E. Also for some n theset G = {t € I : n < p(e;) < n+ 1} is
infinite, let ng be the first n for which this fact is true. Hence for every finite set

F C G the vector zp = E:eF ( 1 ) ei, where np = card F, gives ¢(¢f) = /nF <

' p(zr) < "“‘H or n‘}/z < ng + 1 for every finite F C G, which is clearly absurd.

6.2. The following example shows that the considerations of 5.2 are false if we
. drop some hypothesis about the maps of an inductive system.

Let jn: R™ = R™1, jo(A1,...,An) =(A1,...,An,0) be the canonical inclusion
and let E, = ! x R®. Now we have a denumerable direct system of Banach
spaces defined by the maps id X j,: E, — En4+1. Algebraically the limit space is
E = ("xRM and 5.2 implies the equality of all limit topologies in R ; hence the
identity map li_n)l(l?l x R™) — £! x R™ is an isomorphism in the categories TAG,
TVS and LCS. We shall see that this fact is false for the category 7; in fact we

construct a map u: E — {°° continuous in li_n)lE,l and discontinuous in ¢! x RM,
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For this, let F': ' — R be the continuous map defined by F(z) = ||z]|cc When
|zllo + llz|li =1, and F(z) = 1 — ||z||s when ||z|lcc + |lz|l1 £ 1; then for every
positive a in R set Fo(z) = aF(a~'z), and finally for each n > 1, let f, = Fifn.
Note that inf{fn(z) : ||z|l1 = 1/n} =0, since inf{F(z) : ||z||; =1} = 0.

Now define u as u(z,\) = (An/fn(i))n21, which is clearly continuous on lim En,
but U = {(z,A) : ||Ju(z,A)|lco < 1} is not a 0-neighborhood in £! x R™; suppose
the contrary, then for some seminorm p in R™ and some positive r we must have:
fa(x) > Ay for every n, when ||z||; +p(A) < r. But this is absurd, since we can take
k € N such that 1/k <1 /'27' and then select some positive a such that the vector
be RM given by b = Z _, ae; verifies p(b) < 1/2r. This in turn means that for
every ¢ € £! such that ||z||; = 1/k we must have fx(z) > a, a contradiction.
Note that the above argument implies that the set U is a 0-neighborhood in the
space ']'—1i_1_1}(£1 xR™), but U is not.a 0-neighborhood in the space £! x (T—li_li} R™);
this shows that the conditions about the spaces or the maps in theorems 2.6 and

2.9 are non superfluous.
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SOLUTIONS TO THE MEAN CURVATURE EQUATION FOR
NONPARAMETRIC SURFACES BY FIXED POINT METHODS

. P. Amster, J.P. Borgna, M.C, Mariani and D.F. Rial
FCEyN - Universidad de Buenos Aires

ABSTRACT

We study the existence of solutions for the equation of prescribed mean curvature

when the surface is the graph of u:Q — R, with mean curvature H(z,y,u(z,y)).

We give conditions on the boundary data in order to obtain at least one solution for

the quasilinear Dirichlet problem (1) below, with H a given continuous function.

INTRODUCTION

We consider the quasilinea;r Dirichlet problem in a bounded domain Q' C R? with
oNeC?

s . .

1 { (1 + w2 uzz + (1 + ul)uyy — 2uzuyuzy = 2H(z,y,u) (1 + |Vu|2) ? in Q
u(z,y) = ¢(z,y) ond2

where H : Q x [¢,e] — R is continuous for some ¢ > 0 and ¢ € W“’(Q) is the -

boundary data.

The problem above is the mean curvature equation. for nonparametric surfaces which -
has been studied in general for hypersurfaces in R™*! by Gilbarg, Trudinger, Simon,
Serrin, Diaz, Saa and Thiel among other authors. For H -independent of u it has
been proved [GT] that there exists a solution for any smooth boundary data if the

mean curvature H' of Of1 satisfies:
‘ ’ L
.H (.’El,...,:l,‘n) 2 mlH(.T],...,.’E,.)'

for any (1,...,%,) € 0, and H € C1(Q, R) satisfying the inequality:

. 1—c¢
I/HsoIS—/IDwI
Q n Q
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for any ¢ € Cj(Q, R) and some ¢ > 0. The sharpness of the geometric condition
on the curvature of 9§ is shown by a non-existence result ([GT], corollary 14.13):
if H'(z1,...,20) < 7%5|H(21,...,x,)| for some (zj,...,z,) and the sign.of H is
constant, then for any € > 0 there exists g € C*(£2) such that ||g]|cc < € for which

the Dirichlet’s problem is not solvable.

On the other hand, Diaz, Saa and Thiel [DST] studied the general quasilinear elliptic
equation div(Q(|Vu|)Vu)+ f(u) = g(z1,...,z) in R™ under Dirichlet and Neumann
conditions. They studied existence and uniqueness of the problem for nonincreasing
~ f Dby finding apriori bounds for Vu. The case Q(r) = (1 +r2)"!/2 corresponds to
the mean curvature equation (1), and the condition on f becowes: h'(u) > 0.

In the present paper we study the problem by topological methods, obtaining a so-
lution under some restrictions on ||H||oo and ||¢||2,, but avoiding the conditions on

the curvature of 9Q2. The condition -g—% > 0 will not be necessary either.

The general Plateau problem and the Dirichlet asociated problem, have been studied

in [AMR],[BC],[H],[LD-M],[MR] [$1],[S2],[WG], etc.
The quasilinear operator associated to problem (1) is strictly elliptic since its eigen-
values are A =1 and A =1+ |p|*, where p = (uz,u,) (see [GT] chapter 10).

The main result is the following theorem

THEOREM 1

Let p > 2 and assume that |||lz,p and ||H| e (gx(e,e) are small enough with respect
to ||, the Sobolev’s constant and the apriori bounds for A in Q. Then there exists
at least one solution u € W»P(Q) of (1). o ' ‘

SOLUTIONS BY FIXED POINT METHODS

First we note that u is a solution of (1), if and only if w = u — ¢ is a solution of the -
following equation:

(14 (wy + 0y) )z + (1 + (e + @2))wyy — 2wz + ) (wy + ‘Py)isz '

. '
@ =2H(z,y,w + ) (1+ V(W + ) )" = (L4 (wy + 9}
=1+ (we + ‘Pt)z)ﬁoyy + 2(“’: + @ )(wy + ‘Py)‘l’zy in Q,
w=0 on O}

For each 7 € C'() such that ||+ ¢|lco < € we consider the elliptic llneax Dirichlet.
' problem associated to equation (2)
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(3) { L;(v) = F(U) in
v=0 on 0N

where

Ly (v) = (14 By + ¢y)* Wzz + (1 + (U + 92)?Jvgy — 2(0z + 92)(Ty + ©y)Vey

and
F®) = 2H(z,3,5+) (14 1VE + )" = (140 +0y) hpas = (14 (T +92) o

+2(0z + 02)(Ty + Py) Py

The linear equation (3) has a unique solution v € W2?(Q) N Wy (Q) (see [GT),
theorem 9.15). Thus, if we consider the Sobolev imbedding W27 «— C! with imbed-
ding constant k (i.e. ""”1,;0 < kllull, , ), we may define an operatof T :B.(—yp)C
C'(Q) — C'() given by T(¥) = v if v is the solution of (3) for T.

We'll see that the operator T has at least one fixed point in C?, and this will give

a solution of the original pro:blérn (1).

Our main tool will be the Schauder fixed point theorem (see [GT] theorem 11.1 and
corollary 11.2). We prove first the following lemma and proposition.

LEMMA 2

There exists a constant C (depending only on ||, p) and R > 0 such that if -

7+ lli,c0 < R
then for every w € W2P(Q) N Wy'P()

lwllz,, < ClIlLs(w)ll,
Proof
-We can write

Ly(w) = Aw + Sy(w)

where Sg(w) = (Ty + ¢y wzs + (T + p2) wyy — 2Tz + 92 )(Ty + ©y)Way-
The operator A satisfies the hypotheses of [GT], lemma 9.17, then there exists a
constant C; (independent of w ) such that
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llwll,, < Ci [|Aw]l,

for all w € W22(Q) N Wa'P(2). Then

s (), 2 1Awl, = IS (@, 2 & lwl, = IS (W,

and being
= 2
| IS5, < 41+ ol o sl
we obtain

1 .
sl = (g =410+ ol ) Nl

The second member of the last inequality is posmve if [7+¢lh,o <R<3 \/._, and
setting C = —40&?&;5- the lemma holds.

In the followmg proposition we'll find 0 < R < 2—-1-\/(:]=,e such that T(Br(—¢)) C
Ba(=7) C C'(A). »
PROPOSITION 3

Let p > 2 and assume that llll2,» and ||H||Lw(ﬁx[€,€]) are small enough. Then there
exists R < e such that if - ' o

17+ ¢lli,00 s R

then

IT®) + ll1,00 <

Furthermore, the operator T is continuous in the closed ball Bp(— tp), and its range’
isa precompact set.

Proof
Assume that [T+ ¢, ., S R < T Then

Ok

v+ ell1,00 < Koz pHllolls,00 < CRILVI, +||‘P”1 o0 = W IIF(v)II +lell,o0

and

IF@N, < 201+ 115 + ¢} o )*/ 1H (2,97 + @), + 201+ 217 + ll} o) el <
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<21+ RP2QIP | H| o +2(1 + 2R) |l

We look for a number R such that

2C1k

FETeNy A R PIQPP | H o + (1 4+ 2B7) igllz,p) + el oo < R

or, equivalently, such that f(R) <0, where

SO = 122 (U RIS [+ (1 4+ 20 il ) + Nl = B

\ 1
It is clear that f < in the interval (0, —=-), where

_PF
1 —401R2 2\/51

P(R) = 2Cy |21 | Hllo + (1 +3 )l|s0|lz,p) +llelltco — R+4C1 R

1
V120,

P achieves a minimum in Ry =

small enough. Then f(Rg) <0.

and P(Ro) <0 if ||o|l2,p and ||H||s are
In order to complete the proof we must see that T is continuous and compact. Indeed,
~ for uw, v € Bp(—¢):

I = vl < CllZw (u = v)l, < € (IF@) ~ F@)l, + 1Ls(e) - Le(o)ll) -

But

IF@ — F@)I, < [2H(, 0T +) - 2H(z,5,5+¢) (1+ 9@+ ¢)) " s

2y + (14 9@+ o) - (14 9@+ 0P) D,
HI((@y+py)’ =Ty +04)* P zallpHI((Te 02 ) ~(Te+02)")oyy lp+20((Te+2) [Ty +oy)—
(T2 + 92 )(Ty + 0u))enylly < 2H(z,y,T +¢) = H(z,y,7 +9)llp(1 + 7*)*
+6R(1+ R} (R + lleln,e0)ll 11,00/ UYP|| H oo + 8R||T — T|1, 00l l2,p

and

1L5(v) = La(v)ll, < 8R|[7 - vll1,0llvll2,p
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Being H uniformely continuous and ||u —v||; » < k|lu—v||2,5, the continuity follows. -

Moreover, fixing any v € Br(—y) wesee that T(Br(—y)) is bounded in W27 | and
the result follows from the compactness of the imbedding W2?(Q) — C*(R).

REMARK

In the situation of proposition 3, if we write P(R) = 4C1R® — R + a, the smallness

of H and ¢ can be stated in the more precise condition a < S“TZ\/_TC?{

Proof of theorem 1: From proposition 3 we know that the operator T satisfies
the assumptions of Schauder fixed point theorem (see [GT] corollary 11.2). Thus, we
obtaiu a fixed point w € Wr(Q)N W,"(§2) for the operator T, which corresponds
to a solution of equation (2).
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ON SIMULTANEOUS REPEATED 2x2-GAMES
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ABSTRACT: We consider a game with two choices, two players and infinitcly number
of rounds (repeated game). A small error probability occur due to mistakes in
implementation or in perception. We compute the payoff matrix by means of a
perturbation approach using the isomorphisms between the transition matrices.

1. INTRODUCTION.

We consider a game with two players I'and IT and two choices (strategies) aj,a, for I and
by ,b, for II.The process of choosing one option of each player is called one round. The
game which contains more than one round is called repeated game. For each round of
the game, we have four possible outcomes (a;,b;),(a1,bz),(az,b1) and (az,b,). If player I
options a; (i=1,2) and player II options b; (j=1,2), then player I gets payoff value a; and
player II gets payoff value b; . Therefore in each round; player I has 2x2 matrix A=(a;;)’
called the payoff matrix of player I and player II has 2x2 matrix B=(b;;) called the payoff
matrix of player II. The game in this case is described by two matrices A and B
(asymmetric game or two population game). In the case when player II has the same
possible strategies and payoff values as player 1, i.e. a; = b;, a; = by, the gameis
described by symmetric payoff matrix (symmetric game or one population game).

If there is a chance of moves in the game, then when player I plays a; against player II
who plays b; the payoff depends on the outcome of the chance move. So we multiply
each payoff by the probability of the chance event that will give rise to it, and add all
‘these products together. This gives the average or expected payof.

There afe two models of the game, simultaneous model and alternating model. In
simultaneous’ model, both players choose their options at the same time without knowing
the choice of the other, otherwise the game is alternating. In this work, we shall be
interested in infinite repeated simultaneous one population games (simultaneous and
symmetric).

Keywords. Game Dynamics, Perturbation, Binary Representation, Isomorphism, Transition Matrix.
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2.SIMULTANEOUS 2x2-REPEATED GAME.

If we consider a symmetric 2x2-game with two pure strategies C and D, then the payoﬁ'
matrix is given by

CD
R S
{0 "
D\T P
The letters indicate that we have primarily in mind the Prisoner’s Dilemma, where C
stands for Cooperate, D for Defect see [6]. The payoff value R for Reward, S for the
Sucker payoff, T for Temptation and P for Punishment. These payoff values
.corresponding to the four possible outcomes (C,C),(C,D),(D,C) or (D,D), where the first
position denotes the option chosen by the player and the second that of the co-player. If
we numbered the outcomes by i=1,2,3,4, then we have 2° transition rules that can be
labeled by the quadruples (u;,uz,us,us) of zeros and ones. Here, u; is 1 if the player plays
C and 0 if he plays D after outcome i (i=1,2,3,4). Thus (0,0,0,0) is the rule that always
defects (ALL D), while the rule (1,0,0,0) with initial state C plays Grim, see[S]: after a
single D of the adversary, it never reverts to C again. The rule (1,1,1,1) plays always
Cooperate (ALL C). There are 16 rule altogether, which we number from 0 to 15, using
the integers given in binary notation, by u; u; u; us. The strategy corresponding to rule i
will be denoted by S; .Thus S, is ALL D, Sg is Grim and S;s is ALL C. The §; strategies
are exactly the 16 corner points of the four dimensional strategy space formed by all

(p1,p2,p3,pa) strategies where p; is the probability to play C after the corresponding
outcome of the previous round.

3. ISOMORPHISMS OF MARKOV MATRICES.

The Markov matrix or transition probability matrix is the matrix M denoted by M
=<E,T> where E is a finite nonempty set of states and T is the transition matrix of
. probabilities. If E = {eo,e1,...,&} and T = (p;;), then M is given by:

el) el .er
Poo Pot -« Por
Pio Pu: - P
M = | )
plo prl pn

The transition probabilities p;; satisfy the condmons
ZpU =1 and p; 20 (i,j = 0,1,...,).
Jj=0
If we have Markov matrices M=<E,T> M’ =< E ,T'>with E —{eo,el, €},
= {e;,e},...,e;}and T =(py), T' = (pj) respectively, then for each one-one mapping
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Y from the index set I ={0,1,...,r} onto I, we can define a one-one mapping ® from E
onto E’ such that W (i) =k iff d(ej)=e, V ij €L
This leads to the following definition

Definition 1. A Markov matrix M=<E,T >is called isomorphic to M’ =<E',T' > if
there exist one-one mapping @ from E onto E' such that p;; =pl )y, (i.€.the probability

of going from state e; €E to state ej €E in one step equal to the probability of going from
state ®(e)e E' to P(e)e E'in one step). In this case we write M%M’, which

means M is isomorphic to M'by @.

Definition 2. The vector 1= (7,,7,,...,7,), where z, satisfy the following conditions

m;20, > m; =1and my = > mp j is called a stationary probability distribution of M .

i=0 i=0
Theorem (Isomorphism theory for Markov matrices).

LetITandII’ be stationary distributions of M=< E, T >and M’ =<E’, T’ > respectively.
If IT is uniquely defined and M = M’, then 7m;=my,.

Proof. We have Il = (7,,7,,...,7,) and II' = (7§, x|,...,7}), then

w; 20, Zﬂ'i=1 and 7rj=Z:7ripij 3)
i=0 i=0
7,20, > ai=1 and x}=) z/pj 4
i=0 i=0
From (4) we obtain
i = 2 TewPeow) 9
Y(i)=0

By rearrangement of (5) we can write

r
' _ ' ’
Ty = Z”‘P(i)pﬂ'(i)\m) ‘
i=0

Since  pij =Pyyr) » then
o
T = 2Py @
i=0

From (3) and (6), since stationary distribution of M is uniquely defined, we
getm = myq 0. ' .

4.GROUP OF ISOMORPHISMS BETWEEN MARKOYV MATRICES.

The game between the two players, Po = (p1,p2,p3,pa) and Qo = (q1,92,93,q4) where p;
and q; are the probabilities to play C after outcomei (i=1,2,3,4) , is a Markov process
given by the transition probability matrix between the four states R,S,T and P from one
round to the next
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pdy pi(l-q) (A-p)e, (A-pd-q,)
P29 pz(l;qs) (I-py)a; (1-p,)(1-=q5)
Psd: P;(1-q) (1-ps)q, (1-p;)1-q,)
Pads Pa(1-94) (1-ps)qs (1-p,)(1-q.)

M, = @)

where for example (1-p,)(1-q3) means that the transition probability from state S to
state P . The stationary distribution Il = (7,,7,,7,,7,) is the left-hand eigenvector

corresponding to the eigenvalue 1 of M in (7). Therefore the payoff for strategy Py is
then given by
Rz +S#n,+Trn,+Px,.

In (7), if we replace p; by pa, then to get an isomorphism between My and the resulting
matrix (other transition matrix), we find that Py must become P; and Q must become Q,
where P1= (p2,p1,p4,P3), Q1= (1-q3,1-qs,1-q1,1-q2). The resulting matrix is given by

p.(1-q3) p,qs (1-p,)(1-q;) (1-p,)q,
- pl(l—._ql), P (l—pl)(l_ql) (l_p])ql (8)
‘ Lp4(1—q4) Py (1-p)1-q,) (1-p,)a,

pa(l‘pz) pﬂz (1‘_p3)(1_q2) (l_ps)qz

The matrix in (8) is the transition -matrix of P; against Q;. We note that MoqE’Ml
1

where @, (R,S,T,P)= (S,R,P,T), to simplify we denoted this function by fD, =(S,R,P,T),
and for'¥,;¥, (1,2,3,4)= (2,1,4,3) by ¥, = (2,1,4,3). If I, is uniquely defined, then (by
isomorphism theory for Markov matrices) the payoff for strategy P, against strategy Q,
is

Rz, +Sz,+Tx,+Pn, .
Using the same way to get the all isomorphic matrices to M,, we get
i M, E M, ; M, is the transition matrix of Py= (1-p3,1-ps,1-p1,1-p2) against
Q2 = (qzaq1’q47q3) and (DZ = (Ta PaRS) .
i. My = M;j ; M is the transition matrix of P3 = (1-ps,1-ps,1-p2,1-p1) against

Q3= (1-q4,1-q3,1-q2,1-ql) and (D3 = (P,T, S, R)

Also we can show that My % M:; ; M, is the transition matrix of Qy against Px ,where

v

r=kmod4;r=4,567and®, = (R T,S,P), ®; =(T,R,P,S),®, = (S,P,R,T)
®, =(P,S,T,R).

Remarks: , oo
(i) If ITo is uniquely defined, then we can find the stationary distribution I, for M,

;n=0,1,...,7 (by using isomorphism theory for Markov matrices).
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(if) We see that the set{ ®,,®,,D,,D,,D,,D,,D,, D, } is a group with respect to
composition. We call this group the group of isomorphisms between Markov matrices.

5. EQUIVALENCE CLASSES OF MARKOV MATRICES.
From the group isomorphisms of the transition matrices, we have the following table

PolSo S, SzFSJ Ss S5 S¢S, Sy Sy 816811 Si; Si3 Sis Si5 Qo
1PiISe 82 8183 S S48y 5,48, S¢ S S; Sy, Si4 813 815 Q;
Py1Sis 81187 858,808 S, 8,38, S5 S, 8, S 84 S0 |Q
PyISi58, 81,838, 858, 8, 81, S4810 82 81z Sy Sy SpjQ,

Table 1.
This table represents the strategies Po,Qo and the corresponding strategies Pl,Pz,P;;,Ql,QZ
and Qs (which determine in section 4). For instance if Po=S7,Q¢=S13, then P;=S;;, Q1=Ss,
P»=S,, Q=Sisand P3=S,, Q3=S,.
We denoted the Markov matrix corresponding to the game between the two.players S;
‘and S;(ij= 0,1,...,15) by Ml The set [ ]={ M | M = M'J }is called the equivalence

ctass of M ,where the.isomrphism relation for the transition matrices make equivalence
relation. By using Table 1 we get for example
[L1= (M}, ME M M, M MY M M)
and
[f,]= (M3, MY, MU, MU, ME M MY MY,
In this ‘case there are 43 equivalence classes, which are given by

([3]7[?],[3],[31,[3],[31,[2],[31,[3],[?2],[}],[L],[Q],[L],[Q],[L],
['7],[3’;],[;],[}o],[iz],[lsl,[h],[31,[3],[3],[2],[32].,[3],[§],[2],[§],
[;]:[?0]’[?2]’[‘113]’[2]9[2];[?0]’[f2]’[g],[162] and [:;])

6.THE PAYOFF MATRIX CORRESPONDING TO THE ERROR IN
IMPLEMENTATION.

If we assume that our game has an error in implementation in ‘each move, then there is a

probability for a mistake ‘in each strategy. If e>0 denotes the probability of a mistake in

implementing a strategy, then S; becomes Sj(€), which is given by the quadruple obtained

(ur,uz,us,ug) by replacing 0 with € and 1 with 1- € . For instance the transition rule of the

Grim strategy Ss=(1,0,0,0) becomes Ss(e)=(1- &,g,€,€).

Thus, according to the equivalence classes we can find the 256 entries in 16x 16 payoff

matrix corresponding to the errors in implementation by finding 43 entries. ‘

If P =Si(e) and Q = Sj(€), then the transition probability matrix M becomes M(s) We can
write this matrix in the form

ME)=M+eB, £’ B; ©)]
where M is a stochastic matrix, B, and B, have row sum 0. We may view M(g) as a
perturbation of the matrix M and treat the problem of finding the left eigenvector Il(g) of
M(e) as a perturbation problem. Thus II(g) can be written in the form
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Me)=T+eX+e?Y+. .. ; (10)
where the stochastic vector ITis a solution of the equation IIM =I1. The components
of the vectors X and Y must sum up to 0. Writing M =1 +By (where I is the identity
matrix) and using (9) and (10), the eigenvalue equation Il(g) M(g) = II(e) implies,
upon comparing powers in g, the three equations

I1B, =0 (11)
XB, + 1B, = 0 (12)
YB, +XB; + 1B, =0 (13)

The payofT for the player using Si(€) against an opponent using S(€) is given by (we shall
 neglecte”) o

R R
S S
A(Si(e),S;(e)) =11 +eX (14
T T
) )

For P = S4(g) against Q = S)(g), by solving the three equations (11),(12) and (13)
(subjected to the condition that the components of IT sum up to 1, while those of X and
Y sum up to 0) we get
- T1=(0,1/6,3/6,2/6 ) and X = ( 6/9,1/9,-6/9,-1/9).
Thus. ' ' .
A(S4(), S12(e)) = 5 (126 R+ (3+2g) S + (9-12¢) T + (6-2¢) P) .

Since M}, = M;? , then (by Isomorphism theory) we get

A(Si2(g) , Sa(e)) = 5 ((3+2e) R+ (6-28) S+ 126 T + (9-12¢) P) .
By these calculations, we obtain the vectors IT for all 16 strategies which are in Table 2.
The vector I1 for S; against S;is (7,,7,, 7,,7,),with 7, = b;(h, +h, +h, +h,)™ and
(hi,ho,h3,hs) is given Dby the element in the i-th row and j-th column of Table 2. Table 3
represents the vectors X for all 16 strategies. By using Table 2, Table 3 and equation
(14) we can obtain the payoff matrix corresponding to the errors in implementations.

7. THE PAYOFF MATRIX CORRESPONDING TO THE ERRORS IN
PERCEPTION.

We have assumed that there are errors in implementing a move. We can also analyse the

effect of errors in perception -in misunderstanding the other’s C or a D,(see[1],[ 4]).

This type of errors can sometimes lead to quit different results. Let us denote by € the

probability of mistaking thc other player’s previous move, and by A€ the probability of

mistaking one’s own previous move (usually O<A<1 ). The perturbation of the tit for tat

strategy Sio is (1-g,g,1-€,€), just as with mistakes in implementation, the perturbation of

Se is (1-(1+A)e,(1+A)e, (1+A)e,1-(1+A)e) ; that of S is (1-(1+A)e,g,A€,0), while So and

Sis are not affected by the perturbation at all. In general, the strategy (us,uz,us,us) turns

into : :

(1-(1+A)E) (U, uz,us, Ug)+e(Uz, Uy, Ugyus)+HAE(Us, Us g, U)HAE 2 (V,-V,-V,V),

where v = ujtus-uz-us .

In this case, the table which represents Po,P;,P2,P3,Q0,Q1,Q; and Qs is Table 1 (as the

same table in the previous case). Thus we have the same 43 equivalence classes, i.e. we

can find the 256 entries in 16x16 payoff matrix corresponding to the errors in perception
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by finding 43 entries (clear by isomorphism thecry). Again, one can use the same
perturbation method as before to find the payoff values. For P = S, against Q = Sy, for
instance, one obtains.
IT = (0,A, 1434, 142A)/(2(1+31)) and X =A% (1434,-A,-1-3A,A)/(2(1+31) ?) .

We can obtain the vectors IT for all 16 strategies from Table 4. The vector I for S;
against S; is (7,,7,,7,,7,), Withm, = n,(n,,n,,n;,n,) " and (n,,n,,n,,n,)is given
by the element in the i-th row and j-th column of Table 4. We can obtain the vectors X
for all 16 strategies from Table 5. The vector X for S; against S; is (X1,X2,X3,X4), With x; =
m;(n,,n,,n,,n,)~* where (m;,my,ms,my)and (n,,n,,n,,n,)are given by the element in
the i-th row and j-th column of Table 5 and Table 4 respectively.

S; is outcompeted by S;ifboth A(S;,S;) 2 A(S;,S;) and A(S;,S;) = A(S;,S;), with at least
one inequality being strict. Writing Si<< S; if S; is outcompeted by S; .

For Prisoner’s Dilemma game by using the Axelrod’s payoff values (T =5,R=3,P =1
and S = 0) with & = 0.001 , A = 0.01 we get that
So <<—

Sl, << So,S4,Ss

Sz << Sg,Slo,Sn

S; << So,S4,'Ss,S9,Su

S << So,Ss

Ss << So,S;,Sz,S4,Ss,S9

Se << S0,51,52,53,54,Ss5,Ss,S9,510,511,512

S7 << So,Sl,Sz,S3,S4,Ss,Ss,Sg,Sll,Slz

Sx <<—

Sg << S(),Sl,SA,Ss

S10 << S9,S11

S11 << 80,51,84,55,S8,512

S|2 << So,Sl,Sz,S4,Sg,Sg

S13 << S0,51,52,53,54,55,57,538,59,S12

Si4 << S0,51,52,53,54,55,57,58,59,S 12,513

Sis << 50,51,52,53,54,55,57,58,59,512,513

We see that all strategies except So and Sg are outcompeted by at least one other
strategy. The strategies So and Sg can outcompete the greatest number of rival strategies
(exactly 12). On the other hand, every strategy except Se, S14 and Si5 can outcompete
some other strategies. There are only two heteroclinic three-cycle which are S; Sy Ss
and S, Su Su: these are triples of strategies S;, Sj and Sy where S; << §;, S; << S and
Sk<<S;.
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Sy S, S, Sa Ss Ss S¢ Sg So Sio Sy Sy Sia Sia Sis
0,00,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,12) (0,0,1,0) (00,1,1) (0,0,1,0) (0,00,1) (0,0,1) (0,0,0,1) (0,01,1) (0,0,1,1) (0,0,1,0) (0,0,2,1) (0,0,
(0,1,0,1) (1,00,1) (0,,1,1) (1,0,0,1) (0,21,2) (L,0,L,1) (00,1,0) (1,021) (0,1,0,1) (1,0,1,1) (OLL1) (10,L,1) (0,1,21) (0,0,1,0) (0,0,1,0) (0,0,1
©001) ©LL) (0112 @©LL0) (0001) (1,0,1,1) (0001) (10,1,1) (0001) (O1,1,1) @OLLY) (01,100 (1,0,12) (1,0,1,0) (2021) (10,1
(0,1,0,1) (1,00,1) (0,,1,0) (LLLIL) (0,1,0,1) (1,0,0,1) (LLL1) (1,00,1) (OL,0,1) (L,L,L,1) (01,100 (01,100 (L,L,L1) (1,0,1,0) (1,0,,0) (1,0,1
©102) 0122 (0001 ©OOL) (OLL2) (©00L0) (0012 ©00L0) 1,02 0122 0001 OOL) 132 0010 ©0021) (001
©,1,00) (LLOD (L1, (1001 (0100) (LLLD (LLLD) (L0L) ©1,00) (LLLY (LLLD) (L0,L1) (OLL0) (00,1,0) (0,0,10) .(0,0,1
0101 (01,00 (0001 (LLLD (0102) (LLLD) (0001 (1,0,L,1) (0201 (01,000 (LLLY) (L,L,L,0) (LLLY (2120 (2021) (1,01
(0,1,00) (1,20,1) (L,L,0,1) (1,00,1) (0,1,00) (1,1,0,1) (LL,0,1) (1,0,0,1) (0,1,00) (0,1,0,0) (L,1,1,0) (L,1,1,0) (1,2,,0) (2,1,20) (1,0,1,0) (1,0,1,
0,00,1) (0,0,1,1) (0,00,1) (0,0,1,1) (0,0,12) (0,0,1,0) (0,021) (0,0,1,0) (0,00,1) (1,022) (0,00,1) (1,022 (1,023) (1,02,0) (1,021) (10,2
0,1,01) (1,1,0,) (©OL,L,1) (LLLD) (0,21,2) (LLLL) (0,0,,0) (0,0,1,0) (1,202) (1,000 (LLL1) (1,000 (1,1,1,1) (20,1,0) (1,02,0) (1,01,
©001) OLLY) OLL) OLL) (0001 (LLLD (LLLD) (LLLY) (0001 (LLLD (LLLY (LLLY) (LoD (1,000 (1,00,0) (1,00,
0,1,0,1) (1,1,01) (0,1,1,0) (0,1,1,0) (0,1,0,1) (1,1,0,1) (1,L,L,0) (L,1,1,0) (1,202) (1,00,0) (1,1,1,0) (21L1,0) (21,0,1) (1,0,0,0) (1,0,0,0) (1,00,
(0,1,01) (©21,1) (1,1,02) .(1,L,L,1) (0,312 (0,1,1,0) (LLLY) (L,1,20) (1,203 (LLL1) (1,001) (201,1) (1,L,L1) (213,00 (G021) (1,0,
(0,1,0,0) (01,00) (1,1,0,0) (1,1,0,0) (0,1,00) (0,1,0,0) (2210 (2210,) (1,200) (21,000 (1,000) (1,00,0) (231,00 (1L1,0) (20,100 (20,1,
020,1) (©01,00) (2201) (1,100) (020,1) (0,100 (220,1) (L1,00) (1,201) (1,200 (1,000) (1,000) (320,1) (21,0,0) (1,0,00) (1,00,
(0,1,0,0) (0,1,00) (1L,1,00) (1,1,0,0) (0,1,00) (0,1,0,0) (1,1,00) (1,100) (1,200 (1,1,0,0) (1,000) (1,00,0) (1,1,0,0) (21,0,0) (1,00,0) (1,0,

Table.2
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SO sl S! S4 SS SG S7 88 S9 SIO Sll le Sl} SH SlS
©0,1,1,-2) (22,-3-1y4 (0,1,2,-3) (L1112 (3,6,-1,-8Y9 (1,0-32)  (L1-1,-1)2 (1,0,-3,2) 0,1,1,-2) 11-1,-12  (01,2,-3) @2-1,-3y4  (LI-1-1)2  (1,0,-2,1) (6,3,-8,-1y9 (1,0,-2
@-32-4 (322712 67275108 (21271 (15143425 (46119 (12,52) » (0,1,-1,02 (L2212 (-1,2,-1,03  (6,-4,-1,-1)9  (-5,6,-2)9  (6-1,-6,1}8 (2,0,-3,1) (1,1,-3,1) (2,0,-3
02,1,-3) (6,-5,-2,1y9 (1,0,0,1)2 (1,-2,-1,2) (1,1,1,-3) (46119 (21,2,-5) (=2,6,1,-5)9 (0,2,1,-3) @03 Gdrl D 23122 CLEL-6B (24122  (-1415-4325 (32,1
(1,-1,1,-1)2 (-22,1,-1) (1-1,-22)  (~1-L1VI6  (2-2,1,-1)2 -1L,1,1,-1) (0,0,0,0) -1,1,2,-2) (1,-1,2,-2)2 0,000) (1-1,-1,1) 2-2-L1)  (--L18  (-1,1,-22)02 (22-L,102  (L1,-1,
(3,-1,6,-8)9  (15,3,-14,-4)25 (1,1,1,-3) @1,-2-12  (1,00-1)2 (1,1,-42)  (9,6,-1,-14y9 (1,0,-3,2) (3:29-1009  (3,0,-1,-2¥5  (1,1,2,4) @L-1,-22  (61,-6,-D)F  (2,1,-52)2 (9.3,-10,-2)9 (1,0,-2
" (1,-302) (L6109 (416109 (-1,1,1,-1) (1,4,1,2) (0,0,0,0) (0,0,0,0) (-1,6,-1,-4y9 (1,-4.1,2) (0,0,0,0) (0,0,0,0) (-1,6,-1,4Y9  (1,-1,-1,1) (2,1,-4,1) (2,1,4,1) (2,0,-3
(1,-1,1,-1)2 (1,-5,22) (22,-5) (0,0,0,0) (9,-1,6,-14y9 (0,0,0,0) @1,1,-4) 02-1,-1y3 (6,-149,-1y9 (1,-4,2,1) (0,0,0,0) (-1,-1,02y3 (0,0,0,0) (-2,0,-1,3y5 (-1,3,-205 (1,11,
(1,-3,0,2) 0,-1,1,002 (—2,],6,—5)/9’ (-12,1,-2) (1,-302)  (-1-1,6-409 (01,213  (-122,-3)2 (1,-3,1,1) @-521)  CLALA46S  (1,-5-26)9  (1,-6,-L6M8  (-43-14,15)25 (127202 (-1,2,-3,
(0,1,1,-2) (1,2,-2,-1)2 (0,12,-3) (127122 (39,-2,-10)9 (1,1,42) (69,1419 (1,1,-3,1) (1,22,-52 03,215 (L,1,2-4)  (3,15-4,-14)25 (1,6,-1,-6)9  (-2,3,-10,9)9 (0,1,-1,02  (-1,3-8,
(U~LL-12  (-1,-1,2,003 (2,0,-1,-1)3 (0,0,0,0) (3,-1,0,-2y5 (0,0,0,0) (1.2,-4,1) 2.2,-5,1) (0,-2,3,-1y5 (=4,1,12) (0,0,0,0) (-5,1,2,2) (0,0,0,0) (14,671,909 (-1,9,-14,6)9  (-1,1,-1
(02,1,-3) 61,4109 (6,-L,4,-1)9  (1,-1,-1,1) (12,1,4) (0,0,0,0) (0,0,0,0) (-1,-4,-1,6)9 (1,2,1,4) (0,0,0,0) (0,0,0,0) (-1,-4,-L,6)9  (-1,L,1-1) (-4,1,2,1) (—4,1,2,1) (-3,1,2
(2,-12-3V4  (-51,6,-2)9 2-14-3202 217201 @RFLL22 ((L-L6-4Y9 (-1,0,-12)3 (125609 (3,4,15,-14)25  (-52,2)  (-1,-1,46)9  (-1,0,0,)2 ° (-61,6,-1)8 -3,1,1,1) (-3,1,2,0) (-3,1,2
(U-LI-12 (66,118 (-L,1,6,-6)8 (1, -1,-L)B  (6,-6,1,~1}9 (1,-1,-1,1) (0,0,0,0) (1,-1,-6,6)8 (1,-1,6,-6¥9 (0,0,0,0) (-LL1-1)  (-66,1,-1)8 (0,0,0,0) (-1,1,-6,69 (661,19 (=111,
(1,-2,0,1) (2,-3,0,1) 2-L122 (L2122 (2-5122 @4LD  (-2-103Y5  (43,-14,15025 (2-1039Y9  (-14,-169)9  (-42,L,1) -3,1,1,1) -1,-6,L,6Y9  (-1,0,0,)2 (-109,-23)9 (86,1,
(6,-83,-1y9 (1,-3,1,1) (-14,14,15,3)25  (-2-1,2,1)2  (9,-10,3,-2)9 @4LD)  (-1,7230¥5  (-1,-2,2,)2 O-LL0Y2  (-1,-149,6)9  (-42,1,1) (-3,2,1,0) (-6,-1,61¥9  (-10,-2,9,3)9 (-52.2,12 21,1
(1,-20,1) (2,-3,0,1) (-3-122v4  (-1,-1,1,1)2 (1,-2,0,1) (2-30,1)  (-L-LLI2  (-1,-322V4 (<1,-83,6)9  (-L-LL1)2  (-32,,0) (-3,2,1,0) IALL2  (-8,-1,6,3) (-2,1,1,0) 21,1

Table.3
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So S, S, Sy S, S5 Ss S, Ss S, Sio Su Sy2 Sis Sie Sys
(0,0,0,1) (0,0,1,1) (0,0,0,1) . (0,0,1,1) (0,0,A,1+1) (0,0,1,0) (0,0,1,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,1,1) (0,0,1,0) (0,0,1+A,1) (0,0,1,0)
(0,1,0,1) 1 (1,00,1) (0,1,1,1) (1,0,0,1) (0,1,0,1) (2,0,2+42,2) (0,0,1,0) (1,0,1+A,1) (0,1,0,1) (1,0,1,1) 0,1,1,1) (1,0,1,1) 0,1,2,1) (0,0,1,0) (0,0,1,0) (0,0,1,0)
(0,0,0,1) (0,1,1,1) (0,1,1,1+1) (0,1,1,0) (0,0,0,1) (1,0,1,1) (0,0,0,1) (1,0,1,1) (0,0,0,1) 0,1,1,1)  (0,2,2,2+1) (0,1,1,0) (1,0,1,2) (1,0,1,0) (1,0,1,0) (1,0,1,0)
(0,1,0,1) (1,0,0,1) (0,1,1,0) (1L,L1,1) AO._.O.:. (1,0,0,1) (1,1,1,1) (1,0,0,1) (0,1,0,1) (1,1,1,1) (0,1,1,0) (0,1,1,0) (1,1,1,1) (1,0,1,0) (1,0,1,0) (1,0,1,0)

(0,A,0,1+1) (0,0,1,1) .A0.0.0L ) (0,0,1,1) (O,M,A,141) (0,0,1,0) (0,0,1,1) (0,0,1,0) (0,A,0,1421) (0,0,1,1) (0,0,0,1) (0,0,1,1)  (O,A,143A,1421) (0,0,1,0) (0,0,1420,) (0,0,1,0)
(0,1,0,0) (2,2+4,0,2) 1,1,0,1) (1,0,0,1) (0,1,0,0) (1,1,1,1) (1L,L1,1,1)  (2,0,2+1,2) (0,1,0,0) a5 (L,L1,1) (1,0,1,1) (0,1,1,0) (0,0,1,0) (0,0,1,0) (0,0,1,0)
(0,1,0,1) (0,1,0,0) (0,0,0,1) (1,1,1,1) (0,1,0,1) (1,11 (0,0,0,1) (1,0,1,1) (0,1,0,1) (0,1,0,0) LLLY (1,1,1,0 L (1,0,1,0) (1,0,1,0) (1,0,1,0)
(0,1,0,0) A—.Tv?.o.c (1,1,0,1) A_.0.0-—.v (0,1,0,0) (2,2+42,0,2) (1,1,0,1) (1,0,0,1) (0,1,0,0) (0,1,0,0) (1,1,1,0) (1,1,1,0) 1,2,1,0) (1,0,1,0) (1,0,1,0) (1,0,1,0)
(0,0,0,1) 0,0,1,1) (0,0,0,1) (0,0,1,1) (0,0,A,1421) (0,0,1,0) 0,0,1,1) (0,0,1,0) (0,0,0,1) (0,0,1,1) (0,0,0,1) (0,0,1,1) (A,0,1+24,1+31) (A,0,1421,0) (A,0,1+A,1) (2,0,1+1,0)
(0,1,0,1) (1,1,0,1) 0,1,1,1) (1,L1,1) (0,1,0,1) (LL,1,1) (0,0,1,0) (0,0,1,0) (0,1,0,1) (1,0,0,0) 1,1,1,1) {1,0,0,0) (L1101 (1,0,1,0) (1,0,1,0) (1,0,1,0)
(0,0,0,1) 0,1,1,1) (0,2,2,2+1) (0,1,1,0) (0,0,0,1) (1,1,1,1) (1,1,1,1) (1,1,1,0) (0,0,0,1) (1,1,1,1) (L,1L,L,1)  (2+A,2,2,0) (1,0,0,1) (1,0,0,0) (1,0,0,0) (1,0,0,0)
(0,1,0,1) (1,1,0,1) (0,1,1,0) (0,1,1,0) (0,1,0,1) (1,1,0,1) (1,1,1,0) (1,1,1,0) (0,1,0,1) (1,0,0,0) (2+A,2,2,0) (1+A,1,1,0) (2,1,0,1) (1,0,0,0) (1,0,0,0) (1,0,0,0)
(0,1,0,1) 0,2,1,1) (1,1,0,2) (1,1,1,1)  (0,1+433,1,1421) (0,1,1,0) (1,L,1,1) (1,1,2,0)  (A,1424,0,1431) (1,1,1,1) (1,0,0,1) (2,0,1,1) (1,1,1,1) (1422,A,143,0) (1431,0,142A,A (1,0,1,0)
(0,1,0,0) (0,1,0,0) (1,1,0,0) (1,1,0,0) (0,1,0,0) (0,1,0,0) (1,1,0,0) (1,1,0,0,) (A,1+21,0,0) (1,1,0,0) (1,0,0,0) (1,0,0,0) (142A,1434,1,0)  (1+A,A,A,0) {1+21,0,A,0) (1+A,0,A,0)

(0,1+A,0,1) (0,1,0,0) (1,1,0,0) (1,1,0,0) (0,1421,0,1) (0,1,0,0) (1,1,0,0) (1,1,0,0) (A,142,0,1) (1,1,0,0) (1,0,0,0) (1,0,0,0) (1+3A,1423,0,A) (1+2A,A,0,0) (1,0,0,0) (1,0,0,0)
NO._.0.0H (0,1,0,0) (1,1,0,0) (1,1,0,0) (0,1,0,0) (0,1,0,0) (1,1,0,0) (1,1,0,0) (A,1+1,0,0) (1,1,0,0) (1,0,0,0) (1,0,0,0) (1,1,0,0) (14+A,1,0,0) (1,0,0,0) (1,0,0,0)

Table.4
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A b b AWUVy™1,4) Ui, 1) AV UhV) AN bt bt M \(UhVy=4,1) \V,Uh)VUeV) AUV, =hL,1)
0,-1,0,1) 2(=2-2A,144,144,0) (3+34,-1,-4-6A,.2+31) 2(-1-3A,A,14+34,-A) - (2A,-1-31,21,1-1) (-1&—41-#,12+2;.,;.’-2x,4;.) (1,2+A,-5-21,2+1) (14AX-1,02,-1) .
(0,,0,-1) (3+34,-4-6A,-12+31) (0,-1-A,-1-A,2421) 2(A,-1-3A,-A,1+31) (A1A,-1-22) (-3-21,3+3%,4,-21) (2+A,1,24A,-5-24) (-1,3+31,2+31,-4-62)
(0,0,0,0) 2(-1-3A,1430,4,-A) 2(A,~A,-1-31,14+31) (0,0,0,0) 2A(1,-1,0,0) 2(14+AX-1,1,1,-1) (0,0,0,0) 2(-A,A,1434,-1-31)
(0,0,0,0) (2A.20,-1-34,1-1) (AA,1,-1-21) 2A(1,0,-1,0) A2(14AX0,-1,-1,2) 0,0,-1,1) (2A,2A,-A,-31) (0,0,-1,1)
0,-1,0,1) (—12-4A-A1A2-24,12421,41) (-3-2A,A,3+34,-21) 2(1+AX-1,1,1,-1) 0,-1,0,1) 0,0,0,0) (0,0,0,0) (AM1242A,A2-21,-12-4A-
(0,0,0,0) (1,-5-24,2+A,2+A) (2+A2+A,1,-5-21) (0,0,0,0) A2,-12,-3) (0,0,0,0) (1+AX2,1,1,-4) (142,6+31,-2-A,~5-47
(0,-1,0,1) (14+AX-1,2,0,-1) (-1,2+31,3+31,-4-61) 2(-A,143A,4,-1-31) 0,-1,0,1) (4AAZ-2M,12424,-12-4A-22)  (1+24,-2-A,6+34,-5-41) 2(1+AX0,1,1,-2)
(0,0,0,0) (0,2A,-1-A,1-1) 0,0,1,-1) 2)(0,1,0,-1) A%(143,1434,1-1,-3-51) (MWA-1-33,141) AQ22,-3-1) (AA-1-24,1)
(0,0,0,0) (—4—51,—2—v}.,6+31,l+27t) (6+3A,142A,-5-4A,~2-1) (0,0,0,0) A2i-1.5,1,-1:5) (0,0,0,0) (14AX1,2,-4,1) (2+A2+A,-5-24,1)
(0,1,0,-1) (3+34,-24,-3-21,A) (12424,40,-12-4A-A2A2-21) 214+AX -1~ L,1) (A1+A,1,-1-31) (0,0,0,0) (0,0,0,0) (A,-3-2A,-24,3431)
(0,1,0,-1) (—4-61,2+31,3+31,-1) 2(1+AX1,0,-2,1) 2(143A,-A,~1-3%,1) (2M,1-1,0,-1-1) (=2A,4,3+34,-3-21) (=2-A,142A,-5-42,6+31) (2+31,-1,-4-61,3+31)
(0,0,0,0) 2(4+24,-4-24,~1-A,141) 2(=1-A,1+A,4+22,-4-21) (0,0,0,0) 22%(1434,-1-34,-A,A) 2(14+AX1,-1,-1,1) (0,0,0,0) 2(14+A,~1-A,~4-24,4+2]
(0,0,0,0) (1,-1,0,0) (-1-1,1-1,0.2%) - 20(0,-1,0,1) (0,0,0,0) (1,-1,0,0) AM-1.5-15,12) (1-A,-1-3A,24.24)
(0,0,0,0) (1,-1-22,4,1) (-1-33,1-A22.,2) 2(-1,0,1,0) A%(1434,-3-51,1+31,1-1) (1+A,~1-30,4,1) A(-1.5,-1.52,1) (1-A-1-A.22,0)
(0,0,0,0) (1,-1,0,0) (-1,1,0,0) 00,00 (0,0,0,0) (1,-1,0,0) (0,0,0,0) (1,-1,0,0)
Sg So S10 Sy Si Sia S Sis
(0,0,0,0) (0,0,0,0) 0,0,1,-1) 0,0,1,-1) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
(0,-1-2,24,1-1) (-5-4A,6+3A,-2-A,1421) (3+34,-3-2A,~20,1) (=4-6A,3+33,2+3A,-1) 2(4+20,-1-2,-4-2A1+1) (1,0,-1,0) (LA,-1-2A,1) (1,0,-1,0)
(0,1,0,-1) (6+3A,-5-4A,1424,-2-R)  (12+42A,-12-4A-A%,d4AA%-20) 2(1+AX1,-2,0,1) 2(-1-A,4+2M,1+A,~4-21) (-1-1,0,1-A,2) (-1-3A24,1-221) (-1,0,1,0)
2A(0,0,1,-1) (0,0,0,0) 2(14+AX1,-1,-1,1) 2(1434,-1-30,-A,1) (0,0,0,0) 2A(0,0,-1,1) 20(-1,1,0,0) (0,0,0,0)
A2(14+3A,1-4,1432,-3-51) AM2,1,-1.5,-1.5) (A, 14A,-1-31) (2A,0,1-4,-1-1) 2A%(143A,-A,-1-3%,1) (0,0,0,0) A2(1434,1431,-3-54,1-1) (0,0,0,0)
(A-1-30,1,141) (0,0,0,0) (0,0,0,0) (-2A,3+3A,1,-3-21) ' 2(14AX1-1-1,0) (1,0,-1,0) (14A,A,-1-30,1) (1,0,-1,0)
A2-3,2-1) (1+AX1,-4.2,1) (0,0,0,0) (=2-A,-5-4A,1421,6+31) (0,0,0,0) M-1.5,1,-152) A(-1.52,-1.5,1) (0,0,0,0)
(A,-1-22,4,1) (2+A,=5-202+A,1) (A,—2A,-3-21,3+31) (2+3%,-4-61,-1,3+31) 2(14A,-4-2A,~1-1,4+2)) (1-A2A,-1-3A.21) (1-A24,-1-1,0) (1,0,-1,0)
(0,0,0,0) A(1,2,-1.5,-15) 0,0,1,-1) (2A2A,1-2,-1-31) 2A%(-A,14+33,4,-1-31) A%(1-A,14+3A,-3-5A,1+31) A%(1+AX-1,0,2,-1) A (0,0,0,0)
M1,-152,-15) (1+AX=4,1,12) (0,0,0,0) (=5-2A,124A.2+A) (0,0,0,0) AM-32,-12) A(-1,2,-32) (0,0,0,0)
0,,0,-1) (0,0,0,0) (0,0,0,0) (A%=2A,-12-4A-1%dA,12421) 2(14+AX-1,1,1,-1) (-1-3A,A,14+4,1) (-1,0,1,0) (-1,0,,0)
(2A,1-A,24,-1-31) (=5-2A.2+A,1,2+1) (A2-20,44,-12-4A-2%,12422) (2+2A,-1-2,-1-2,0) 2(-4-2A,14A,4+21,~1-1) (-1-2A,0,1,1) (-1,0,1,0) (-1,0,1,0)
2A%(=AA,1430,-1-31) 0,0,0,0) 2(14AX-1L,1,1,-1) 2(=4-2A,4+2A,1+A,~1-4) (0,0,0,0) 22%(A,—A,-1-34,1+31) 23%(-1-32,143R,4,-1) (0,0,0,0)
A2(1-A,~3-51,1+32,1432) M-3,-122) (-1-3A,14A,0,1) -1-23,LA.4) 22%(A,-1-3A,-A,1+31) A2(1+AX2,-1,-1,0) A%(=3-51,1+3A,1-1,1+31) (0,0,0,0)
A2(1+AX-1,2,0,-1) A(-1,-3.2,2) (-1,1,0,0) (-1,1,0,0) 223(-1-3A,A,1434,-1) 22(-3-5A,1-A,1434,1431) (0,0,0,0) (0,0,0,0)
(0,0,0,0) (0,0,0,0) (-1,1,0,0) (-1,1,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0) (0,0,0,0)
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A POINTWISE ERGODIC THEOREM

MARfA ELENA BECKER

Abstract. Let (X, A, M) be a finite measure space and (© a nonsingular transfor-
mation on (X, A, [J,), Necessary and sufficient conditions are given in order that for

n-1 i
any f in L1 the average % ZI—=0 f o (p’ (l‘) converges almost everywhere.

INTRODUCTION AND RESULTS.

Let (X, A, u) be a finite measure space and ¢ a nonsingular transformation on
(X, A, ), that is, A € A and p(A) = 0 implies p(p~1A) = 0. We consider the
operator T, acting on measurable functions, '

Tf(z) = f(pz) .

Associated with T' we have the averages

1 n—1 )
Mn(T)f = ;Z_% T'f .
Since T’ maps Lo, to Lo and ¢ is nonsingular; the adjoint operator S acting on
Ly(p) can be defined by the relation

[ orsan= [ 1sgau

f € Lo , g € Li. Asin [3], in order to extend the domain of S to the space
M*(p) of all nonnegative extended real valued measurable functions on X, fix

any f € M*(u) and take {f,} C LT (x) such that f, 1 f a.e. on X. We then
define ' ‘

Sf=lmSf, a.e. on X .

It is easily checked that by this process S can be uniquely extended to an operator
on M*(p) satisfying S(af + Bg) = aSf + 8Sg, 0 < @, 8 < co. In the sequel, S
will be understood to be defined on M*(y) in this manner and we write

n-1

My(8)f == §'F .

=0

1991 Mathematics Subject Classification: Primary 47A35 Secondary 28D05
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The purpose of this paper is the following theorem:

Theorem 1. Let (X, A, p) be a finite measure space and ¢ a nonsingular trans-
formation on X. Then the following conditions are equivalent:

A) For any f € L{ (1), imM,(T)f exists and is finite a.e. on X.

B) S satisfies the mean ergodic theorem in L; () and, further, for any f € L} (u),
limM,,(S)(fvo) exists and is finite a.e. on X, where vg is the pointwise and

Li—norm limit of M, (S)1.

* We will need the following well-known fact (see, e.g. [4])

Lemma 1. Let (X, A, z1) be a finite measure space and ¢ a nonsingular transfor-
mation on X. The following are equivalent:

(i) Forany f € Loo, Myn(T)f converges almost everywhere.

n—1 .
1 .
ii) F A lim— E ~'(A)) exists.
(ii) For any A € A, im— 2 p(e~"(A)) exists.
(iii) S satisfies the mean ergodic theorem in L.

Throughout this paper x4 will be the characteristic function of the set A and
~ we will consider two sets as ‘equal’ if they agree up to a set of measure zero. A
measurable set A will be called invariant if Tx4 = xa a.e.. We denote by J the
~ o—field of invariant sets.

THE PROOFS.

In order to prove Theorem 1 we will make some previous considerations. First, we

observe that by virtue of Lemma 1 we may and do suppose that ¢ satisfies:
n-1

’ 1 .
For any A € A there exists i(A) = lim—z (e~ (4)) .

- ' . nn i=0 . .
By the Vitali-Hahn-Saks theorem 7 is a measure. It is easy to see that 1 is
absolutely continuous with respect to g, invariant under ¢ and 7(A) = p(A),
AeJ. ) '

Let vg = j—g, C = {z :vo(z) > 0} and D = X \ C. We have u(C\tp'l(C)) =0

and hence we may suppose that C C ¢~1(C). Then the set Do = [} ¢~ "(D) is
' n>0
invatiant and p(Do) = B(Do) = 0. Thus we have

(1) X=Uem(©0):

n2>0
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It is also easy to see that the validity of L; —mean ergodic theorem for .S implies.
v = lim My ()1 .

We prove t‘he follbwing:

Lemma 2. Let h € M*(u) such that h*(z) = Ii}lnM,,(T)h(m) exists and is finite

a.e. on X. Then h € Ly () if and only if 2* € Li(p).
Proof. If hisin Ly (), then by Birkhoff’s classical ergodic theorem h* € Lj(z)

and we have
/hdﬁ:/h*dﬁ:/h*dﬂ,

where the last equality follows from the fact that A* is J-—measurable together
with y=Z on J.
Conversely, assume h* € Li(p) and let {h,} be a sequence of nonnegative simple

- functions increasing to h. By (1) and the Lebesgue bounded convergence theorem,
for all A € A we have ’

/ Xadp = lim / Mn(T)xadp = / XAdl .

/h*d,u > lim/h;dp.= lim/h,ﬂ'ﬁ: /hdiI .
: n n

Proof of Theorem 1. A) = B). Let f be a function in L (1) and f* = liﬁnMn (T)f.

We consider for each natural N the set Jy = {z : f* < N}. Since Jy € J,
(fXs,)" = Xy, f* p—a.e., and from Lemma 2 it follows that fx, .vo € L1(p).

Hence

Then Lemma 1 and the fact that the validity of the L; —mean ergodic theorem for
S implies the validity of the pointwise ergodic theorem for S (see, e.g. [2]) give -
the almost everywhere convergence of M,(S)(fx,,, vo). From the relation

S(fXJN 'vo) = Xup S(fvo)

it follows that M, (S)(fvo) converges a.e. on Jy. Letting N 1 oo, we obtain B)
B) = A). Since for all f € Li(p) .

[S(xc )l £ xS1f] .u—a.e. on X |

S can be considered to be a positive linear contraction on L;(C, p).
Let Jc be the o—field of invariant subsets of C. Using, for instance, the Chacon-
Ornstein theorem and the identification of the limit function (see [1], p.41) it
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follows that for each h € L1(C,p) there exists a Jc—measurable function R(h)
such that

h = lim M,,(S)h = R(h)vo p—ae onC .

Furthermore, we have

hdjp= | R(h)vedp K € T .

N K
Now, let f € LT (p) and set f, = min{f,n}, for cach natural n. "Then
f:v\o=R(fnvo)vo§m<oo p—d.e onC |,

where fup = imM, (S)(fvo).
We take Ky = {2 € C : supR(fnvo) < N}. It follows that

fvod,u = hm favodu < N vodp -

I&N I\N- I\N

Therefore, f € Ly(Kn,) and by Birkhoff’s classical ergodic theorem Mn(T) f
converges to a finite limit a.e. on K.
Since Ky 1 C, A) follows from (1).
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HARDY-ORLICZ SPACES AND HORMANDER °’S MULTIPLIERS
Claudia Serra and Beatriz Viviani'

Presentado por Carlos Segovia Ferndndez

Abstract: We consider Hormander ’s multiplicrs of fractional order on Hardy-
Orlicz spaces H,,({1"). The main tools we used are the atomic and molecular
decompositions of these spaces.

1. Introduction

In this paper we study multipliers for the Hardy-Orlicz spaces H,,(IR"). We
consider Hérmander’s multipliers of order ¢ > 0, where t is not necessarely an
integer number. In [5], Taibleson and Weiss, proved that the functions m sat-
isfying a Hérmander’s type condition (see (1.2)) are multipliers for the classical
Hardy spaces HP(IR"), 0 < p < 1. There, they use different techniques to deal
with the cases ¢ an integer and ¢ real and non-integer (see theorems 4.2 and 4.9).

-The purpose of this work is, on one side, to extend these results to the contect
of Orlicz spaces. On the other side we present an approach that allows to deal
simultaneously with all positive real values of t. Our main tools in this setting
are the atomic and molecular decomposition of the Hardy-Orlicz spaces given in
[3] and [6]. :

In order to introduce the spaces H,,(IR") we first give some definitions.

let g be a positive function defined on IR = {z € IR,z > 0}. We shall say
that g is of lower type m > 0 (respectively, upper type m) if there exists a positive
constant C such that
g(st) < Ct™g(s)

for every 0 < t <1 (respectively, t > 1).
Given g, a function of positive lower type I, we define

g7 (s) = sup{t: g(t) < s}.

Assume that w is a function of positive lower type { and upper type d < 1.

1Supported by CONICET and UNL (CAI+D Program)
Keywords and phrases: Hardy-Orlicz spaces, Hormander’s multipliers.
AMS Subjet Classification: 42 B25.
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Let j € IN éuch that jl> 1. We define

fi(z)
/ w ( 7T dr < oo
mﬂ

where f} is the j-maximal function of a distribution f € &', the dual space of the
class of Schwartz functions (see [1]). We denote

1z, = mf{)\>0 / (Alﬂ))d <1}

It can be seen that H,, is a complete topological vector space with respect to
the quasi-distance induced by || ||#,. Moreover H,, is continuously included in
§'. Clearly, when w(t) = t?, 0 < p < 1, H,(IR") = HP(IR"). Also it can be
proved that for every f € H,, f is a continuous function on IR™ which satisfies

Hw=Hw(1R")={feS':

» el <c 'l(',n')nfu"‘ 40
(1.1) :

foy=o0

where C' is a constant independent of f, see [5] for the case HP (IR™).
Suppose that m is a measurable function such that the function m f belongs to
S’ whenever f € H,. We say that m is a multiplier on H,, iff there is a constant
C > 0 satisfying ~
1) e < Cllflla
for all f € H,.

The Hérmander condition is given in terms of the difference operator whlch is

defined by
Apu(z) = u(z) — u(;v — k),
- where u is a real valued function on IR" and h € IR*. We denote

Alu=u and Afu=AF'Aju, kelN.

We say that a function m satisfies the Hormander condition for ¢ > 0 if m is
bounded, |m(z)| < A, and for some integer { > t and all integers k, we have

k(2t—n) -2t ] 2 2
(1.2) 2 / |h| / |ALm(z)|*dz T <A

|h|<2k—l 2k <|z|<2k+1
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It can be proved that if ¢ is an integer, condition (1.2) is equivalent to

RHAl= / |DPm(z)Pdz < A?
R<|z|<2R '

for 0 <|B| <t and all R > 0.

The main result in this paper is the [ollowing;:

- Theorem (1.3). Assume that w is a function of positive lower type | and upper
type d < 1. Suppose that m salisfies the Hormander condition for t > n(2/1 —
3/2). Then, there is a constant C > 0, independent of m, such that

(14) W) llan < CANS I

for every f € H,. When w(t) =t?, pe€ (0,1] we have (1.4) with ¢t > n (1/1 —
1/2). o | |

The proof of theorem (1.3) is developed in section 3. As principal tools we

. use the atomic and molecular decompositions of H,, which are contained in section
2.

2. Atomic and molecular decompositions of H,,

In this section we shall give the definitions of the atomic and molecuar Hardy-
Orlicz spaces and state some of their properties used in the next section.- The
proofs_of these results can be found in [6] and [3). As in those papers in the
sequel we shall assume that: ' ; :

(2.1) w is a function of positive lower type ! and upper type d < 1, p is the
function defined by p(t) = t~!/w=(t"!) and N = [n(1/! — 1)], where [z] stands
for the biggest integer less than or equal to z.

The following definition will be usefull to introduce the atomic and molecular

spaces.
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-Definition (2.2). Suppose that b = {b } eIN, is a sequence of functions in
L*(IR™), and ¢ = {c; }JE IN, is a sequence of posntlve constants such that

(23) | - Teu(libillac; ) = L < oo,

where IN, denotes the set of non-negative integers. ‘We define

, Wosllac; Y
(2.4) A(b, c)—mf{/\>0 > Jw(l /\"‘;/, <1
We observe that -
e (Ml ) _
- cjw A(b,c)lﬂ =V

where C is the upper type constant of w.

Definition (2.5). Let n € INo, n > N. A (p,n) atom is a real valued function
a on IR" satisfying ‘

(2.6) - / a(z)zPdz = 0
s

{or every multi-index 8 = (f,,...,0,) such that |f]| = By + ... + B, < 3, where
2P =P, 2P, '

(2.7) the support of @ is contained in a ball B and
(2.8) llallz| B/ < [1Ble(1BI)]) .
Clearly, when w(t) = t?, p € [0,1], we have that p(t).= tV7~! and a (p,n) atom

is a (p, 2, n) atom in the usual sense (see [5]).

Definition (2.9). Wedefine H*" = H?"(IR") as the linear space of distributions
f on & which can be represented by

(2.10) J(h) = 2 bi(#),
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‘where {b;} is a sequence of (p,7n) atoms such that there exists a sequence of balls
{B;} satisfying supp(b;) C B; = B(zj,r;) and (2.3) with ¢; = |B;|. We denote
b = {b;}, B ={|B;|} and let

1fllgron = inf A(b,B),
where A(+,+)isasin (2.4) and the infimum is taken over all possible representations

of f of the form (2.10).

The definition of a molecule in the context of IIardy Orlicz spaces is the fol-
lowmg :

Definition (2.11). Assume that € is admissible, that is € > 0 for the case w(t) =
t? and € > 1/l — 1 for a general w. Let z9 € IR". A (p,€) molecule centered at
o is a real valued function M on IR" satisfying

(2.12) IMIlzllMp(] - =ol™)] - —zo“**/P||; < C
and ’
(2.13) / M(z)zPdz =0

: i

for every multi-index 3 such that |3] < N.
We observe that when w(t) = t?, p € (0,1], a (p,€) molecule is a (p,2,¢ +
1/p — 1/2) molecule in the usual sense (see [2] and [5]). ‘

Remark (2.14). Itisnot difficult tosee that condition (2.12) 1mphes that Mz?

L for every 3, |8 < N and consequently M has continuous derivatives up to the
order N. Moreover, we get

DPM(E) = [-2mia? M()NE), €€ R
From this, we clearly have that if M satisfies (2.12), then (2.13) is equivalent to
.. DPH@=0, A<D

Given M, a (p, €) molecule centered at z¢, and B, a ball with the same center,
we denote
MP = MXp
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yeB - el =z - =z M Xop
T (BBl

Definition (2.15). Assume that € is admissible. We define M, = M, (IR"),
as the linear space of distributions f on S which can be represented by

(2.16) f(p) = E M; (),

where {M;} is a sequence of (p,€) molecules centered at {mj}v, such that there
exists a sequence of balls {B;} = {B(z;,r;)} satisfying

j - CB; -
3 IB;lw(l M7 1121 B;™/2) + 3 |Bjtw(|1M5 |21 B;| /%) < oo.
J J -

Let MB = {Mf’}, MCB — {MfBj} and B = {|B;|}. We define
11l = inf(A(MP, B) + AM®, B)) ,

where A(-,+) is as in (2.4) and the infimum is taken over all possible representations
of f of the form (2.16).

‘ We finally remark that both spaces " and M ,,,; coincide with the Hardy-
Orlicz spaces H,,.

3. Proof of the main result.

In order to prove theorem (1.3) we first give two technical results which proofs |
are contained in [5], necessary modifications can be carried out.

Proposition (3.1). Assume that b is a function belonging to L*(IR") with van:
ishing moments up to the order n € INo and supp(b) C B = B(0,r). Then for
everyh€ IR", 0< k<17, § € IR and E > 0 we get

(3.2) I(AEDY?II, < ClIBIEIBI=+1 7|,  r € [1,00] .
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and

|rsn AKD(z)| < ClIbll2| BI** +E R+ if 2| < E]A|
(3.3)
|7en AKD(z)] < C|lb|2| BI™ +3[R|*e|™1=%  if |z] > E]l,

where C is a positive constant which does not depend on b, h, and z; and 7, f(z) =
f(z + h).

We observe that by (3.3) with § = k = 0, we have
(3.4) [B(2)1 < Cllbllo|BI*"+3 ™"

for every z € IR".

Theorem (3.5). Suppose that m satisfies the Hormander condition fort > n/2
Then there ezists a constant C, indepent of m, such that for all integer k,
eo) 20D [ [ slme) ) < o

IR® 2k <|z|<2k+1

vivhenever r=1orn/r>n—2(t—7), v€IR", and ¥ an integer greater than
v. Furthermore, m is bounded and continuous on IR" — {0} and ||m||x < CA.

Let us remark that, since the results stated in the following are invariant under
change of equivalent functions, in proving them we shall assume without loss of
generality that w is in addition continuous and strictly increasing.

Lemma (3.7). Assume that m. satisfies the Hormander condition fort such that
€ = t/n+1/2—1]1 is admissible. Suppose that b is a function belonging to L*(IR™)
* with vanishing moments up to the order [t]+1 and supp(b) C B = B(0,r). Then
(mb) is a (p,€). molecule centered at zero and satisfies

(39) lI(mb)"|l < CAllbll: and

(3.9)  lmB)¥- 1l < CAllblL1BI""
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Proof. Sincet/n+1—1/1 > 0 and p has upper type 1/l — 1, we can write
I(m)¥ ()] - )] - [*=+1-D)]

< 11mB) e - 1) - PEH=D g (Ml + 110mD) - (] 1) - 0D gz ()

< C(Il(mb)|lz +11(mb)V] - [*]]2) -

~ ‘Then, by (2.14), in order to prove that (mb)Y is a (p, €) molecule centered at zero,

it will be enough to check (3.8), (3.9) and
(3.10) DP(mb)(0)=0 ,|B] < N.

From the boundedness of m we clearly have (3.8). Let us pfove‘ (3.9). Suppose
that ¢ = [t] + 1. Then, using the identities

/ I(mb) (:l: l2 |2t / ”Alhln...zt )szh
m"

which proof is contained in [4] (p. 140), and

Alfg) = T (;)( wAif)(Akg)

.k+j=i

we need to show that
lr_kn ARBC) AR m(OIE l|7—_kn A, b( )Akm(- )Ilz
/ Ih|n+2t . dh = ; / + / / |h|n+2t
h|<|B|~Y/»  |n|2|B]-Y/" /) IR"

= L+ I < CAYJbl3 B
for k+j =1t It is clear that

I, < CA*||b|l3
[n]>|B|-Y /"

Inwdh < CAbllIBI

because ||m||lc < CA. Let us estimate I;. We first consider the case k = 0.
From (3.2) with r = 1 we easily obtain

L < CAY||b|2BI* f‘|mmw4M30Mmeﬁ-
. " |hIg|B|FMn '
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For the estimate of I, for the case k > 1 we choose an integer K such that
2" < |B|7! < 27K+ and we get

A I = Ri“‘l |Ir_nA3B(z) 2| Ak m () ?

EE dzdh

v=-°‘?|h|52v+l 2V <Jz|<2vHl

K-1 (Y21 AR 2
[—en B35(2) | Afm(2)]
+ NeE ~dzdh
V=T gut1 clh)<|Bl-1/n 2v<|oi<avti
o I Agb() 2| A k()
+) / it dedh

hl<|B|=Y/n 2v<|z|<2vHE
= Sl + Sz + Sa i

Estimate for S;. Let z be a nonnegative constant. Aplyingthe fact that | B|~/"|A|~
1 and (3.3) it follows that

. K-1 :
- . 1
1= j 2 k N2
Si LBl U—Z-:m tmle(s‘zl:[;"“]IT_khAhb(m)l : [h|r+2itzs |Agm(z)|*d:
CL YT T g avit ’ - vgfelgovt
ANy 2 K v2(f4+1-j) t 1 Ak 2
S CI‘B[ " » ”6”2 Z 2 . lh|n+2(t+z_j) : | hm(z)l 2

vy=-=00

[h<2v41 2v<|rj<avil

Taking z = % when ¢ is an integer and k¥ = 1, and 2=0 in other case, we can
apply (3.5) and we obtain that S; is bounded by

- K-1
(1) g 20 v(2t42-2t—224n 2
CIBPw 4R jplly 3o 2@H-2-24n) < Clp 3] B,

because 2t 4 2 — 2t — 2z +n > 0 and 2K ~ | B|~Y/".
- "Estimate for S5. Take z as in the estimate of S;. ~ Since t > n/2, we can choose
-7 2> 1 such that

;>n—2j+2z

and n
2(t+2—j)—:>0.
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Thus, from Holder’s inequality, (3.5) and (3.2), we get that S is less than or equal
to

— 2z = N r! T 1 r
BIE S [ (e o) e (Al @) da
U=K|h|<|B‘—1/" ’ - - 2U<III52|}+1 ’
=2z, 2i 41 s 1 . .
< BT bR Y / Tt | [ 1akm(@)rdaytdn
V=R < By-1in 29 <o <29+

: . o0
< CA||B| 2B+ 543 |b||2 Y 2-v@(tte=i)-1)

v=K
< CA%||b)13BI>.

because 2% ~ |B|~'/",
Estimate for S;. By Tonelli, we can write

IT_nALB(2) 2| Ak m(z))|

2 .
53 < [h[nr2e dhdzx

=<2 |z|<|hl<|B|=1/"

= / / I'r_khA{,E(x)IzlAﬁm(z)Pdwdh

|h|n+2t
[hI<2* Jz]<|h] -

|71 ALB(z) || Ak ()|
|h|n+2£

2
+ dzdh

2k <|h|<|B| -1 /" fzj<2k

- I3 +I4
From (3.3) it is clear that

13 S CA2IB!?-(—;ni'u+1”b”% / |h|2(1+1)—2tdh
Jh|<2*

< cA|pli3lBIx,
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since |B|~Y/" ~ 2K, On the other hand, applying (3.2) with r = oo, we have
that
oAt [ BBIBIFbE T < CAEIBIR
2x<|h|<|B|-Y
_ which concludes the proof of (3.9).

Finally, in order to prove (3.10) we proceed as in the context of the spaces
HP(IR") applying (2.14), (3.4) and the restriction on ¢.

Proof of theorem (1.3): Clearly it is sufficient to prove that there exists a
constant C independent of m such that

(311) I e S CAUS e

for every f € H,, with 7 and € as in the previous lemma.. Let f € H, and assume
that b = {b;} is a sequence of multiples of (p,) atoms such that f = b;in §".

j
Since m € L*, applying (1.1) it is clear that

(mf)* = 2(mb))" = Lmreb)*(- =) in 8"

J

—

By (3.7) we have that M; = (m;,6;)V(- — z;) is a (p, €) molecule centered at
z; which satisfies

(3.12) [|1M;]l; < CAllbjl|, and |

(3.13) IM;] - —z;1'1l2 < C'Allb;l12}B; 1™

Let o be a positive real constant. . Following the notation of (2.15), by (3.12),
we obtain ,

' MBI (G Al lllB,
(14 ;'B"'w’( [ (b, B)] 7 )5;‘3"'“’( )

On the other hand, a.p;ﬂyihg (3.13) and the fact that p is of upper type 1/1 —1
we get
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|1 M5 1o] B; | /2

;IBj’w( [c-:A(b,B)Jll/’ )=

= >_|Bjlw (”MjXCB:‘P(I 1 0] M7 e —letllzIle‘llz)
- P(IBJ'DIBjﬁ“"T[aA(b,B)]x/l

- (3.15)

ClIM,| - —a ~|‘ule~|-‘/2>
S B:lw J J J‘
2.1B;] ( [B, |7 (b, B)]T

CA|[b;|l2|B; |~/
< S (SoXmT )

Since we can assume that the constants C in (3.14) and (3.15) coincide, taking
a = (CA) it follows that

(mF)¥Ilam,. < A(MPB, B) + A(MCB, B) < CA'A(b, B)

where C is a constant independent of m, which proves (3.11)2.0
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A REMARK ON EULER’S CONSTANT

PABLO A. PANZONE

Ausrracy. Let zo be any real positive non-natural number which satisfics I'(zo).k =
IY(zo) with k a rational number. We prove that either Euler’s constant: - is trascen-
dental or zg is irrational.

Define for p;¢ € N,
oo 1 z?* ZIi+P
T (b i) )5 (- 2)
Obviously F(1) = a(p, ¢) and 4£ = xq‘l%ﬁ;%. Thus a(p,q) = fo a:q“l 1 "'p d:z:
and one obtains, for example, a(1,2) = 1 — In2, «(1,3) =1 - # 353”’ etc.
Indeed one can compute a(p, ¢) in closed form with the following formula due to-

Gauss ( [1] pg. 35):

: 1 P 1 S 1

1 : =—_ “n-=-= —_ 4=
(1) a(p,q) 2qucot(qu) qln(q) + Z + s

(g-1)/2
" where S= Y cos(2nrp/q) In[dsin®(nr/q)], (g odd),
r=1 )
(g=2)/2
S= Y cos(2rrp/q) In[dsin?(mr/q)] + (—1)PIn2, (q even).
r=1

Lemma 1. a(p,q)——aéOforp,qu 0<E<1

1

Proof. Suppose a(p,q) = > Thenas 0 < p <gq, - = fol 29~ 14=20 g <

11_3 (1-=9)

' fol z97 ldr = é, a contradiction. M

The following theorem, proved in 1966, is due to Baker ( see [2] pg.11):

Baker’s Theorem. 6[30.0{3 1...08 is trascendental for ariy non-zero algebraic
numbers Bg, .- -, Fn,01,...,0n.

We use this hhcoxem to prove the following result.

Theorem 1. a(p, q) is trascendental for every pair p,q € N, g non-integer.
Proof.There is no loss of generality if we assume p, ¢ coprime. It is enough to
prove the theorem for 0 < g < 1, because a(p,q) and a(p + ¢.n,q), n € N, differ
by a rational number. Thus assume p, q are coprime and verify 0 < flf < 1

Moreover one can assume g # 1 for a(1,2) = 1 — In2 and In2 is trascendental by
Lindemann’s theorem ([2], pg. 6). ‘
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Recall that the set of algebraic numbers is a field. First observe that sin(gw) and
cos(Em) are algebraic because sin(-;jr) and cos(%'lr) are algebraic, and this last
assertion follows from' De Moivre formula €*® = (cosx + isinz)™ with x = %ﬂ"
and n = gq. : '
Thus from (1) for one sees that a(p, q) = 7.{o+ E;;l 6jlog((j)+ll, with g, ..., Cn,
61,...,0n algebraic and non-zero. .

Assume that a(p, g) is algebraic. Then fy = 9‘12’—"(10———11211 =im+ 3 i’%ﬂ is
algebraic and non-zero by lemma 1. Therefore

Sy B2y
oo @ M@ e

which contradicts Baker’s theorem. W

The point 29 € R stands for a non integer positive number which satisfies I'(zg).k =
I(zo) where k is a rational number. Then we have

Theorem 2. FEither xg is irrational or 7y is trascendental.

Proof. If zg is irrational then the theorem is true. Thus assume o = p/qisa

positive rational non-integer number. Recall the well-known formula ) oo, -i— -

1—41_—35) —i = %%l + 1. Then, replacing = by o in this formula we get qa(p, ¢) —

g/p = k + 4 and therefore 4 is trascendental by theorem 1.W"

NOTE: One such point g could be the point where the minimun of I'(z) is at-
tained. '
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Homogeneous (2,0)-geodesic Submanifolds of
Euclidean Spaces

‘Cristidn U. Sanchez and José L. Moreschi.*

Abstract

Under the hypothesis that an almost complex submanifold M™ of
RV is (2,0)-geodesic and homogeneous, a formula for the canonical
covariant derivative of the second fundamental form of the submani-
fold is obtained. As a consequence of this formula, it is proved that
if the submanifold is full then the first normal space coincides with
the whole normal space. Other consequence is obtained under more
restrictive conditions.

1 Introduction and main results

Let (M,g,J) be a connecled Ricmannian manifold with metric ¢ and an
almost complex structure J. We are not assuming, at least at this point, that
the manifold is Hermitian ie. ¢g(JX,JY) = g(X,Y). Let N be another
Riemannian manifold and ¢ : M — N be an isometric immersion. As usual,
we shall denote by a the second fundamental form of the immersion ¢. Let
T (M) denote the tangent bundle of M and let T (M) be its complexification.
The almost complex structure J, extended to 1T (M) induces a decomposition
of this bundle into its eighenspaces

T (M) = T* (M) @ T° (M)

which in turn induces a decomposition of the c0mp1exiﬁed second fundamen-
tal form aCof the isometric imersion . This 1s of course delined as

(X1 +1Y7, X + 1Y) = a (X1, X2) — a (Y1, Y2) +i o (X1, Y2) + a (Y1, X2)]

*I'his rescarch has been partially supported by a Grant from SECYT - U. N. San Luis.
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and if Z;, Z, € T° (M) then we have, for k = 1,2,
1 1
Then

vac (Z],ZZ) = of Z_(l,()) 7(1,0))_*_' c( (1,0) 7(0’1))
Jaf (/((”) /(] 0)) e c( 01) 7(10)).

It is usual to define now

a2.0) (Z], Z2) = o Z(l 10) Z(l 10)
o0 (2,,2,) = ot (70D, 74
o) (Zl, Z) = of Z}l,O)’ Zéo,l) +at (Z{O,l)’ Zél,O)) .

The isometric immersion ¢ is called (3, k)-geodesic if () = 0.

In the present paper we want to assume that ¢ is a (2, 0)-geodesic.

Now recall that, due to the almost complex structure Jp, the tangent space
Tp, (M) is a complex vector space which is isomorphic to the holomorphic
tangent space T (M)™"® by the correspondence X 1 (X —iJ,X) . Then,
for X, Y €T, (M) we get, compuling by dcfinition

ot (X —iJX, Y—1IY)
—a(X Y)—a(JX,JY)+ia(X, JY)+a(JX Y))
= af (X(IO)’y(IO)) = a9 (X,Y)

Then the condition o?% = 0 is clearly amounts to

(i) a(X,Y)-a(JX,JY) =0
(@) a(X,JY)+a(JX,Y) =0

and it is clear that (i) and (44) are equivalent. Then ¢ is (2,0)-geodesic if
and only if :
a(X,Y)=a(JX,JY) VX, YeT(M). (1)

The objective of the present paper is to present the followmg two results
concerning (2, 0)-geodesic isometric immersions.
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Theorem 1 Let M be a compact homogeneous almost complex Riemannian
manifold and ¢ : M — N an isometric (2,0)-geodesic immersion which is
substantial or full (i.e. ¢ (M) is not contained in any proper totally geo-
desic submanifold of N). Assume furthermore that the imiersion ¢ has
the property that its second fundamental form o satisfies Codazzi’s equa-
tion (I (vxa) v,2) = (Vya) (X, Z) where Va denotes the usual covariant
derivalive of the second fundamental form a). Then, at each point, the first
normal space of the immersion coincides with the whole normal space. i.e.

the space generated by the image of the second fundamental form coincides
with the normal space.

If the Riemannian manifold N is R™ then any isomelric immersion has
the property that its second fundamental form satislics Codazzi’s cquation.
In-a general Riemannian manifold N this may not be the case.

By a homogencous almost complex Riemannian manilold we mcan a Rie-
mannian manifold M supporting a transitive action of a Lic group G of
isometries. and having an invariant almost complex structure J which is not
necessarily compatible with the metric (when this compatibility exists it is
customary to say that the manifold is Hermithian).

Let us denote by (.,.) the Riemannian metric.in the ambient manifold V.
In general an isometry g of the group G does not extend to N but it {ollows
easily from the above theorem, that the necessary and sufficient condition
for the existence of these extensions is the invariance, by the group G, of the
- tensor ¥ (XY, Z,W) = (a(X,Y),a(Z,W)) (see for instance [7]).

The presence of the transitive action of the Lie group G on M yields
the existence on M of a canonical affine connection (see [4] or [3]), usually
denoted by V°. The invariance of the metric induced by (.,.) on M, by the
action of the group G, implies that V¢ (.,.) = 0 i.c. the connection V¢ is
compatible with the metric on M.

Let V denote the Riemannian connection on M associated to the metric
andlet D (X,Y) = VxY — V%Y be the difference tensor. Both, the tensor D
and the almost complex structure J, are invariant by the action of the group
G and hence V°D = 0 = V°J. Even when the connection V° is compatible
with the Riemannian metric it has, in general, non zero torsion and it is easy
to see that it has the form T' (X, Y) = D (Y, X) — D (X,Y).

As in [6] and [2] we say that the canonical connection V¢ satisfies Axiom
6 (with respect to the immersion ¢) if for each p € M and every X, Y, Z €
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Tp (M) the second fundamental form of ¢ satisfies the identity
aP(T(X7Y)aZ)=aP(Y)D(-X:Z))—aP (X,D(Y,Z)) (2)

There are plenty of compact manifolds M and isometric immersions ¢ :
M — RY such that M admits a canonical connection V¢ which satisfies
Axiom 6. In fact if M is an R-space (also called orbit of an s-representation
or real flag manifold) and ¢ is ils canonical imbedding then, for any of the
possible canonical connections, Axiom 6 holds (sce [6] or [2]).

The following consequence of the proof of Theorem 1 shows that in the
case that N = R", thefact that Axiom 6 holds for a (2, 0)-geodesic embedding
 of a compact homogeneous almost complex manifold, implies that M is an
R-space and in fact ¢ must be its canonical imbedding.

Theorem 2 Let M be a compacl homogeneous almost complex Riemannian
manifold and ¢ : M —R" ‘an isometric (2,0)-geodesic embedding which is
substantial or full (i.e. ¢ (M) is not contained in any proper totally geodesic
submanifold of N ). Assume that the canonical connection satisfics Aziom 6
with respect to ¢. Then M is an R-space and @ 1is its canonical embedding.

This result generalizes Theorem 4 in [1, p. 88].
The proof of these two results is contained in the next section.

2 Proof of the results.

Proof of Theorem 1.

Let ¢ : M — RN be the (2,0)-geodesic isometric immersion and recall
that in [5] a ”canonical” covariant derivative of the sccond fundamental form
was introduced by the formula

(Vi) (¥, 2) = Vx (@ (Y, 2)) — a(VXY, 2) — a(Y,VZ).

This covariant derivative is the key ingredient in the characterization of gen-
eral R-spaces obtained in [4] (see also [2]).

By recalling the definition of the Riemannian covariant derlvatlve of the
second fundamental form we obtain immediately

(V5@) (Y, 2) = (Vxa) (Y, 2) + o (D(X,Y), 2) +a(y,D(X,Z)). (3)
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Since the second fundamental form a of the immersion ¢ satisfies Co-
dazzi’s equation, by interchanging the letters X and Y and substracting we

get
(Vya) (X, Z) - (Vko) (Y, Z) (4)
= a(T'(X,Y),2) - [e(Y,D(X, Z)) — a (X, D(Y, 2))].

This formula replaces Codazzi’s equation for the canonical covariant deriv-
alivc of the sccond fundamental formn a.

Now since our immersion ¢ is an isometric (2, 0)-geodesic immersion we
have by the condition (1)

a(JX,)Y)=—-a(X,JY). : (5)
and this yields very easily
(Vy0) (JX, 2) = = (V§e) (X, IZ) (6)
Now starting with the identity (4) we write |

(Vye) (X, Z2) = |
= (Vxa) (Y, 2) + o (T(X,Y), Z2) — a (Y, D(X, Z)) + a (X, D(Y, Z))
== ( Y 3((1) (Y’ J2Z) +a(T(X)Y)1Z) - a(),aD(Xa Z)) +a(X)D()/a Z))

because J? = —1.
Then by (6)

(V5a) (Y, 1) + & (T(X,Y), Z) - « (Y, D(X, Z)) + a (X, D(Y, Z).
Now we may change (V@) (JY, JZ) using again (4) and then the last
equation becomes
(V3-0) (X, 2) =
= (Viya) (X, J2) + a(T(X,Y), Z) — a(Y,D(X, Z)) + a (X, D(Y, 2))
4a(T(JY,X),JZ) — a(X,D(JY,JZ)) + a(JY,D(X,JZ)).
By using (6) now we get - -

(Vi) (X, 2) = ' -
= —(Viya) (JX, Z) +a(T(X,Y), 2) — a (Y, D(X, 2)) + a (X, D(Y, Z))
+a(T(JY, X),JZ) — a(X,D(JY, JZ)) + a (JY, D(X, JZ))
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and (4) again yields

(Vya) (X, 2) = |

= —(V5a) (JX,JY) + o (T (A Y), 2) — a (Y, D(X, Z)) + a (X, D(Y, Z))
+a(T(JY,X),JZ) - a(X,D(JY, JZ)) + a (JY, D(X, JZ))
—a(T(2,7X),JY) +a(JX,D(Z,JY)) — a(Z,D(JIX,JY)).

Once more (6) implies

(Vya) (X, 2Z) =

= (Vza) (X, J¥Y) +a(T(X,Y),Z) — a(Y,D(X, Z)) + a (X, D(Y, Z))
+a(T(JY, X),JZ) — a(X,D(JY,JZ)) + a (JY,D(X, I Z))
—a(T(Z,JX),JY) +a(JX,D(Z,JY)) — a(Z,D(JX, JY)).

Using again the identity J2 = —1 we have

(Via)(X,2) =

=—(Vza) (X,Y) +a(T(X,Y), Z) — a(Y,D(X, Z)) + (X, D(Y, Z))
+a(T(JY, X),JZ) — a(X,D(JY,JZ) + a (JY,D(X, JZ))
—a(T(2,JX),JY) +a(JX,D(Z,JY)) + o (Z,D(JX,JY))

- and (4) once again yields

(Vi) (X,2) =

=—(V{a) (X, 2) + a(T(X,Y), Z) — a(Y,D(X, Z)) + a (X, D(Y, Z))
+a(T(JY,X),JZ) — a(X;D(JY,JZ)) + a(JY,D(X, JZ))
—a(T(Z,JX),JY)+a(JX,D(Z,JY)) — a(Z,D(JX,JY))

— (T(Y’X)a Z) +a (Xa D(Ya Z)) - (Ya D(X’ Z)) )

which obviously becomes

2(Vya) (X, 2) =

=2a(T(X,Y),Z2) - 2a(Y,D(X, Z)) + 2a (X, D(Y, Z)) .
+a(T(JY, X),J2) — a(X,D(JY,12)) + «(JY,D(X,J2)) )
—a(T(2,TX).JY) +a(JX, D(Z,JY)) — a(Z, D(JX, JY)).

In the particular case in which X =Y = Z (7) reduces to

(Vg{a) (X’X) = (8)
=a(T(JX,X),JX)—a(X,D(JX, JX)) +a(JX,D(X, JX)).
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By counsidering formulas (7) and (3) wesee immediately that the covariant
derivative of the second fundamental form can be written as a linear com-
bination of elements of the first normal space (which, by definition, is the
subspace of the normal space generated by the image of the second funda-

“mental form). This clearly implies that the first normal space coincides with

the normal space ol our immersion ¢. and completes the proof of Thcorem
1.m

Proof of Thcorem 2.
It follows immediately from Axiom 6 (formula (2)) and formula (8) that,for
each point p € M and each X € T,, (M),

(Vi) (X, X) = 0. ' 9)

IFurthermore it {ollows from (4) that the canonical covariant derivative of
the second fundamental form satisfies the identity

(Vi) (X, 2) = (Vie) (Y, 2)

for each point p € M and each X,Y, Z € T, (M) . This easily implies that the
canonical covariant derivative of the second fundamental form vanishes iden-
tically on M and since ¢ is an isometric embedding into a Iluclidean space,
it follows from [4] that M is an R-space and ¢ is its canonical embedding.
This completes the proof of Theorem 2. B
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§1. Introduction and statements of the main results

The spaces of homogeneous type were introduced by R. Coifman and G. Weiss in [CW]
and they were studied and used by several authors (see [AM], [BS], [C], [MS1], [MS2], [MT],
[SW], [W]). Let us recall some definitions and properties relative to them.

Let X be a set. A functiond: X x X — R: is called a quasi-distance on X if the
following conditions are satisfied:
(1.1) forevery z and y in X, d(z,y) =0ifandonlyifz =y,
(1.2) for every z and y in X, d(z,y) = d(y,z) and
(1.3) there exists a constant i’ such that

d(z,y) < K(d(z,z) + d(z,y))
holds for every z,y and z in X.

The subsets {(z,y) : d(z,y) < €} of X X X define a base of metrizable uniform
structure on X. Moreover, from this fact, it can be proved that always it.is possible to find
a distance §, defined on X, and a number a > 1 such that d is equivalent to §%, i.e.: there
exist two constants, D; and D3, such that :

(1'4) ' ’ D15(I, y)° S d(x’ y) S D26(x1 y)a

holds for every z and y in X (see [MS2)).

Let i be a positive measure on a o-algebra of subsets of X which contains the balls
B(z,r) = {y: d(z,y) < r}, for every z in X and every finite positive r. We assume that
u satisfy a doubling condition, that is, there exists a constant D such that

(1.5) 0 < u(B(z,2r)) < Du(B(z,r)) < 00

holds for every ball B in X.

A structure (X, d,p), with d and p as above, is called a space of homogeneous type.
By keeping in mind (1.4), we can assume (replacing d by 82, if it would be necessary) that
d is a continuous quasi-distance.

A space of homogéneous type (X, d,u) is named normal if there exist four constants
Ay, Ay, K, and K, Ay < Ay, K, <1< K, such that

(1.6) A;r £ p(B(z,r)) ' if r< Kjp(X),.
1.7y B(z,r)=X if r> Kp(X),
(1.8)  Ar > p(B(z,7)) if r > Ip({z})), and
(1.9) B(z,r)={z) : if 1< Kyu({z}),

holds for every z in. X and r > 0.
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Let w be a positive and locally ihtegrable function defined on a space of homogeneous
type (X, d, n). We denote by w( E) the measure with density w with respect to the measure
p,i.e.: wW(E) = [wdpu. The density w will be called a weight with respect to u. We shall

E
say that a pair of weights (u,v) belongs to the class A(p,¢),1 <p<ooand1<gq< oo, if
there exists a constant C such that

1 ’ 3
u”(B)) * (v7*(B))’
1.10) <C
(1-10) (5 ( w(B)
holds for every ball B in X, where p' = p/(p — 1). In particular, if q = oo the condition
(u, v) € A(p, 00) becomes

B 4—p, ;’r
(111) (essBsup u) (v_lxé_?l) <

for every ball B.

Let (X,d, 1) be a space of homogeneous type It is not difficult to see that the function
p: XxX—»R*'deﬁnedas )

(1.12) p(z,y) = {(u(B(z 1d(,))) + 1(B(y, d(=,¥))))/2 ::: fg

satisfies (1.1), (1.2) and (1.3). If there exists a > 1 such that p= is a distance we define
§ = p=. In the case that such a does not exist, we reason as before to obtain § and a
such’ that (1.4) holds. With this choice of § and «, we introduce, for each v in (0,1), the
function

8(z,y)*1) —§(2,y)°") fr#yandz#y

= p({z})7! = §(z,y)>r~V fr=yandz#y
(113) K (-‘C Z,y) 6(z,y)a('v—l) - ”({z})’r—l ifz # yandz=1y .
O lf T = y =2z

for £,z and y in X. Now, for each 7 and each s > 1, we define the following operator
(1.14) T; f(z) = sup

o (u(B)‘ TR

for every £ € X and every mcasurable function f defined on X, where the sup is taken
over all the balls B in X containing z.

" duz) du(z))

n
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In the euclidean case (i.e..X = IR™ with the usual distance and the Lebesgue measure),
this operator appears naturally connected to the study of mean oscillation properties for
the fractional integral I, defined as

f(y)
Lf(z) = /IR" o gn = dy,

for 0 < v < n. In fact, this stutiy involves, formally, the study of the behaviour of

(115) - (sgpl-,;,-, L |L,f(z)—17f(y)|’d_zdy)*

where the sup is taken over all balls B in IR", for 1 < s < oo (see, for instance, [MW], p
269). A more correct mathematical formulation (in order to avoid some problems relative
to the convergence of I, f) implies to replace I, f(z) — I, f(y) by

/ n ([.1: - z}n(l—'r) jly _ z:ll,.(l_.,)) f(z)dz

in (1.15). But the kemel between parenthesis in the above integral coincides with the
euclidean case of (1.13) for a = n. '

In a general space of homogeneous type (X, d; i), an extension of the fractional'integral
can be deﬁned as

(1.16) Lfz)= /x Q2> 9) £ (v) du(y)

with
z,y)°0-1) ifg
coen={SG 22

for 0 < v < 1, where § and « are as in (1.13). So, obviously, the opcrator associated to
the corresponding version of (1.15) is exactly our operator T7.

The operator T was first considered by E. Harboure, R. Macias and C. Segovia, in
the euclidean case, in [HMSZ2], in order to get the boundedness of the fractional operator
I, from weighted L= into weighted BMO. From this result, the authors, as an application
of a theorem of extrapolation, proved weigted LP-norm inequalities for Ty. The purpose of
this work is to extend those results to the general setting of spaces of homogeneous type.
Our first main result is the following theorem.

(1.17) Theorem: Let (X,d,u) be o space of homogeneous type and let 0 < v < 1. If
(a,0) € A(1/7,00), then, for each s in [1,1/(1—7)), there ezists a constant C independent
of f, such that

(1.18) - ess suo (a(z)T31(z)) (/ (lf(:c)lb(x))" dﬂ("’))
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for every measurable function f.

The techniques that we are going to use in order to prove the above thcorem are
extensions of those used in [HMSZ2] for the euclidean case. In particular, we will need to

know that the left hand side of (1.18) behaves like

(1.19).sgp (é;szes;lp a(z) (p(l_B—)z/B/B

where the sup is taken over all the balls B in X. The proof of this fact follows a similar
rcasoning, with obvious changes, to that given for the cuclidean case (see [HMS1]) and
it is omitted here. With this result, Theorem (1.15) can be considered as a result on
boundedness of fractional integrals on spaces of homogeneous type. Moreover it is easy to
see that Theorem 7, p. 269, in [MW] of B. Muckenhoupt and R. Wheeden, for fractional
mtegral operators in IR", is the euclidean case for s =1 of (1.17). Actually, the techmques
in [HMS2] for the euclidean case of (1.17) have been taken from [MW].

~ Now, we state an extrapolation theorem which will allow us to derive further results
about T from (1.17). Let us first introduce some notation. For (X,d,u) be a space of
homogeneous type, we denote by M the set of measurable functions defined on X, and by
My the subset of bounded functions. Now, we state the theorem

" dute) dut)) %)

/ Ko(z,2,9)f(y) du(y)
X

(1.20) Theorem: Let T be an operator defined on Mn with values in M. Let us assume
that T satisfies

(1.21) ITAH) = TS| and |T(f +9)| < |Tf|+|Tg| for every scalar A and every f and
) 9 in Mo

(1.22) for a fiz pair of numbers r and §,1 <r < B < oo, and for every pair of such that
(a™,b") in A(ﬂ/r, o0) the operator T satisfies

}
ess_sup (@@ITIE) <0 [ (@) )

for any f in My, and where C
i3 a finite constant independent of f (for § = oo, the
left member of the above inequality becomes esssup,¢x(b(z)|f(z)])

The;z, foranyp, r<p<p, 1/g=1/p —.l/ﬁ and (u”,v") € A(p/r,q/r), there ezists a
constant C, independent of f, such that

W({zeX: IT(f(z)] >A}) <C (A”’/X(If(x)lv(z))" du(x)) |

holds for every A > 0.
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This theorem can be proved using an argument similar to that of the euclidean case,
with only minor modifications. For the euclidean case, see [HMS2]. :

Now, from theorems(1.17) and (1.20), we easily obtain

(1.23) Theorem: Let (X,d, u) be a space of homogeneous type and let 0 < 4 < 1,
1<p<1l/yandl/g=1/p—v . If(u,v) € A(p,q), then, for each s in [1,1/(1 = 7)),
there ezists a constant C, independent of f, such that

a20)  w({zex: B >3) <0 (37 @b )

holds for every A > 0 and every measurable function f.

Note that in theorems (1.17) and (1.23) we only give sufficient conditions on the
weights to ensure that (1.18) and (1.24) hold. One can wonder whether or not they are
also neccesary. The answer in both cases is negative, as we can see from following example.

(1.25) Ezample: Let X = {0,1}, d(z,y) = |z — y| and p be the measure defined as
p({0}) = u({1}) = 1. It is clear that (X,d,u) is a space of homogeneous type. On the
other hand, it is obvious that p, defined as in (1.12), gives that p(z,y) = 1, if z # y,
and p(z,y) = 0, if z = y, so it is a distance. Therefore, we have § = p in (1.17), which
implies K, = 0, and, as.a consequence, T} f = 0 for every function f. Now it is evident
that (1.18) and (1.24) hold for every pair of weights, in particular, we can takea=u=1
and b = v = 0. Since that pair is not in A(p,q) for every p and ¢, with 1 < p < oo and
1 < ¢ < oo, we have, as we said, that the condition on the weights is not neccessary in
(1.17) neither in (1.23). '

The above example proves that the reverse implications for (1.15) and (1.21) do not
hold in the general case. However, in a more restrictive class of spaces, the normal spaces,
we can obtain a result very close to that. In fact, we have '

(1.26) Theorem: Let (X,d,u) be a normal space of homogeneous type. There ezist a
constant Ky, only depending on the constants of the space, such that

(1.27) if (1.18) holds, then the pair (a, b) satisfies

(ess sup a) (,4%) /B‘b-rh‘)]_v <c

" for every ball B with finite radius less‘ than or equal to Iy Ky u( X).
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(1.28) if (1.24) holds, then the pair (u,v) satisfics

G )’ (i fy)” <
u(B) Jp u(B) Jp -
for every ball B with finite radius less or equal than KIK(;'Ip(X).

- In each occurrance, K, is the constant of (1.6) and C depends only on the constants
of the space and the consiant involved in the assumptions. :

From the above theorem, it follows clearly that the reverse implications of (1.17) and
(1.23) hold whenever (X, d, p) is a normal space with u(X) = co. But, when pu(X) < oo,
a result like (1.26) is the best that one can expect without further assumptions. Example
(1.25) can be used again to see this. In fact, it is very easy tq check that the space (X, d, u)
involved is normal, with constants K; = K; = 1 and A; = 'Al_l = 2. As (1.26) and the
example suggest, for p(X) < oo, the difficulty to get the necessity of the conditions on the
weights relies on the existence of points with too large measurc. Actually, we can prove

(1.29) Corollary: Let (X, d, p) be as in (1.24) and such that p({z}) < 2KK, K; Ky p(X)
for every z in X, where Ko is the same constant of the theorem, and K, K, and K; are
the constants of (1.3), (1.6) and (1.8), respectively. With these assumptions we get

(1.30) if (1..18) holds, then (a,b) € A(1/v,00);
(1.31) if (1.22) holds, then (u,v) € A(p,q).

The proofs of (1.17), (1.26) and (1.29) are in the next section.

§2. Proofs

The proof of theorem (1.17) requires the following result concerning a weak type
inequality for the operator I, defined in (1.16). This result extends a well known property
for the usual fractional integral in IR". .

2.1) Lemma: .Let 0 < v < 1. The operator I, is of weak type (1,(1 — 7)), i.e.: there
¥
ezists a constanl C, such that .

(22) Wiz e X i@ >0 (5 [1na)

holds for every A > 0 and every f in LI(X,du).
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Proof. It is clear, from the definition of Q., that we only need to prove (2:2) for
I, defined using the kernel K,(z,y) = p(B(z,d(z,y)))""?, where B(z,r) denotes the set
{ye X: d(z,y) < r},instead of Q,. Let R > 0. We define

L) = [ Ki= @it i=12

where I\l(zv y) = I\‘Y(zay)X{(z,y) :u(B(z,d(z,y)))<R} and I\-y(‘tv y) = '1($v y) — I\’-l,(z: y):
Now, let y € X. Let us consider the sets @; = {z € X : p(B(y,d(z,y))) < 27371R} for
7 =0,1,.... By defining Rj =sup{d(y,z): u(B(y,d(y,:t))) < 27— 1R} where the sup is
taken over all z € X, it can be proved that Q4+ C B(y, R;) and p(B(y, R;)) < C27'R
(see [MT], Lemma (2 5), p 9). Then, we get

/. Ki(a,4) duz) < cZ / Ky, z)du(z)

<c g (% )Mu(n,-;u)

o A
< CR" Zz-ﬁ =CR

j=0

The above inequality and Tonelli’s theorem allow us to obtain

/X |22 £(2)] du(z) < /x /X Ko, )1l duy) d(z)
23) - [ 1w ( [ K3ten) dua)) dut)

<cr [ 11w)luw)

On the other hand, we have

(2.4) /X |12£(2)| du(z) < R /X F@)l duy).

Finaly, given A > 0, (2.2) follows from the obvious inequality

iz € X ¢ 1L () > M) < ul{z € X IBA@) > ) + ulle € X £ [12f(@)] > )
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and the estimates (2.3) and (2.4) with R = AT -

Proof of Theorem (1.17). As we said after the statement of the theorem in § 1, the
left member of (1.18) is equivalent to (1.19). Hence we only need to prove that (1.19) is
bounded by. the right member of (1.18). To do that we first notice that the expression
between the inner parenthesis in (1.19) is bounded by the sum of the following terms

(25 (;(713?/3/3

and . .

o (Garl,

Here we denote with B to the ball with same center that B and radius equal to 2X times
the radius of b, where K is the constant of (1.3).

Now, we consider the extension of the fractional integral operator I, defined in (1.16).
From lemma (2.1) and Kolmogorov’s and Holder’s inequalities, we have that (2.5) is
bounded by

z(;(ll—,; [ i)l du)% 50”(_31)_1_7 [ 1

<c (ﬁ / bﬁ%dﬂ)f—y ( [ e du).{

for each sin [1, (1 — 7)"), where C is independent of f and B. On the other hand, from
the definitions of K. v and 6 and applying the mean value theorem, we have that

sdu(Z)du(m)f

[ Bolz, 201 @)
B .

’du(z)dﬂ(wf

| Kotz i wauty)
X~-B

2.7)

IK.,(:t,y,z)] = la(z,y)u(v—l) _ 6(2,y)°(7‘1)l

< oLtz 0= — 8z, )20 )
= O (B 40, y))*0

6(:"2) .
p(B(zo, d(z0,y))) ~1+%

w(B)=
(B (zo,d(z0,y))) ~7t3
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holds for every z,z in B and every y in X — B, where zo is the center of B and C it
independent of B. Therefore, (2.6) is bounded by

(2.8)

s W
CV(B) ./X—B [J(B(.’L‘o, d(zo,_y)))l"""i' dﬂ(y)

3 3 B _ Hy)"TS o
<cu? ([ w1} duw) ( R mhy«#dv))

Note that p(B(zo,d(z0,y))) > Ro, with Rg = Cu(B) for every y in X — B, where C is
independent of B. Now, let ; = {y eEX:p (F(zo,d(loyy))) < szO} forj =0,1,...,
where the sets B(z,r) are defined as in the proof of Lemma (2.1). By using Lemma
(2.5) of [MT], as in the above Lemma, we get Q;41 C B(zo, R;) and p(B(zo, R;)) <
C2/+1 Ry, where C only depends on the constants of the space and R; = SuPye x {d(z0,y) :

u(B(zo,d(z0,v))) < 27+ Rp}. Then, we can bound the integral over X — B in the rlght,
member of (2.8) by

by) =
¢ - du(y)
X80t (B(zo, d(zory)) "0
| 3 by)~™
=C x d
j=zﬂ ‘/ni+l—ﬂi [ (E(xo,d(:to,y)))”'j(l—v) uw)

<CY @R)TTD / )T duy)

j=0 Rj41

<0 Y (2Ry) T

=0

1 -
BT ey )W)

Now, combining this inequality with (2.8), we get that (2.6) is bounded by a constant
times the following expresion

, 1—
2T “duy) | Y auw))”
<§M(WRJ,» AR d/t(:/)) ([ arnen? duc))

Finally, since BcC B(zo, R;) for every j > 0, from the hypothesis on (a,b) we obtain the
wished boundedness for (1.19) from the above result and the estimate (2.7) of (2.5). This
concludes the proof.s ‘
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In order to prove Theorem (1.26) we need the next lemma.

(2.9) Lemma: Let (X,d,u) be a normal space of homogeneous type. For each v in (0, 1)
and each s > 1, there ezist two constants, Ky and C, depending only on s, v and the con-
stants of the space such that for every ball B = B(zg,R) satisfying K2(2K) ' u({z0}) <
R < KiK' u(X), where K, Ky and K, are the constants of (1.3), (1.6) and (1.8), respec-
tively, the inequality ‘ : '

(oo 1.1,

1
2 CRB—)T:; /B f(z)du(z)

holds with B* = B(zo,KoR) for every non negative function f.

’du(Z)dﬂ(x))%

JRACE O
(2.10)

Proof. Let B = B(zo,R) be a ball in X and let 8 be fixed in (0, 4; A7), where
A; and A; are the constants of (1.6) and (1.8). From these conditions, it follows that
B(zo, L0 R)~B(z9,LR) # 0 whenever Kou({zo}) < LR < 6K u(X), where L is a
constant to be chosen later. Let z; be in the above annulus. Using (1.3) it is not difficult
to prove that

L 1 : 2 (L
. —_—— < < o
o (Bl rsdens (cew (Ee))n
holds for every y in B and every z in B(z;,R). On the other hand, we know that therc
exist two constants, D; and D5, such that

(2.12) Dy (B(a, d(z,4))) < 8(z,)" < Daun(B(z,d(z,)))

holds for every z and y in X, where § is the quasi-distance of (1.13). Then, from this
relation, (2.11), (1.6) and (1.8), and choosing L = K*(A;D;A7' Dy 4K + K~ + 1), we
get :

W) 2 A1 (5~ 3~ 1) R

412 D2 -
2.13 > 4, —-—4K
( ) . 41‘ 11)‘ 4KR

> 222 4(B(y, 2K R)),
D,
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for every y € B and every z € B (z;, R) , whenever z¢ and R satisfy.
K |
T W({zo)) < R< (K + K107 + 1) Kyu(X)

Therefore, under this restriction, from (2.12), (2.13) and definition of K.,, we have

Koy(2,2,y) 2 (Do(B(y, 2K R)))"™ — (D1 u(B(y, d(z,3))))"~*
> (Dap(B(y,2KR)))" ™ (1-2771)

2 Cu(B)",

for every z and y in B and every z in B(z;,R). Finally, (2.10) follows inmediately from
the above inequality and the fact that B(z;,R) C B* = B(zo,KoR) with Ky = K +
K 2(Ll9 T+1)s

_ Proof of Theorem (1 26). First let us see (1.27). Let B = B(zo,R) be a ball

such that R < K;K;'u(X), where Ky is the same constant of the above lemma. If
K3(2K) ' u({z0}) £ R from that lemma, (1.18) and the equivalence between (1.19) and
the left member of (1.18), it follows inmediately that

1 v
(ess sup a)-—-l——/ b;‘—'&dp <C / (b;‘_&?b) ! du -
B u(B)" /s B .
- v
' SC(/bk"7dy) o
B

holds for every k € IN, where by = b+ 1/k. Thus, we get

1—v
(ess sup a) —-1——/ b;T'L;dy . <C,
B w(B) /s -7

and letting k — oo we obtain the wished inequality. Now, suppose R < K3(2K)™u({zo})
< KGK'u(X). I K1Kg'p(X) < Kop({zo}) the result clearly follows from the above
case since, according (1 9), B(zg, R) = {zo} for every R < Kyu({zo}). On the other hand,
if Kz;t({zo}) < K1 K3 'u(X), we get the result takmg R such that K3(2K)'u({zo}) <

R < Kypu({z0}) and applying the first case again since B(zo, R) = B(zo, R) = {zo}. This
completes the proof of (1.27).

In order to proof (1.28), let us consider a ball B = B(zg,R) such thnt, as before,
R < KGKg'p(X). I K2(2K)™ p({z0}) £ R, from lemma (2. 6), the definition of T we

have

nﬂﬂ>CR§F;LfW,
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for every z € B and every non negative function f. Then, by taking f = vy ?' X5, where
vk =v+1/k, k € IN, inequality (2.4) allows us to obtain

1

uI(B) < C (,\-P /B (v;f'v)"d,,) ’

< Cu(B)(l"’)’ (/B v;”'dy)

for every k € IN. This yields

-
u?(B) —pt »
(B)-1 (/B 0 "“) <€

and letting k — oo we achieve the inequality of (1.28) in the considered case. * Finally,
in the other cases, the result can be obtained by applying a reusoning as in the proof of
(1.27). - :

The p.roof of ‘Corollary (1.29) requires the following lemma concerning to the geometry
of the spaces of homogeneous type.

(2.14) Lemma: Let (X,d,p) be a space of homogeneous type and let 6 belonging to
(0,1). There ezist a number N only depending on 8 and the constants of the space, such
that, for each zo € X and each R > 0, it can be founded a set {z;}ier satisfying

(2.15) x; € B(zo,R) for everyi € I,
(2.16) B(zo, R) C UierB(zi,0R),
(2.17) the cardinal of I is less or equal than N.

Proof. The lemma is a straightforward consequence of the fact that, given 6 in (0, 1),
there exists a number N, only depending on 6 and the constants of the space, such that in
each ball B the ainount of points whose mutual distance are bigger or equal than 8 times
the radius of B is, at most, N (see [CW], p. 68).x

Proof of Corollary (1.29). If u(X) = oo, (1.30) and (1.31) are obvious from (1.27) and
(1.28), respectively. So, let us assume p(X) < co. In order to prove (1.30), since (1.27)
holds, we just need to show that (1.18) implies the inequality of (1.27) in the case B = X.
Let zo be a point in X and let R = 2K; u(X) where K is the constant of (1.18). Then
B(zg,R) = X. Now, applying lemina (2.14) with § = (2K,)~!, where K, is the constant
in (1.24), we obtain a finite family of balls, {B,}ie; with radius K; Ky 'u(X), such that
B(zy,R) C Uie;B;. Morcover, from (1.18) and (2.9), it follows that

S - v
(ess sup a)——l—l—_—/ b,'"dp < C (/ b "’dy)
X #(Bi)' =Y Jp, B;
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holds for every k € IN and every i € I, where b = b+ 1/k. By reasoning as in the' proof
of (1.26), we get

1 A )1_7
ess sup a) | ——= b~ 174, <C
(69 qup )(u(B-') B

for every i € I. Therefore, since p verifies (1.5), an standard argument allows us to obtain

1 2\
b~ 7-+d <C
(ess sup ) (M(X)/x ) s

This concludes the proof of (1.30). Let us sce (1.31). As before, we only need to consider
the case B = X. Let {D;};c; be as above. From the definition of T3 and Lemma (2.6),
it follows that there exists a constant C, only dependmg on 8,7 and the constant of the
space, such that

,T(a%_/ " < T3 (Xpovg ”') (2)

holds for eversl k € IN and every : € I and every z € X, where vy = v+ 1/k. Then, from
(1.22) with X equal to the left member of the above inequality, we have

| m%(/lhv{”)#sc

for every i € I. Then, taking k — oo, we get

u?(X) oo

re R

for any i € I. Finally, applying an argument like the used in the proof of (1.28), it follows

that
u?(X) o=

u(X)(l-"r)q Uk (X)-’r <C

holds, as we wanted to proves
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A REMARK ON NUMBERS WITH POWERS IN A POINT-LATTICE

A. Benedek R. Panzone G. Paolini
Univ. Nac. dcl Sur CONICET Univ. Nac. dcl Sur
INMABE  Av Alem 1253 (8000)13ahia Blanca  ARGISNTINA

ABSTRACT. We prove by using elementary mcthods that if the positive pow:crs of a given
complex nonreal number b belong to a point-latticc A then they belong also to the point-lattice L

- generated by 1 and b and b is a quadratic integer. This settles the following question. Let D be a
finite set of rational integers that contains. 0 and 1. If the sct of values of polynomials with
cocfficicnts in D evaluated at b is included in A , is it true or not that it is part of L?

'L INTRODUCTION. We shall assume that b= b, +ib, is a fixed complex number with
|b| >1, b,=Im(b)>0. The point-lattice L:=[5,1]= {mb +m,m,n eZ} is naturally associated
with b. Let be u=u, +iu,, v=v, +iv,, v,#0 and A :=[v,ul={mv+nu:m,n € Z} the point-
lattice  generated by the linearly independent numbers u,v. Define P:= {b*;k=1.2,...}.

The following result holds (cf. [1]):
THEOREM 1. If u=1 then Pc A =>PcL.®

1. THE MAIN RESULT. We shall prove the following generalization of this theorem.
THEOREM 2. If &’ €A for j>N then & is a quadratic integer and PcL.»
If 5" A for j=0,1,2 and &”*" =mu+nv then

(1) ¥ =mi+ny forj=0,1,2,... with #=b""uand ¥=5"v.

So, we can assume without loss of generality that N=0.
We begin with two auxilliary results.

"PROPOSITION 1. If b’ €A forj> 0 then [p|" €Z.=
PROOF. We know that for j=1,2,..., b"'=m _ vtn ,_ju with m

Any three of these equations is a homogeneous system in 1,u and v. Then we have for
any j=1,2,... ’

j-1» M, rational integers.

-6 m_, n,
2 -6 m, n, |=0.

J J
J+l
—-b m., N,

If we define: A;=m,_\n,—man, _,, Bj=m_,n,—mn,_,, then 4,70 and

At
3) b’A,~bB,, + A, =0.

jH
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Since the coeflicients in (3) are real and b is not real, we must have

B,
4) 2Re(h) = — and |p[ = Am for j=1,2,..
4; A,
Multiplying the last identities from j=1 to £, one gets
' A
5 bt = et
© p = 2

Thus A,|b|2k is an integer for any k. Therefore |b|2 must be an integer, QED.
PROPOSITION 2. If # €A forj > 0 then there are rational integers @,, 3, such that
) Ab'=ab+p, =

PROOF. Regarding the identities 6’"'=m ,_ v+n _u for j=1,2,k as a homogeneous
system in 1,4,v, one gets that

7 -1 m, n,
@) -b m  n|=0
=b* m, n,

This yields the thesis with a ,=mn, —mn, and B,=mn —mn,, QED.
PROOF OF THEOREM 2. From (3) and proposition 1 one gets
®) =Py, '
q ‘
where k———|b|2 , P.q coprime integers. Using (8) one can prove by induction on that

N

h<j-1

where small greek letters represent rational integers.
Comparing (6) and (9) we get

j-1 h
(10) a; =4 ((ﬁj + Z O (—[—)—j ] = rational integer for all />2.
q hej-1 q :
Thus, &; = 4,(p"™ +qy;)/q’™". This can only hold for ¢=1, QED.

COROLLARY. There is an integer K=K(b,u,v,N) such that if & €A for K+N2j>N
then 4 is a quadratic integer.®

III. NECESSARY CONDITIONS FOR 5* €[1,4]. In this section we assume that
v =mb+n, mneZ, (n20). We obtain from this hypothesis that

an k= |b'=-n €N, Re(b) =m/2 €Z/2
THEOREM 2. If 5,b* € A =[u,v] with u=u, +u,iand v=v, +v,i then
U, '
u,v, €Q, 2%,-2eQ.n
1271 Q > b2 ) b2 Q

PROOF. Solving the following system
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(12) b=mu+ny , b* =mb—k=mu+ny
for u and v, we get that
Au=(n, —mn)b+nik , Av=_mm,—m)b—muk .
Taking real and imaginary parts and using (11) we obtain
A uy=(n —mn))m/2+nk , A u,=(n,—mn,)b,

A= (mm(, -m, )m 12-mk, Av,=(mm,—m)b,, QED.
NB. The results of the present paper should be compared with Theorem 1 of [3].
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Abstract

In this paper we give a characterization of all the interpretations of the
varieties of bounded distributive lattices, De Morgan algebras and Lukasiewicz
algebras of order m in the variety of Lukasiewicz algebras of order n.

In the case of distributive lattices we give a structure theorem that is gener-
alized to De Morgan algebras and to Lukasiewicz algebras of order m. In the
last two cases we also give the number of such interpretations.’

1 Introduc'_tion

- We say that a variety V is interpretable in a variety W, in symbols, V < W, if for
each V-operation Fy(zy,...,,) there is a W-term fy(=y,...,z,) such that if (4, G,)
is in W, then (A, fA) is in V. Intuitively, ¥V < W mecans that all ,algcbi‘as in W
can be turned into an algebra in V by defining the V-operations applying a uniform
procedure. This notion of interpretation differs from that used by logicians in that
the universe of the algebra remains the same. It was first proposed in [7] and later
developed in [5]; for more details and information the reader is referred to the latter
monograph.

Another way of thinking about this notion is the following. The above relation
defines a functor ® : W — V which commutes with the underlying set functors,
ie.

. - (I)
w ‘ V

Uw Uy

Scts

*Funding by Fondecyt grant 199-0433.
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is commutative; here Uy : V — Sets and Uyy : W — Sets are the so called
forgetful functors which assign to each algebra its universe. Each functor @ is called
an interpretation of V in W.
If A = (A; G,) is any algebra and for each V-operation Fy(z,...,,) there is a term
fi(z1, ..., 3,) in the language of A such that (A; fA) isin V, the terms f(z1,...,%n)
define an interpretation of V in V(A), the variety generated by the algebra A. One
only has to observe that the evaluation of any term in an algebra B in V(A), is
determined by its evaluation in-A and that both (A; G;) and (B; G;) satisfy the same
equations. We sometimes say that V is interpretable in A and if & is the functor, we
. say that ®(A) is an interpretation of V in V(A). This fact is particularly useful if
"we want to interpret a variety V in a variety W that is generated by a single algebra.
In this paper we will study what are all the possible interpretations of the varieties
of bounded distributive lattices, De Morgan algebras and Lukasicwicz algebras of
order m in the variety £, of Lukasiewicz algebras of order n. As we know, this
variety is generated by a single algebra, the n element chain, which is a semi—primal
algebra. These are the main facts used in the proofs. '
The results in sections 3 and 4 are included in [6], the author’s doctoral dissertation
Interpretations between Varieties of Algebraic Logic. The general presentation and
_ most of the proofs are different from the ones that appear there.

2 Definitions and Preliminaries

Throughout this paper Dy, will stand for the variety of bounded distributive lattices,
DM the variety of De Morgan algebras, i.e., the class of all algebras (4; +, -, ', 0,1)
whose similarity type is (2,2,1,0,0) and such that (A, +, -, 0, 1)is in Dy and
satisfies

L (z+y) =2"y,
2' (IE . y)’ = xl + y’v
3. "=z,

The term z' is called the quasi-complement of z. Also,  and z' are said to be con-
jugates. The variety £, of Lukasiewicz algebras of order n is the class of all algebras
(A; +,-,", 01,--+, On-1, 0, 1) of type (2,2,1, ... ,1,0,0) such that (4; +, -, ', 0, 1)
is a De Morgan algebra and for 1 <4 <n -1,

1 oi(zty)=0i(x) +oily) and. oi(z - y) =0i(z) - 0i(y),
2 oi(z) + (oi(z))' =1 and o;(z) - (0i(z)) =0,

3 oi(0(z)) = oj(z), for1<j<mn-1,

4. oi(z') = (on-i(2))",

5 oi(z) - oj(z) = oi(x), fori<j<n-1,

6 z + 0n-1(z) = on-1(2) and <z - 01(z) = 0y(x),

7 y - (z+ (0i(z) + 0ira () = v, fori#n-—1.
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These axioms are not independent. The reader is referred to [2], [1], [3] and [4] for
more information about these classes of algebras.

The following four properties of Lukasiewicz algebras will be used extensively in
section 5. The first two are immediate from axioms (1), (5) and (1), respectively.
The fourth one was introduced in the original definition of Lukasiewicz algebras
instead of axioms (6) and (7); its proof appears in [3].

Lemma 2.1.

(L1) 0i(0) =0 and 0;(1)=1, for1<i<n-1.
(L2) o1(x) < -+ < oni(2).

(L3) If z <y, then for 1 <i<n -1, g;(z) < 0:(y).
(L) If 0i(z) = 0i(y) , for 1 <i<mn, then z = y.

We will now define a very important Lukasiewicz algebra.
Definition. Let n= {0,1,...,n —1}. We define the algebra
N = (n;'f‘, *y ’aala--';an—la 0, 1))

where z+y = max {z,y},
z -y = min {z,y},

/

m' = n—1-m, foreachm€n,
0 =0
1 = n-1,
(1 ifi<m,
and for1<i<n-1 Ui(m)={0 ifz;z

It is easy to check that N is in £,. The next theorems give some of the most
important features of Lukasiewicz algebras that we will use in the sequel. Their
proofs and much more can be found in [I], [2] and [3].

Theorem 2.2. (Cignoli) [3]

Let L € L,,, n > 2 and L of cardinality greater than 1. Then the following are
equivalent. ’

1. L is a chain.
2. L'is an L,-subalgebra of N.
3. L is subdirectly irreducible.
Corollary 2.3. The variety Z,, is generated by the algebra N.
This corollary has a \fery important consequence. As we said in the introduct.ion,'

_ any interpretation of a variety V in £, is determined by an interpretation of V in

N, that is to say, by defining new term-defined operations f;, for each V-operation
F,, such that N = (n; f¥) e V.
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Theorem 2.4. N is a semi-primal algebra.

As we know, in a semi-primal algebra all functions that preserve subuniverses can be
represented by term functions. In the following theorem we will state this precisely
in the special cases which we will use, that of unary and binary functions.

Theorem 2.5. If f:n — n is such that for alla € n, f(a) € {0,a,d',1}, then
there exists a term @(x) such that

¢" (2) = f(z).

If g:nxn — n is such that for all a,b € n, g(a,b) € {0,qa,a’,b,V,1}, then
there ezists a term y(w, y) such that

'7/\/(-75 y) = g(.'l:, '!/)-
Lemma 2.6. For any u,b € n and any L,-term a(z) or f(z,y),
o (a) € {0,a,d',1} and ,BN(a; b) € {0,a,d',b,V',1}.

"Proof. Simply observe that {0,a,a’,1} and {0, a,d',b,V’,1} are subuniverses of N.
a

Corollary 2.7. If a ¢ {0,1} and a = ﬁ”(b, c) for some term BV (z,y), then either
be {a,a'} orce {a,a'}.

3 Interpreting Dy in L,

We will let N = (n;®, 0O, 0 1) be an mterpretatlon of Dy in L, that is, x @ K and
z © y are binary £,-terms, 0 and 1 are £,-constant terms such that (n;®, ®,0 1)
is a bounded distributive lattice.

Notice that while theorem 2.5 glves us a lot of flexibility, lemma 2.6 restricts the
possible values of z @ y and £ ® y. As for the constants, {0, 1} = {0, 1}.

We will prove several lemmas that will enable us to determine some special cases
and a general structure theorem. The strategy is to use lemma 2.6 and the fact that
N is a distributive lattice to determine the possible values of the term functions
defined by the terms z ® y and z © y.

Throughout this paper, the following well known property of dlstrlbutlve lattices
will be used without explicitly mentioning it. If aVb=aVc and aAb=aAc,
then b= c.

All the lemmas in this section refer to the lattice N. The first ten deal with the
cases when 1 is join-reducible and 0 is meet-reducible. The next three are the cases
when 0 is meet-reducible, when 1 is join-reducible and when there are some other
meet-reducible and join-reducible elements. The main theorem 3.12 summarizes all
these.

Lemma 3.1. There is at most one pair of conjugates a, a’ € n, different from 0
and 1, such thata® d = 1. :
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Proof. Assume there exists a, b € n, a, b different from 0 and 1, a and b not
conjugates, such that a®a’' =1 and 0@V = 1. By lemma 2.6 and since NV is a
lattice, this implies that a®a’ =0 and bO ¥ =0.

Assume a @ b = 1. Then multiplying by a’, we get (a ® a') dboad)=b0d =d
and then a®@b=2d',50 b=(a®b) D (a’ ®b) (a@b)®a’ and then Corollary 2.7
forcesa®@ b =10'. But then b=b@® (a®b) =1, a contradiction, so a® b # 1.
Assume cither a ® b= a or a ® b = b. In this case either o’ ®b=0a' @ (a ®b) =1
or a®l =(a®b)®V =1, and this is the same as case 1. interchanging the roles
of a and a' or those of b and V. -

Assume either a® b= o' or a® b =V'. In this case cither a®a' =a®b # 1 or
bob =a@b#1.

Since obviously e ® b # 0, under the llypolhcscs a @ b cannol, b(, delined, so we may
conclude that there is at most one pair of conjugate elements a and a' such that
a®a =1. : a

Lemma 3.2. There is no element diﬁerent from 0 and 1 that covers or is covered
by more than two elements.

Proof. Suppose a ¢ {0,1} covers three different elements b, ¢, d. That is a =
bdc=bdd=dodc

From Corollary 2.7, we may assume w.l.o.g. that b = a’ and ¢ # @/, d # a/, but then
d ® c = a, contradicting lemma 2.6.

A dual argument shows that a is not covered by more than two elements O

Lemma 3.3. If therc ezist three elements a, b and c different from 1 such that
i=a®b=0dc=c®a, thenn=38.

Dually, if there ezist three elements a, b and ¢ different from 0 such that 0 = a®b =
bOc=cOa, then n=8.

i
a c
a v
0
Diagram 1

Proof. Let us assume that there exist three such elements a, b and c as in Diagram
1. (1 is not necessarily a cover of a, b and c.)
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Suppose a @b =0. Then a =a®1l =00 (0®c)=a®c,s0 a®c#1,a
contradiction, so a @ b € {d/,b'}. Similarly, a ®@c € {da’,c'} and bO c € {V/,c'}.
Moreover the three products are all different or else a = b, a = cor b = c¢. In
particular this also implies that no two of them are conjugates and that a # o',
b# 0V and c # ¢’. So we have at least eight elements.

Let a ® b = a’, then by the last remarks, a © ¢ = ¢’ and this implies b®© ¢ = V'.
Similarly, if a @ b = V', then b® c = ¢ and a ©® ¢ = d/, that is, the choice of a ©® b
(or of one of the others) determines the values of a ® ¢ and of b © ¢ and we get the
lattice in Diagram 1, (or one with I, a’ and ¢’ instead of a/, ¢’ and V', respectively.)
.Let us now assume that n > 8 and let d be different from all of the above.

Suppose a€B d = 1. Then of course a® d ¢ {a,d, 1} and also a®d ¢ {a’,0}, or else
de {bV}, (ord € {c,¢}.) Thus a®@d=d".

Now b@®d # 1, or else the same argument would show that b d = =d' and thlS leads
to a = b. Similarly, c® d # 1.

Also, b@®d # d, or else c®d = 1 and bdd # d’, orelse a = a®d’ = a®(bdd) = 1. So
b®d = b and similarly c®d = c. But then 0.= a® (bOc) = a® ((b®d) O (c®d)) =
a®((bOc)®dd) =a®d=d’, a contradiction, thus a® d # 1. Similarly we prove
that béBd;él and cdd # 1.

Suppose now that a@d € {d,d'}. Then d®b=1 or d'®b=1,a contradlctlon
Finally, the only choice is a ® d = a, so multiplying this by ¥, we get d ® b’ = 0.
But then d @ b’ ¢ {1,0,d,0'}. Also, d®b' # b, or else d = a' and deb' #d, or else
a®d = 1. Since there is no possible value for a @ d, such an element cannot exist
and n = 8. ,

The proof of the dual is similar. ’ ' O

Lemma 3.4. Assume there ezists an a ¢ {0,1} such thata®a' =1. If a®b=1

for some b ¢ {a,d',1,0}, then the subalgebra of N generated by a and b is the
lattice in Diagram 2 ( a). .

[y

a

(a) (b)

Diagram 2
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Proof. Let b ¢ {0,1,a,d'}. Sincea®b =1, a®b ¢ {a,b,1}. Alsoa® b #0, or
else b=a a®b7‘-a orelse a®a'=a#1,s0 a®@b=">'andthus a®@¥ = V.
But then o' OV =ad'© (a @) =0

A similar dual argument shows that a @Y =b, which completes the proof of our
lemma. , O

Corollary 3.5. If1 isa cover ofd and a', then n = 4.

Lemma 3.6. Letn # 4, 8. Assume there ezists ana ¢ {0,1}, such that a®a’ = 1.
Ifa®b=1 for someb ¢ {0,1,a,ad'}, then for all ¢ ¢ {0,1,a,a’,b,V'}, either

a®c=1 and aG®Gc=¢ or
a®cd=1 and a0 =c

and thus N is the lattice in Diagram 2 (b). The intermediate elements need not
exist.

Proof. By lemma 3.4, the lattice generated by @ and b is the lattice in Diagram 2
(a). Let c ¢ {0,1,a,d’,0,0'}

Ifadc= then by lemma 3.4, the subalgebra of N generated by a and c is the
lattice in Dlagram 2 (a), with b replaced by c, that is, a@c="¢.

Since n # 8, b®c # 1, soeither b@®c=0b or b®c = ¢, in which case either
bdcd=cand bO =V or Y®c=1>0 and ' ©c=C, respectively. Since this is
the case with any other element d such that a @ d = 1, the theorem follows. .
Ifa®c=a, then @’ ®c = 0 and thus ¢’ @ ¢ # 1, since the latter would entail a = c.
So ddc=¢ and thus a@® ¢ = 1 and we are back in the previous case.

If either a® ¢ = ¢ or a® c = ¢, then there is an element between a and 1. We
may assume it is ¢. But then b@®c=1 andsincec>a>c,b@c=c is theonly
possibility for b ® ¢, but this is clearly impossible since in that case a = c. O

Lemma 3.7. Ifa and b are not conjugates, aGBb =1 and a@b =0, then neither
a=a norb=1"0".

*Proof. Suppose a®b=1, a G) b=0and a =d'. Then b # V', since there is only
" one element = such that z = z'. v

If b =1, then else a =V, so either b < b’ or b’ < b.

Ifb<V, a®b =1 andinthatcase a®b # 0, orelse ¥ =b. So a® b = b, but
then a=a® (aOV)=a®b= 1.

On the other hand, if /' < b, a®b' = 0 and the dual of the above argument provides
a contradiction. O

' Theorem 3.8. Ifa and b are not conjugates, they are both different from 0 and 1,
a®b=1 and a®b=0, thenn =6 orn=8.

Proof. Notice that by lemma 3.7 we need at least six elements. Also, a®a’ # 1 and
b b # 1 or-else a and b are conjugates.

By renaming if necessary, we may assume that a®a’ =a and b® Y =V

This implies that ' © b= 0,50 @’ ® b # 1 or else a = @, contradicting lemma 3.7.
We can easily check that the subalgebra generated by a and b, is the one depicted
in Diagrain 3.
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Diagram 3

This proves that if n = 6, there is a possible interpretation with the features of the
hypothesis. )

Let us now assume n > 7, so let ¢ be different from all of the above. Suppose
a® c = 1. Using a now familiar argument, a © ¢ ¢ {i,a,d’,c}, the latter would
imply b' = c. Also, a® c # 0, or else ¢ = b, so the only possibility is a ® ¢ = ¢.
Multiplying by ¥/, we get a’'©@c= Q.

If V@®c=c,then OV =ad0c=d 0 ®dc)=a andif b'®c =, then
dOc=d0b =0Udc)ob =1Ub. Both cases contradict lemma 2.6. The only
possibility left is b'@®c =1, so by lemma 3.3, n = 8.

Suppose a @ c =c. Then bdc = 1, so b® ¢ = ¢ and similarly ¥ & ¢ = 1, so
b' ® ¢ = ¢ and this implies b =0', a contradiction. We get a similar contradiction
if we assume a @ ¢ = ¢’ and since there are no other possibilities, the theorem is
proved. (]

Lemma 3.9. Let n # 6, 8. If there exist elements a and b such that a © b =
0,a0b=10V and a®a' # 1, then there ezists an element c € n such that the
interval [0,¢) of N is the lattice depicted in Diagram / (a) and c is the N -largest
such an element, (that is, for any element d such that d ®a = 0, doc= c.) The
intermediate elements need not ezist. ¢ is meet—irreducible.

Proof. If there is no = € n other than b such that z ® a = 0, we let ¢ = b.

" Since n # 6, 8 and, a®a’ # 1, there isno z € n such that ©a =0 and z®ae = 1.
We will now prove that there is no € n such that ®a=0 and z2@®a =a'. If
on the contrary there is one, since n # 8, bO z # 0 and obviously b® = # V.
Suppose b ©® z € {z,z'}, then bOad =bO (x®a) =bOz € {z,z'} and this
contradicts lemma 2.6.

Suppose bO £ =b, then b'®z = (a®b)®z=a® (bDz) = a®d z = a', which also
contradicts lemma 2.6. ‘
Soift®a=0,then z2@®a#a’ and thus z@a =z’ as in the Diagram.
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b/

(b)
Diagram 4

Now the set of all elements z € n such that ©a =0 and z@®a =z’ has to be
linearly ordered since if for two such elements z and y; 2Oy # z, y, then 2Oy = 0,
contradicting the fact that n # 8. Take c to be the largest one. By Corollary 2.7,
¢ is meet-reducible. , 7 O

By duality, we can prove the following.

Corollary 3.10. Let n # 6, 8. If there exist elements a and c such that a ® c =
1,a0c=¢,and a®ad # 0, then there ezists an element ¢ € n such that
the interval [c',1] of N is dual to the lattice depicted in Diagram 4 (a) and c is
the N -least such an element. The intermediate elements need not exist. Also, c is

join—irreducible.

Lemma 3.11. If there ezist a, ¢ both different from 0 and 1 such that a ®c= ¢’
and a ® c = a', then the interval [a’,c'] is the lattice in Diagram 4 (b).

Moreover, ifthere is no element b such that a®b = 1, then there ezists the N—largest
such an element c. The intermediate elements need not ezist.

Proof. Let a and ¢ be two.such elements and let b-be any other element in [c, a'].
Suppose c@®b =0b Then ¢ > a®b=a®cdb=Db>,s0cdb=d,
contradicting lemma 2.6. A similar contradiction is obtained if a @ b = ¥'.

So either ¢ ® b = ¢, in which case one obtains the lattice in Diagram 4 (b), or
c® b = c and we obtain that lattice with b and b’ interchanged.

If there is no element b such that a @b = 1, the largest such an element c exists
by an argument similar to the one used in lemma 3.9. O

For the main theorem of this section we will use the following notation. If A and
B are two lattices, T 4 is the largest element of A and Lg is the least element of B.
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We define A 1 B as the lattice obtained by identifying T 4 and Lz and extending the
order in the natural way, i.e. if z, y € AU B then

z,y€ A, and z <, ¥y
z<yiff { z€ A yeB
z, y€ B, and = <gy.

Theorem 3.12. Let n # 6, 8. Then any interpretation of Dy, in N is of the form
At Azt -t Am,

where for each i < m, A; is either a chain or one of the lattices in Dia%ram 5.
Conversely, each such lattice gives rise to an interpretation of Dy in n each

casce Lhe inlermediale clemnents need nol crist.

i

Diagram 5
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Proof.

If there is no mect-reducible element in A, the interpretation is a chain.

If there exist meet-reducible elements, then there are several cases.

Case 1: The N-least meet-reducible element is 0 and there is an element a such
that a®a’ = 0. Then by lemma 3.4, the mterpretatlon is a lattice as in Diagram 5
(a).

Case 2: 0 is the N -least meet reducible element and there are elements a, b, not
conjugates, such that a® b = .

Since n # 6, 8, a @ b must be elther a' or . We may assume w.l.o.g. that aEBb =d.
Then by lemma 3.9, there exists a A/~greatest element c such that the interval [0, ¢]
is a lattice as in Diagram 5 (b). We let ¢; = ¢ and A; = [0, c;]. Observe that since
¢ must be meet irreducible, it has a unique cover.

1. If there is no meet-reducible element z such that ¢; < z < 1, welet A, = [c1, 1]
and thus N' = A; t A;. Observe that A, is a chain.

2. If there is one, let c; be the A'-least meet-reducible element greater than c;.
We let A; = [c1,¢2). Again A is a chain of length at least 2.

Since c; is meet reducible, there exists an element a such that a ® c2 = cp.
Again we have two possibilities, either a® cy =1 or a ® ¢, = a'.

(a) In the first case, by lemma 3.10 the interval [c,, 1] is a lattice as the one
in Diagram 5 (c). Let A3 = [cp, 1] and N=AtA,1As.

(b) In the second case, by lemma 3.11, there exists the largest element c such
that the interval [c, ¢'] is a lattice as the one in Diagram 5 (d). We let
c3 = ¢ and Az = [cg, c3).

We can now continue as in the previous sten, searching for ¢4, the next meet— .
reducible element, if one exists, and proceed as we did with c;. The process must
eventually terminate and we have N = A; t Ay t--- 1 A ’

Case 3: 0 is not the A/-least meet-reducible element. Then since 0 is meet—
irreducible, it has a single immediate successor. Let ¢ be the N-lcast mect—
reducible clement and define A; = [0,¢;]. A, is a chain. Now proceed as in step 2
with ¢; in place of 0. This completes the proof of necessity.

That each such lattice gives rise to an interpretation of Dy; in A is immediate from
theorem 2.5. ‘ |

4 Interpreting DM in L,

We will now study the interpretations of the variety DM of De Morgan algebras
in the variety of Lukasiewicz algebras. In this case we also have to interpret the
unary operation ’, the quasi-complement. Of course, since De Morgan algebras are
distributive lattices, all that was proved in the previous section holds for them.
Throughout this section, we will let N = (n;®,®,°,0,1) be an interpretation of
DM in L,, where (n;®,®,0,1) is.-an interpretation of Dy, in L, as in section 3
and © is a unary operation, the interpretation of the quasi-complement ’.
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The first lemma is a straightforward consequence of the definition of a guasi-
complement and lemma 2.6.

Lemma 4.1.

1. The quasi—complement © is one—to-one.

a

2. 0°=1 and i°=0.
3. If a® = a, then «'® =d'.
4. If a <), then V° < a®.

Theorem 4.2. If n # 4, 6, then the underlying lattice of every interpretation of
DM in L, is a chain and the new quasi—complement coincides with the old one.

Proof. Let N be an interpretation of DM in L£,, and suppose there exist a meet-
reducible element c. We have several cases.
Ifc=0and 0=a0®ad, then underlying lattice of AV is like the lattice in Diagram
5 (a) and since n # 4, 6, there exist at least four elements by, bz, b} and b, like
the ones depicted in the Diagram. But then b & b2 =0, and b > ble. So
by > b9 © b4° = b9 € {by,5} and this is not possible.
Ifc=0and 0 = a®b, where a and b are not conjugates, then since n # 6,
the underlying lattice of A is like the lattice in Diagram 5 (b). In this case, since
b >, l—be@cee{c b'}.
If c =0, n =8 and the underlying lattice of N is the one in Diagram 1, then
a®@c= c’, but taking quasi-complements, o' @ ¢’ = ¢ # a.
If ¢> 0. Then in the decomposition of N, A, is a chain and A, is either the lattice
in Diagram 5 (c) or the one in 5 (d). These cases are similar to case 2.

So in any case we get a contradxctlon, thus there is no meet-reducible element
and N is a chain.

Assume now that there exists an a such that a® = a. By lemma 4.1.3, a'® = a'.
So il @ < ¢ and by lemma 4.1.4, o = ' < a® = g, a contradiction. A similar.
contradiction arises if we assuine that o' < a. This implies that a = @’ and thus
a® = a = a’. Now since in a chain there is at most one element such that a = a’,
for any other b, b® =V'. So for any z, z° =2z’ . O

In the following theorem we will prove that if n = 4, there are two possible definitions
for the quasi—complement.

Theorem 4.3. There are 8 interpretations of DM in Ly.

Proof. Let n = {0, a,ad 1} Recall that the underlying lattlce of the interpretation
must be isomorphic to one of the lattices of Diagram 6.
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(a) | | (b)
Diagram 6

If the lattice interpretation is the lattice in Diagram 6 (a), since 1 can be either 0
or 1, we have two choices. For each of these, z can be either a or a' and that gives
us 4 possibilities.

An argument similar to the one in the previous theorem shows that for all z° = z'.
"This gives us four interpretations.

If the lattice interpretation is the lattice in Diagram 6 (b), again 1 can be either 0
or 1, so we have two choices, but in this case, by symmetry we have only one choice
for a. For each of these there are two possible quasi-complements, namely,

= 7

T
2° = (01(2)) + z(05(x))".

The first function defines the four element Boolean algebra. The second function
assigns 0, a, a’ and 1 to 1, a, g’ and 0, respectively. It is well known fact that these
two are DM algebras. This provides the other four interpretations. O

Theorem 4.4. There are 32 interpretations of DM in Lg.

Proof. Let 6 = {6,a,b,a,b',1}. If the underlying lattice of the interpretation is
a chain, its first element 0 has to be either 0 or 1. For each of those, the second
element can be filled by any of the four clements a, a’, b or Y, the third has only two
possibilities since the others are determined by the previous selections and lemma
4.1.4. That gives us 16 possible interpretations.

“If the underlying lattice of the interpretation is the lattice in Diagram 2 (a) and
b© = b, then by lemma 4.1.4, b© > b°, which would force »® = 1, contradicting
lemma 4.1.1, so b© = b'.But then a® OV = (a®b)® = 0,50 a® = a. So for
all z, z° = z’. The reader can easily check that the old quasi-complement works
well. A similar analysis to that of the previous paragraph shows there are another
16 interpretations of this sort.

Finally, using the same arguments of Theorem 4.2, one can check that for the other
possible underlying lattices for an interpretation, there is no acceptable definition for
the quasi-complement. For instance, in the lattice in Diagram 3, a®b =a @b = i,
so a® @ b° = a® © b'® = 0. But in this lattice this is possible only if b = '® = b,
a contradiction. There are essentially three other underlying lattices. O
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Theorem 4.5. The number of interpretations of DM in L, is

28(2 1) if n is even, n # 4, 6,
2" (235 — 1) if n is odd.

Proof. The proof is a straight forward generalization of the n = 6 case. One must
observe that in the odd case, there is one single element ¢ for which ¢ = ¢ and
by lemma lemma 4.1.4 it must be assigned to the “midpoint” of the underlying
lattice. a

5 Interpreting £,, in [’",

In the previous section we proved that De Morgan interpretations are pretty tight.
We will now extend those results to Lukasiewicz algebras, that is, we have to define
the new unary operations 6,,62,...,0m_1-

Throughout this section N = (n; @, ©,2,81 ...,8m-1,0, 1) will be an interpretation
of L, in L, where (n; ®,®,2, 0, 1) is an interpretation of DM in L, as in section 4
and the &;’s are unary operations, the interpretation of the g;’s. Of course this means
that except forn=4and 6, (n;®,0,° ,0, 1) is a chain and the qua51—complements
© and ' coincide, so we will anallze these two cases separately.

Lemma 5.1. If 4 is an interpretation of L in L4 and its underlying lattice is
not a chain, then 4 is the four element Boolean algebra and for all z, &,(z) =
G2(z) =+ = (z) =2

Proof. Assume that the underlying lattice of the interpretation is the lattice in
Diagram 6 (b) and that a® = a and a'® = a'. Then 6,,_1(a) # a, a’ or else
Im-1(a) ® (Gm-1(a))® € {a a'}, contradicting axiom (2)

By axiom (1), since a © @' = =0, 6pn_1(a) © Gpmor(a’) =0, so either §,,_1(a) = 0 or
6m-1(a") = 0. But &,,_,(a) = 0 (and similarly &,,_ 1( "} = 0) is clearly impossible
because by (Ly) we would have &,(a) = &3(a) = +++ = G,,_1(a) = 0, that is to say,
for all i < m — 1, 6;(a) = 6;(0), which in turn by (L4) implies a = 0.

If the De Morgan interpretation is the four element Boolean algebra, then it is a
well known fact that the only possibility for the 6;’s is the identity. See (3]. a

Lemma 5.2. If 6 is an interpretation of L in Lg, then its underlying lattice is
a chain.

Proof. Suppose the lattice reduct of 6 is not a chain, then by Theorem 4.4, it is
the one that appears in Diagram 2 (a) and z® =z’ for all z.

If 6;(b) € {b, b’} then 1 =6;(0)® (6:(b))® =b@ b = b, so for any i, 6;(b) € {0,1}.
Similarly, 6;(v') € {0,1}. :

As in the previous lemma, 6,1(b) # 0. So 6m1(b) = Om-1(b) = i, which,
by (Ls) and since a > V', implies 6,,_;(a) = 1. But then, 0 = 6_1(a ® @') =
Fm-1(a)OFm_1(a') = 6m-1(a’), which as we know implies a' = 0, a contradiction. So
there is no possible definition for &,,-1(b) and the lattice reduct must be a chain. O
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‘Lemma 5.3. Let N be an interpretation of L,, in L, for which the underlying
lattice is a chain. Then for 0 <4 <m—1, &;(z) € {0, 1}.

If we let p(a) be the least k such that ok( ) = 1, then u defines a one-to-one
correspondence between the non-zero elements of N and the 6;’s. Moreover, if the
De Morgan reduct of N is 0 = ag < a3 < -+ < an_y = 1, setting p(0) = n,
p(a;) 2 n—j. '

Proof. We first observe that since the lattice reduct of N is a chain, every element,
in particular 1 is join irreducible, so by axiom (2), for all i < m — 1 and any =,
6:(z) € {0, 1}. . :

Next, recall that by (L,), for all i < n —1, 6;(0) = 0, so for a # 0, there exists
some k such that 6y(a) = 1. If not, for all i < m — 1 6i(a) = 0 = 6;(0) and by
(L4), a = 0, a contradiction.

Let a # 0 and b # 0. We now observe that if a # b, then u(a) # u(b). If not, by
(L2), for r > p(a) = p(b), 6,(a) = 1=6,(b) and for r < p(a), 6,(a) =0= ar(b)
so again using (L), we get a = b, a contradiction.

Suppose that k = p(a;) < n — j, for some 0 < j < n. Then 6x_1(a;) = 0. This
implies that 6x_;(a;j4+;) = 1 or else by (Lz) and (L3), 6+(a;) = 6+(ajt1), for all
1<r <n,and by (L), aj =aj41- So plajy) <n—j—1.

In a similar way we prove that for s < k — 1, 6x_s(ajss) = i, in particular,
61(aj4k-1) = 1, so by (Lz), 6r(ajre—1) = 1, for1 < r < n. But by (L;) and (Ly),
this implies that ajix—1 = an_y, that is j+ k —1 = n — 1, contradicting our
assumption. -

- This completes the proof that u(a;) > n — j. ' , a

Notice that the function p determines the &;’s as follows:
. _ [0 ifj<unla),
6ilas) = { 1 ifj> ulay).

forall1 <i<m-1and 0<j <n-1. Also, since p(z) is one-to-one and the
number of non-zero elements of n is n — 1, there has to be at least as many &;’s.
This provides another proof of our next Theorem 5.4.1.

Theorem 5.4.
1. If m < n, there is no interpretation of L., in L,.
2. If m is even and n is odd, then there is no interpretation of L, in L.

Proof. One should observe that N s an L—algebra and it is a chain, so by
Theorem 2.2, N is a an L,,—subalgebra of M. This immediately implies that n <
m . The second assertion follows from the fact that M does not have subalgebras
of odd cardinality. : _ ' O

Theorem 5.5. Let m > n. Then the number of interpretations of L., in Ly is
determined as follows.

1. Ifm is even and n. 15 odd: there is no interpretation of L., in L,,.



96

2. In any other case, for each De Morgan interpretation in L',,‘” there are (I;;((T:)))

interpretations of L., in L, where for any positive integer p,

B—1 if p is even
— 2 . )
h(p)‘{%lq if p’is odd.

3. If n =4 and m > 4, there are two more interpretations of L., in L4.

Proof. Let N be an interpretation of L., in £, such that the De Morgan reduct of
the interpretation is the chain 0=ay<a < -+ <Gy =1 and a,]e = a; = Qpj.
Our problem here is to count the number of possible functions p defined in lemma
5.3. We know that they are one—to-one and p(aj) = n — j, but that is not all
we know. By axiom (4) p has to have a symmetry with respect to the midpoint
of N if nis odd or its midpoints if n is even. Recall that axiom (4) states that
Gi(a) = 6m—-i(a®)®. In this case this means that 6;(a;) = (Gm-i(an-j))"

Case (1): This is Theorem 5.4, 2. ' '

Case'(2)\: Both m and n are even.
In this case 6m(az) = (6m_%(a’%))’ ='(6z(az-1))’, and since az_; < ag, by
(L2), dm(az-1) < Gm(az). These two imply that - '

Q>

m(az_1) = i and om(an) = 0.

The information gathered so far is summarized in the following chart.

&1 gg **° a'm;n_.l a'_';_‘. &m_l

QAo O . 6 6
ay -0 1
(lf.;..] 0 i
a% ? i i

i| 1. i

? : D

2| 7 7 o1 1)1 i
a1 |11 1 1 1|1 1

Case (3): Both.m and n are odd. v
Then &m;l(aan) = (6mpu(as,)) = (6mpr(anza) ), but by (L2), Gmpr(an) 2
2 -

A

Gmt (ag_;_; ), S0 these two together with (L3) imply

(‘7%1_-_1((12_;_1):1 and &m_z-;(a%;

)= 0.
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Also, if 6m=i1 (ant1) = 0, by (L4),-@ap1 = an=1, a contradiction, so Gmor(anp) =1
2 2 2 2 P P
We summarize this in the following chart.

&1 6'2 e a'm;n R &m;l 5’_@_;_1 e ,&m—l
ap | 0 0 0 0
a) 6 1
An-1 0 0 1 1
?7 1 i 1
i1 i 1
? : : :
Anoz | ? 7 ?7 1 i 1 i i
anp |11 1 1 i1 i i

Case (4): m is odd and n is even.

‘Then if 0 = a'm;ll(a%) = (a'v_nzil(a%—l))’, S0 Gmyi(ag-1) = i and thxfs' by (La),
ompi(ag) 2 (6mp1(az_1)) =1, and also &m_z-_x(a%_l) < 6%(%) = 0. Putting
these together, by (L4), we get az = az_y, a contradiction. So

6'1 &2 &m;n et a'm;l &%Ll 6m_1

Qg 6 6 0 - ﬁ
a; | O 0 0 i
a!zl__l ﬁ 6 i
an ?7 1 1 1
i 1 1 1

? : : o

Qnp | 7 7 ?7 1 i 111 1
an1 |1 1 i 1 i 1 i 1

In the charts above we see that

5i(a;) = 0 ifl1<j<n/2 and 1<i<m/2,
%) =11 ifj>n/2 and i >m/2.

Observe that by axiom (4), the values of ;(a;) for j < n/2 and ¢ > (m +1)/2, are
determined by those of 6;(a;) for j > n/2 and 4 < m/2. Also, we must take into
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account (L), (L3) and (L4), which imply that &;(a;) must increase both with 4 and
with 7. :

Soin order to find all possible functions x, one only has to determine how many “7”
one has to replace by 0’s in the lower left hand side of the charts.

Assuming [ is the number of rows and % is the number of columns, this is the same
as the number of integers less than ! which can be expressed as a sum of & positive
integers, this number is (,‘c)
Conversely, by Theorem 2.5 any such partition defines an interpretation of L,, in
L,. So for appropriate [ and k, the number of interpretations equals the number of
these partitions. Now it is a matter of determining the particular I’s and k’s in each
of the three cases and the theorem follows. Notice that by (L;) the last line in each:
chart is fixed.

If n = 4 and its De Morgan reduct is the four element Boolean algebra, then as
we mentioned before, we have another interpretation if we let for all z, &;(z) =
G2(z) =+ =pm-1(z) = 2. O
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- UNIT TANGENT BUNDLE OF A COMPACT
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Abstract

Let S be a compact oriented surface of constant curvature —1 and let T'S
be the unit tangent bundle of S endowed with the canonical (Sasaki) metric.
We prove that T1S has dense periodic geodesics, that is, the set of vectors
tangent to periodic geodesics in TS is dense in TT!S.

Let M be a compact Riemannian mauifold. M is said to have the DPG property
(density of periodic geodesics) if the vectors tangent to periodic geodesics in M are
dense in T'M, the tangent bundle of M. A compact manifold is known to have this
property if, for example, its geodesic flow is Anosov (see [1]), in particular if it is
hyperbolic. In this note we prove that the unit tangent bundle of a compact oriented
surface of constant curvature —1 shares with the surface the DPG property.

*Partially supported by CONICOR, CIEM (CONICET) and SECYT (UNC).
Mathematical Subject Classification: 53 C 22, 53C 30, 58 F 17
Key words: homogeneous spaces, periodic geodesics, Sasaki metric.
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’

Theorem ‘Lei S be a compact oriented surface of constant curvature —1 and let
_T'S be the unit tangent bundle of S endowed with the canonical (Sasaki) metric.
Then T'S has the DPG property.

Remarks.

a) Geodesics in TS do not project necessarily to geodesics in S.

b) The unit téngent bundle of any cpmpact'oriented surface of constant curvature
0 or 1 has also the DPG property.

c) The geodesic flow of TS, which is a flow on T'TS, is not Anosov.

d) T'S may be written as I'\PSI (2, R), where I is the fundamental group of S. In
general, not every compact quotient of a Lie group endowed with a left invariant
Riemannian metric has the DPG propeity.

The proof of the theorem and comments on the remarks can be found at the end
of the article. Next, we give some preliminaries. Let H be the hyperbolic plane’ of
constant curvature —1. Any oriented surface S of constant curvature —1 inherits.
from its universal covering H a canonical complex structure. If V' is a smooth curve
in T'S, then V' will denote the covariant derivative along the projection of V' to S.
The geodesic curvature of a curve ¢ in S with constant speed A # 0 is defined by
k(t) = (¢ (t),i¢(t)) /A3. We consider on TS the canonical (Sasaki) metric, defined
by [I€1? = [Imal])® + 1K(€)]|? for & € T, TS, v € TS, where m : T'S — S is the
canonical pro jectioh and K is the connection operator. Next, we recall from (7] a
desCription of the geodesics of T' H and some properties of curves in H of constant
geodesic curvature. 4

Proposition 1 Let V be a geodésic inT'H and letc=moV. Then ||V’|| = const,
ll¢ll=const =: X and one of the following possibilities holds:

,

a) If N =0, then V is a constant speed curve in the cirgle TCI(O)H .

b) If X # 0, then the geodesic curvature k of c with respect to the normal i¢/\ is
also constant and fort € R

V(t) = ez (1), 1)

where z € C is such that V (0) = 2¢(0).

Conversely, each curve V in T'H which satis fies (a) or (b) is a geodesic. More-
over, given a constant speed curve ¢ in H with constant géodesic curvature, and
Vo€ Tcl(O)H , there is a unique geodesic V in T'H which projects to ¢ and such that
V (0) = Vb.
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We recall from the proof of this proposition that if V is the geodesic in T'S with
initial velocity £, then A = |7, (g)¢]l and K(§) = —AkiV (0), in particular £ =
£/ A

In the following we consider the upper half space model H = {z + iy | y > 0} with
the metric ds? = (dz? + dy?) /y%.

Lemma 2 Let ¢ be a complete curve in H of constant geodesic curvature k. Given
fe (0, ), let cp be the curve in H defined by co (t) = ee®. |

a) If |k| > 1, the image of ¢ is a geodesic circle of radius |r| and length |27 sinhr|,
where cothr = ¢ (this implies that the length is 2m/v/K% — 1).
| b) If |k| =1, the image of c is a horocycle.

c) If K = cos@, the image of ¢ is congruent to that of cg.

Let. G = PSI(2,R) = {g € My(R)|dct g = 1}/{£[} and let g = {X € Mz(R)]|
tr X = 0} be its Lie algebra. Via the canonical action of G on H by Mébius
transformations, G is the group of orientation preserving isometries of H. Hence, H
may be identified with G/K, where K = PSO (2) is the isotropy group at the point
i€ H.
0 1

Consider the Cartan decomposition g = RZ & p, where Z = % 10 spans
the Lie algebra of K and p = {X € g | X = X*}. As usual we shall identify Tox H
with p. Under this identification, the quasi-complex structure induced on p is given

1 0 .
by adz : p — p and Xy = % 0 -1 € p is a unit vector. One can show that G

acts simply transitively and by isometries on 7' H. Hence, the map & : G —» T'H
defined by ¢ (y) = g.x (Xo) is a dilleomeorphisin which induces in G a left, invariant.
metric. From now on we identify sometimes in this way G with T H. In particular,
the unit tangent bundle of a surface I'\S may be identified with I'\G.

Let S be an oriented surface of constant curvature —1 and let k be a real number.
The x-flow on T''S is defined by @7 (v) = é% (t), where c is the unique unit speed
curve in H with constant geodesic curvature x and initial velocity v. In particular,
- the O-flow is the geodesic flow of S. Next, we obtain the x-flow on T!H using the
identification ® : G — T!'H, taking advantage of the group structure of G. Let
Ly, Ry, denote left and right multiplication by h, respectively, and set Y,, = X+ k2.

Lemma 3 If pf denotes the k-flow on T'H, then for all t we have

pr 0P = Do Rexpieva)-
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—K -

Proof. a) follows from the fact that Y, = : ( ) ) diagonalizes with eigen-

values +a/2, since |k| < 1.

b) If a,h arc as above, then R), o Rexp(atxo) = Rexp(ty,) © Ba for all t. Therefore,
Lemma 3 implies that pf = F ol o F~! for all t. One checks that F (yv) = vF (v)
for all v € ;v € T'H and the existence of f is proved. The last assertion follows
from straightforward computations.

c) We have that the k-flow on TS is conjugate to a constant rate reparametrization
of the geodesic flow of S, which is known to be Anosov and has dense periodic orbits
by Theorem 3 of [1]. O

Lemma 5 Let S be a compact oriented surface 'of constant curvature —1. Let c be

a periodic constant speed curve in S of constant geodesic curvature g, with |ko| < 1.
Then, for each k with |k| < 1, there ezists a periodic constant speed curve c, in S,
of constant geodesic curvature x, such that

a) ¢, =,

b) cx (0) converges to c (0) and ¢, (0) converges to é(0) for k — Ko,

c) the function k — klength (ck) is continuous, odd and strictly increasing.

'Proof. We may suppose that c has unit speed and that S = I'\H, where T is

a uniform subgroup of G which acts freely and properly discontinuously on H.
Suppose that tg is the period of ¢ and that C is a lift of ¢ to H. Then there exists
g € I such that g,C (0) = C (to). Since G acts transitively on T'H, by conjugating
' by an element of G if necessary, we may suppose without loss of generality, by
Lemma 2 (c), that C (t) = e'®in®ei with cosfy = g, 0 < fp < 7 and, additionally,
that g (2) = az, where a = etosin%,
For || < 1, let ¢, be the projection to S of the curve Ck (t) := e**"’", where
cos = K, 0 < 0 < 7. Clearly, c, satisfies the ﬁrst two conditions. By Lemma 2 (c),
cx has constant geodesic curvature k. Since g,C (0) = Cx (tosin 8/ sin 6) and Ci
has unit speed, then ¢ is periodic and ‘

, sinlp [1-k}
length (CK) = to sing to 1—:—;5

Thus, the function k + & length (c,) has the required properties. O

Comments on the remarks.

(a) follows from Proposition 1. Next we comment on (b). If S is flat, then S is

covered by a flat torus (see [8]) whose unit tangent bundle is again a flat torus and
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clearly has the DPG property. On the other hand, if S has constant curvature 1,
then S is covered by a sphere, whose unit tangent bundle is isometric to SO (3)
endowed with a bi-invariant metric, all of whose geodesics are periodic (see also
[4]). (c) is a consequence of [5], since T'H has conjugate points. This follows from
the proof of Myers’ Theorem (see [2]), since if v is the geodesic in G =~ T'H with
initial velocity Z, then Ricci (4) is constant and positive. Indeed, v is the orbit
of the one-parameter groilp t — exp (tZ) of isometries of G, and Ricci (Z) > 0 by

Theorem 4.3 of [6]. Finally, a counterexample for (d) can be found for example in

3].

Proof of the Theorem.

Let I be the fundamental group of S and suppose that S =I'\H. Let P : TT'H —
T'H and 7 : TH — H be the canonical projections. By abuse of notation we call
also 7 the restriction of the latter to T'H. Let T'T'H = {¢ € TT'H | m& # 0}
and let T'T'S = T\T'T'H. These are open dense subsets of TT'H and TT'S,
respectively. Let now

F:TT'H— {(v,Y,s) e T"HXTH xR |Y #0and 7 (v) = (Y)}

be defined by F (¢) = (P¢,m,¢, & (€)), where x'(€) is the (constant by Proposition 1)
geodesic curvature of 7V, V being the unique geodesic in G with initial velocity &.
F is a diffeomorphism since it is differentiable and so is the inverse F~! (v,7, n)\ =
V (0), where V is the unique geodesic in T'H such that V (0) = v, and C := 7V
has constant geodesic curvature x and satisfies C (0) = Y (see Proposition 1).

Fix vo € T'H and 1 € T}, T'S. Suppose that 7 lifts to £ € T, T'H and that
F (&) = (vo, Y0, ko). We have to show that given € > 0 and open neighborhoods U
and V of vp and Yy, in T H and T H respectively, then there exist x with |k — xo| < &,
v €U and 0 £ Y €V, with the same footpoinut, such that the geodesic V in T'H
with initial velocity F~! (v,Y,k) projects to a periodic geodesic in T'S. By the
expression (1), it suffices to show that ¢ := I'rV is periodic and 2Axty € 27Q for
some positive number £ such that ¢ (0) = ¢ (o), where A, & are as in Proposition 1.
Suppose that |kg| > 1. In this case choose v = vy, ¥ = Yy and k such that
|k — x| < & |&] > 1 and 2x/v/k2—1 € Q (such a k exists since the function
K+ 2k/v/k% — 1 is odd and strictly monotonic for £ > 1). Indeed, by Lemma 2 (a),
¢(0) = ¢(to) holds for ty = 2m/Av/kZ — 1, since ¢ has constant speed A. Hence,
2tgr\ € 2mQ by the choice of .

If |ko| < 1, then by Lemma 4 there exists (vy,Y;) € U x V C T'H x TH close to

(vo, Yo) , with 7 (v1) = 7 (Y1), such that I'c; is periodic, where ¢, is the constant
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speed curve in H of constant geodesic curvature k¢ with ¢, (0) = Y;. By Lemma 5,
since V is open, there exist & with || < 1, |& — ko| < & and (v,Y) € U x V close
to (v1,Y1), with Y # 0 and 7 (v) =« (Y'), such that C projects to a periodic curve
c in '\H with length ¢ satisfying 2«<¢ € 27 Q, where C is the constant speed curve
in H with constant geodesic curvature « and initial velocity Y. If t; = €/, then
¢ (0) = ¢ (to) and 2\kty = 2x¢ € 27Q. Consequently, for v,Y and k as above, the
geodesic in G with initial velocity F'~! (v,Y, ) projects to a periodic geodesic in
T'S. This completes the proof of the theorem. O ‘
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Abstract

Let P(M,G) be a principal fiber bundle, V a G-invariant CDO of
P and ¥ a CDO of M. We prove that V is projetable with projection
¥ iff there is a unique prolongation H — H" such that satisfies: .
Every stochastic horizontal lift of a V-martingale is a V-martingale.
We given an explicit expression [or H* in terms of H and V.

The stochastic parallel displacement of a tensor along a random curve was
considered by K. It6 [6]. Its natural generalization, the stochastic horizontal
lifting in principal {iber bundles were studied by I. Shigckawa and others ([1],
8], [11], [10]). | |

The motivation for the present investigation is the discovery of P. Meyer
[9] of a correspondence between the stochastic extensions of the equation
of parallel transport of vectors and certain extensions to the tangent bundle
TM of the connection V on M. The stochastic parallel transports studied by
P. Meyer are induced by 2-connections [1] of BM (the fiber bundle of bases
of M) that are prolongations of V. These prolongations are of 1-connections
to 2-connections of BM, and are given by Gl(n, R)-invariant connections of
BM with projection V. _

In this work we study these prolongations of 1-connections to 2-connections
in the context of principal fiber bundles.

This paper is organized as follovs, in 1. we prepare some notions con-
cerning Schwartz geometry, 2-connections and martingales. In 2. we prove
the main result of this work. Let P(M,G) be a principal fiber bundle, V
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a G-invariant covariant derivative operator without torsion of P and ¥ a
covariant derivative operator without torsion of M. Then V is projetable
with projection ¥ iff there is a unique prolongation of 1 -connections into
2-connections [1] of P(M, G) such that satisfies: Every stochastic horizontal
Iift, of a W-martingale is a V-martingale. We given an explicit expression for
H" in terms of H and V. Minally, in scction 3 we apply Lhis resulls Lo dillu-
sions given by Stratonovich equations, and discussed the special case of the
principal fiber bundle of bases of a differential manifold with the G-invariant
connections V€ and V¥ [3].

\

1 Schwartz Geometry, 2-Connections and V-
Martingales.

Throughout this paper, manifolds, maps and functions will always be as-
sumed to be smooth. As to manifolds and stochastic differential geometry,
we shall freely concepts and notations of Kobayashi-Nomizu [7] and Emery

[4]. ,

Now, we recall some [undamental [acls about Schwartz second order ge-
ometry ([8], [9], [4], [10]) and martingales. ‘

If z is a point in a manifold M, the second order tangent space to M
al, z, denoted 7,M, is the vector space of all differential operators on M, at
z, of order at most two, with no constant term. If dimM = n, 7,M has
n+ -lz—n(n + 1) dimensions; using a local coordinate system (U, z*) around z,
every L € 7,M can be written in a unique way as
o? p 0

—— + " —— with ¥ = ¢t
OxtoxI + oz*

L =a%

(we use here and in other expressions in coordinates the convention of sum-
ming over the repeated indices). The elements of 7,M are called second-order
tangent vectors al x.

The disjoint union TM = U:E A T.M is canonically endowed with a vector
bundle structure over M, called the second order tangent fiber bundle of M.
We denote by I'(7 M) the space of second order operator on M, that is, the
space of sections of TM . )

If M and N are manifolds.and ¢ : M — N is a smooth mapping, it is
possible to push forward second order tangent vectors by ¢, given L € 7,M
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its image under ¢ is @, (x)L € T )N given by

pu(@)L(f) = L(fo¢p)

with [ an arbitrary smooth Muuction. We says that ¢ @ 7,A — 7,N is a
Schwartz morphism il there exists a smooth mapping ¢ : M — N with
w(x) -y such that ¢ - p.(x).

We know |8] that, we can associate with each covariant derivative operator
without torsion (in short, CDO) V of M a morphism &y : TM — TM defined
in a local chart (U, 2%) of M by

o2 g O . N
G " aar) ~ @+ e)

i) ij <
vie oz

where V 2 % =T fjﬁk— We observe that ¢y satisfies Py o i = Idry where
i: TM —E:wTM is the inclusion. '

Conversely, if @ : 1 M — TM is a morphism ol vector bundles such that
® o i = Idpps then we have delined a covariant derivative operator without
torsion V¥ by VRY = I'(XY) for all X, Y € I'(M). Obviously, bge = &
and V¥v = V.

We remember the following proposition ([4], [5]).

Proposition 1 Let M and N manifolds be endowed with CDO V and W

respeclively and ¢ : M — N a smovth mapping. The following statements
are equivalent:

i) For every x € M, Oy 0 . () = pu(z) 0 Py
ii) For every geodesic g: U — M, pog:U — M is a geodesic.
iii) ¢ is affine.
Let M be a manifold endowed with a CDO V and (Q, F, (F,),P) a {il-
tered probability space satisfying the usual conditions |[4]. A continuous

semimartingale X in M, is a V-martingale ([8], [4]) if, for every 0 € T'(T*M)
with compact support,

t
/(0, OydyX) is a local martingale.
0
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t
where [ (0, ®gd,X) is the It integral of 0 along X. Martingales, too, can
0

be characterized i local coordinates, In fact, let (U, %) be a local chart
of M a semimartingale X = (X') is a V-martingale ill for some recal local
martingales (N*%),

. . . , .
X{—X§ = N'— 3 [Di(Xs)d[N7, N¥],
0
Now, we remember the definition of 2-connection 1]

. Definition 2 Let P(M,G) be a principal fiber bundle. A family of Schwartz
morphism H = {Hp, : p € P} is called a 2-connection if

1) Hy : TxpM — 1,P.
2) 7('* o [], = Z.(l.,-ﬂ_p/w

3) Hpg = RgyH,, for allp € P and g € G where Ry stands for the right
aclion of G in P.

4)The mapping p — HpL belongs to T'(tP) f L € T(7M).

We observed thal by changing in the above definition 7 for T', we get
the classical delinition of connection in principal fiber bundles, that we call
1-connection in this work. Obviously, every 2-connection H = {H, : p € P}
induces a unique 1-connection Hp = {H, IT,,PM:.p € P} by restriction to the
tangent space. ‘

Let P(M,G) be a principal fiber bundle, H = {H, : p € P} a 2-
conneciion, X an M -valued semimartingale and Z a P-valued Fp-random
variable such that 7 o 7 = Xj. We know [1] that the stochastic horizontal
lift (s.h.l) of X initialized in Z is a I’-valued semimartingale Y such that
salisfies the following StOChabLlC differential equation

dY = HydyX
Yo = Z
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2 Prolongation of Connections and Stochas-
tic Horizontal Lifts

Let us first introduce some definitions

Definition 3 Let P(M, G) be a principal fiber bundle and V a CDO of P.
We says thalt V is G-invariant if dg(py) o Rye = [Rys 0 Oy (p) for allp € P
and g € G.

Definition 4 Let P(M,G) be a principal fiber bundle and V a G-invariant
CDO of P. We says that V is projectable if

Py(p)(Ker (m(p))) C Ker(m.(p))

Exan'lple 5 Lel BM be the principal fiber bundle of bases of M, ¥ a CDO

of M and W€ (W) the complete (horizonial) lift of ¥ to BM [3]. We have
that ¥¢ and ‘\]!" are projectable.

The ”projection” of V by « is described in the following proposition.

Proposition 6 Let P(M,G) be a principal fiber bundle and V a G-invariant
CDO of P. Then V is projectable iff there is a unique CDO V¥ of M such
that m is affine. We says that ¥ is the projection of V.

Proof: Let L € 7,M and p € P such that 7n(p) = z. Then there is T € 7,P
such that 7.(p)(T) = L, we deline ¢y (z)(L) by 7.(p)(Pw(p)(T)). Now, we
prove that ®y(z)(L) is well defined. For thiglet g € G and S € 7,4P such
that 7,(pg)(S) = L, we have that, :

1. (09) (@9 (p9)(S)) = 1.(pg)(D(pg) 0 Row 0 Ryia(S))
1 (p9) (Fige 0 Do (p) © Ky1a(S))
= 1.(p)(@v(p) 0 Ry-12(S))

On the other hand, 7, (p) (Rg-1.(S)) = 7. (pg)(S) = m.(p)(T), thisis Rg-1.(S)—
T € Ker(m.(p)) and by hypothesis ®v(p)oRy-1.(S)—Pv(p)(T) € K er(m.(p)),
thus

w(0)(@v(p) 0 By-1a(S)) = 7 () (Bv(r)(T)
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We conclude that &y (z)(L) is well defined. Obviously, ®g : TM — TM is a
morphism of vector bundles such that dy o i = JIdyp, and deline a CDO ¥
and as

y(n(p)) omi(p) = m.(p)oPv(p)

for all p € P, we have that « is alline and V¥ is unique.
Conversely, given L € Ker(w,(p)) we have that:

T (p)(Pv(p)L) = Pu(n(p))(mi(p)L) = O

Now, we give the definition of prolongation.

Definition 7 Let P(M,G) be a principal fiber bundle. An application
from 1-connections into 2-connections of P(M,G) is called a prolongation if
o(H)p = H for every 1-connection H of P(M,G).

In [8] P. Meyer stales that there is a canonical prolongation H = {If, :

p€ P} - HS = {HJ : p € P}, this prolongation is called the Stratonovich
prolongation and is characterized by

H{X,Y}={HX HY},

where X and Y are local vector fields of M.
Now we state our main result.

Theorem 8 Let P(M,G) be a principal fiber bundle, V a G-invariant CDO
of P andV a CDO of M. Then V is projetable with projection V iff there is a

unique prolongation H — H" such that satisfies: Every stochastic horizontal
Lft of a V-martingale is a V-martingale.

Proof: Let H = {lI, : T,,M — T,P} be a 1-connection of P(M,G). Then
there is a unique 2-connection Hf ={H} **®™M™ PP} of P(M, G) such that

HY : tepM — 1,P is af fine
In fact, by [5, Lemma 11] we have that

H;’ = (expg o Hy o (exp gp)"l)*(wp)
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then the map p — H pv is smooth,

‘I(*(p) o f[;’ = Idr,,,,[\'[

and
Ry, 0 II;}7 = (Ryo (‘\1) o I1,, 0 (exp ,,7,) D (np)

(exp Y o RM oI, 0 (c “q)m,) Y, (rp)
(L)\]) P ° 1117(1 (( Xp 7rpg) ) (/‘ P!])
| Hy
"Therefore, we conclude thal H' s a 2-conneclion of £ (M, () and as Ilpv 1y 01 =
H, for every p € P, we have that H" is a prolongation of H. Now, let X
be a V- maltingale and Y a stochastic horizontal lift of X, then Y is solution
of dyY = HydoX, and by the It6 transfer principle [5, The01em 12] we have
that Y is solution of VY = Hyd¥X (where dV and d‘I' are the It6 differential
in relation to V and V¥ respectively) and as X is a W-martingale, we obtain
that Y is a V-martingale.
Let p be a prolougalion such Lgmt every slochastic hOllZOllLd.l lilt of a W-

martingale is a V-martingale. Let (2*) and (z?*, y%) be local charts of M and
P respectively. In thesc local charts

30

I

(I)‘I’(a'c“dr") = Fl)ﬂlax

: q’V(ar 5’1:") = F'\uaa:A + Fﬂl’dr'

— A .
. q)v(dz”QzJ ) =1 I—‘J 3.1:’\ + FIU az'
. q)v(a:cfaz‘“) = FJ’» x> + szaz'
and [1, page 6]
el
(H)( :r ) = d't’\ + aAa:B' i 92
(H)( :c"?xl‘) = t):r)‘aa.l‘ —'2— a’/\# 3.1:' +a @\ 3Bz Faiow T

'
.za'f\ll dz*dxv
where H is a 1-connection locally given by H(?J%\') = %; + af\g% and
az,f,‘ = %(a,\aJ +aj, @)
a%, = 3(aisy +a} 6)\)

Let X Dbe a scmimartingale in M and Z a stochastic horizontal lift of X.
Locally Z is glven as (X*, Y?), where

ay} = af\dXt"—k%afwd[X”,X”]t )
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Now, let X bea ¥ -martingale. In local coordinales X is expressed by
dX} = dM} — 1T (X)d[M*, M), (2)
where M? are local martingales. We obtain from (1) and (2) that
dY{ = addM} + L(ai, — o), )d|[M¥, MY),

On the other hand, Z = (X*,Y?) is a V-martingale ilf

1 ; - L o oi ok
aY{ + ST, dlX¥, X+ Tj,d[Y?, X Mo+ SUdlY?, Y*),
and

1 y 1. ‘
X} -+ §rjud[xﬂ, X+ I9,d[Y7, X#), + 51‘j,cal[w, Y*),

are local martingale. A direcl computation, using the identities previously
obtained leads thal,

aAdM + 5 ((al,, = a4T,) + 10, + 210 0 + Tiyadal) d[M*, M¥] (3)

Ju
and 1
dM -1 (5(1‘}w —1,) 1 Tjal I.";kaﬂaf) d[M*, M"], (4)
are local martingale. We oblain from (3) that
afw = a’;\l—‘ﬁu - (Ff“, + 21—‘;#0,{, + I—‘Ji-kaf;a,'f)

This is p(H) = H" . Conversclly, we have that

D U T W
l f\”l - 1;}.1/
W

since (4) is true for every 1-connection H. Therefore, V is projectable with
projection W. _ O

The next proposition give an cxplicit expression for H" in terms of H
and V.
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Proposition 9 Let X and Y be local vector fields of M. Then

HY{X, Y} ={HX, Y} —w! (VuxHY + VuyHX)"

1

where w!l is the form of conneclion associated with H and x : G — I'(T'P) is

the homomorplism defined by the right action of G on P.

Proof: lLet X and Y be local vector ficlds of M, and set C(X,Y) =
HY{X, Y} = {HX,HY}. Then C(X,Y) is a vertical local ficld. In Fact,
we have that 7, (HV{X,Y}) = n,({{IX,HY}) = {X, Y}, hence C(X,Y) is
vertical. And as ’

QUY{X,Y} = HR@HR(Q{X,Y})
, H®HQ{X,Y})

HEQ HR(Q{X,Y})

QITS{X,Y}

I

I

where @ is the squared gradient operator ( In local coordinates @ (a® ch%)? -1
aka%;) = a”a—?g ® (7‘2—1-), we have that C(X,Y) is a local vector field. Now,
since

HWyY +¥yX) = HY (0g{X,Y})
» »V (HY{X,Y})
— oY ({HX,HY))+C(X,Y)
= (VuxHY +VuyHX) +C(X,Y)

I

we have that

C(X,Y) = wi(C(x,Y))"
W (WY 1 Wy X)) =V dTY = Vi ILX)
= —w! (VyxHY +VpyHX)

~Thi_s completes the proof. : O

3 Applications

i) Let P(M,G) be a principal [iber bundle, H = {H,,: p € P} a 1-connection
"and V a projectable CDO of P. Let Ag, Ay, ..., Ay be C* vector fields on M
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and By = (B}, ..., B") a standard Brownian motion, and X;(z) the solution
of the following Stratonovich diflerential equation ’

dX, = A¢(X)dt + i Ai(Xy) 0 dB]
i=1

(5)
Xo = zeM

hen the stochastic horizontal 1ift. ¥, (p) of X, (2) in relation to HY is given
rl T
by the solution of

n
dYy = (HAO - '13 E wH(vHAiHAi)*> ()/t)dt
i=1
+ 32 HAi(Y,) 0 dB; O
i=1
Yy, = peP

In fact, let Z; be a solution of (6). Since 7 o Z; = X; and the inlinitesimal
mn
generator of Z; is [V (/10 4- % > A,‘f), by [2, Lemma 2.1] we have thal Z; is
i=1
. the stochastic horizontal lift of X; in relation to H" . _
ii) Let £ = E(M,p, F') be a vector bundle associated to P(M,G) with
fibre ', H = {l{, : p € P} a l-connection of P(M,G) and V¥ the CDO
of £ induced by H. Let Yi(p) be the stochastic horizontal lift of X;(7p) in
relation to H' , and ay(up) = Yi(p) op~' i Erp — EX,(rp), Where p is regarded
as lincar mapping p : F' — Erp. We lhave the following It6 formula for cross
sections of F,

W@ o (Xi(@) ~ol@) = 3 @ VEo (@) + 1)
(Vm, }ZJJ 2 ((Vr> - E“’”(Vlm.-ll/h)» 7(X,(x))ds

Where o is a cross section of IF and - : G — I['(TE) is the vertical
homomorphism defined by A4, = dt le=0 pexpLA p~H(f).

iii) Let BM Dbe the punupal fiber bundle of bases of M, 'V a CDO of
M,H = {H, : p € P} the 1-connection of BM associated with V. We
have that V¢ and V' are projectable with projection V. Since VE HY =

—_——

H(VxY)+ $R(X,Y), ‘where R(X,Y) is the tensor of type (1,1) defined
by R(X,Y)(Z) = R(X,Y)Z (R is the curvature tensor associated with V)
and R(X,Y) is the vertical right invariant vector field of BM defined by
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R(X,Y), = (p7'R(X,Y ‘)p); we have that the stochastic horizontallift Yi(p)
of X4(z) (solution of (5)) in relation to H ™ salisfies

dY, = HA(Yy)dt + 3> HA(Y;) o dB:
i=1
Yo = p

N

Lu the case of V€ we have that VixY = H(VxY) + R(—, X)Y, where
R(—, X)Y is the tensor of type (1,1) defined by R(—, X)Y(Z) = R(Z,X)Y
and R(—, X)Y is the vertical right invariant vector field of BM defined by
R(_’ X)Yp = (p_IR(—,X)Yp);([3, page 94])

The stochastic horizontal lift Y¢(p) of Xy(z) (solution of (5)) in relation
“to H' © satisfies

1% = (HAo—} $ BEA)AY (V)dt + 5 HAY) o dif
. i=1 i=1
Yo = p
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ORLANDO EUGENIO VILLAMAYOR
' (1923-1998) :

Yo lo sabia enfermo desde hacia muchos afios, pero jamdas hubiera pensado en una
partida tan rapida. Villa era mi amigo y creo que yo le devolvia la amistad que
él manifestaba. Un dia dec febrero me llaman por teléfono: Villa estaba internado
en el Hospital Foch de Suresnes, cerca de Paris. Con mi familia lo fuimos a ver el
domingo 15 de febrero por la tarde. Verlo fue para mi una inmensa alegria mezclada
con una profunda tristeza. No era aceptable que me sentara a su lado sin hablar
porque a €l le costaba hacerlo. jQué mejor que contarle un chiste de los que le
gustaban? Se ri6 mucho y esto fue para mi una victoria. Durante la semana del 15
al22, Odila (mi esposa) me decia casi todos los dias: llama para ver cémo esta Villa.
Llamé el lunes 23 por la mafiana y ahi supe que él nos habia dejado el domingo 22.
En tales momentos la profunda tristeza que nos invade debe ser reemplazada por el
recuerdo de los exultantes momentos pasados juntos. El miércoles 25 por la mafana,
su esposa Maria rodeada de la familia y de tres de sus amigos (Andrea Solotar, Max
Karoubi'y yo), lo llevamos a su tiltima morada en el Cementerio de Neuilly (cerca
de Paris), al pie del Arco de la Defensa (I’Arche de la Défense.)
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El hombre y el matematico. Dos matematicos tuvieron una importancia funda-
mental en mi formacién cientifica: Pierre Samuel y Orlando Eugenio Villamayor.
Con Samuel he llevado a cabo mi tesis doctoral y con Villamayor la inmensa (para
mi) aventura pos-doctoral. Nos conocimos en Montevideo en la Conferencia de
Algebra de septiembre de 1965 organizada por Maurice Auslander (que yo habia
conocido en Paris y que pasaba un periodo en Uruguay) y Rafael Laguardia. En el
primer dia de la conflerencia me preguntéd: 4Que hacés? Le dije que trabajaba en
algebras de Clifford. Me contestd: jqué bueno! Yo también estoy en eso. ¥n realidad
yo apenas conocia la definicion de dlgebra de Clilford pero la dindmica que Villa le
imprimia a toda actividad de investigacién hizo que en pocos anos (1965-1971) pu-
blicdramos tres articulos de alguna importancia en este tema ([14], [20] y [23]). En
una descripcién de sus actividades cientificas en el periodo 1959-1966, Villa habla de
su grupo de investigacion y dice: “El grupo trabaja en forma cooperativa”. Era asi
como a él le gustaba trabajar. Asi nacié uno de los primeros articulos de la historia
de la K-teoria que publicé con A. Nobile ([13]). La primera vez que fui a Buenos
Aires (julio de 1968) por cuatro meses, su primer acto fue llevarme a Nufiez para
_presentarme a los colegas. Yo, como brasilefio, hablaba portuiiol (y lo hablo atin
hoy ...) pero creia hablar espafiol. Esto motiv6 que Gentile dijera: “Che Villa, qué
bien se le entiende el francés a Micali”. Buenos tiempos que nos traen el amargo
sabor de la tristeza solamente con recordarlos.

En julio de 1973, Villa invité a Armand Borel para dar un curso de un mes en la Uni-
versidad de Buenos Aires sobre Grupos algebraicos. Como siempre, Villa invitaba
a los mejores especialistas en cada tema matematico que a él le parecia importante
desarrollar en la Argentina. Asi era el matematico Villamayor. Desgraciadamente,
cuando Borel llega a Buenos Aires el pais estd en plena crisis politica y la Univer-
sidad practicamente cerrada. j Qué hacer con Borel? No seria pensable enviarlo
de vuelta y por ello nos pidié a Enzo Gentile y a mi que asistiéramos al curso y lo
redactaramos. Asi lo hicimos y en abril de 1974 el curso de Borel estaba redactado
“(en francés). Pero el texto nunca fue publicado. ,

Creo que la tiltima vez que pasamos algunos buenos momentos juntos fue en el Colo-
quio de Mendoza (X Coloquio de Algebra) de 1992. Recuerdo que durante el mismo
me cncontré una tarde con él y Maria en la calle (el venia de un momento de cura
en el hospitul). Me agarré por el brazo y me dijo “vamos a tomar un traqo” Asi era
el hombre Villamayor: lleno de atenciones para con sus amigos.

Veamos mas en detalle los distintos temas sobre los cuéles trabajé Villamayor.

Teoria de Anillos. Este fue, quizas, el primer tema en el cual Villamayor trabajo.
Carl Faith dice en uno de sus trabajos (ver Lecture Notes in Mathematics, Springer
Verlag, N° 49, pag. 130), citando a F. W. Anderson, que el siguiente resultado se lo
debemos a él. Para un anillo A, las siguientes condiciones son equivalentes: (i) todo
A-mddulo a derecha simple es inyectivo; (i) todo ideal a derecha de A es interseccidn
de ideales a derecha mazimales. La estructura de tales anillos, anillos de Villamayor,
fue largamente estudiada en colaboracién con G. O. Michler [27]. Por un resultado
de L Kaplansky, todo anillo conmutativo regular es un anillo de Villamayor. Recien-
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temente; Carl Faith y Pere Menal (matematico catalan tragicamente desaparecido
hace algunos afios) caracterizaron los anillos de Villamayor por la condicién del du-
plo anulador (ver Proc. A.M.S., vol. 123, Number 6, June 1995, pag. 1635-1637).
Claro estd que se podria decir mucho méas pero sélo menciono este aspecto que me
parece el mas interesante. '

Grupo de Brauer y Teoria de Galois. [istos fueron temas fuertes de sus pri-
meros trabajos, inicialmente solo y posteriormente, después de sus primeros viajes
a E.IZU.U,, en colaboracién con mateméaticos dc renombre como D. Zelinsky. Su
sucesién larga de cohomologia [38| en la cual aparece el grupo de Brauer (como
quinlo término) es una extensién importante de los trabajos de Chase - IHarrison -
Rosenberg. Solo ([4], [12]) o en colaboracién con D. Zelinsky ([11], [17]), Villamayor
ha hecho importantes contribuciones a la teoria de Galois para anillos.

Algebras de Clifford. Nuestros primeros pasos en la teoria de élgebras de Clif-
ford se dieron en el momento cuando C. T. C. Wall publicaba su texto sobre el
grupo de Brauer graduado (1964) y H. Bass su curso en el Tata (1967). Nosotros
conocimos el texto de H. Bass cuando nuestro primer articulo [14] ya habia sido pu-
blicado, pero esencialmente trabajamos en esa misma direccién, es decir, se trataba
de determinar la estructura del funtor de Clifford. Nuestra literatura de base era el
~ libro de N. Bourbaki (Formes sesquilinéaires et formes quadratiques) pero creo que
fuimos mas lejos establecicndo, por cjemplo, tcoremas de periodicidad del tipo de
Bolt. Y éste fue, para Villamayor, otro enloque que lo acercéd a la KK-teoria. Todo
matematico que trabaja en teoria de formas cuadriticas y algebras de Clifford es
inmediatamente contaminado por una “enfermedad” que se llama “la caracteristica
2”. Caben dos posibilidades: se supone que la caracteristica del cuerpo es distinta
de 2 (o que 2 es inversible si se trata de un anillo) y se va adelante, o se supone
directamente que la caracteristica es 2. Para los que no creen en este ltimo caso,
puedo testimoniar que atin alli se pueden decir cosas interesantes. Por ejemplo, si
K es un cuerpo de caracteristica 2, (V, f) un espacio cuadratico sobre K donde V
es un K-espacio vectorial de dimensién finita y f : V — K una forma cuadratica,
entonces (V, f) se descompone bajo la forma (V, f) = (Wi, fi) L (Va, fa) L (Va, f3)
donde f; : Vi = K es no degenerada, y en particular V; es de dimensién par,
f2 : Vo = K es una forma aditiva y anisotrépica y f3 : V3 — K la forma nula. El
algebra de Clifford de (V, f) es el producto tensorial graduado de las algebras de
Clifford de las tres componentes y las algebras de Clifford de la primera y tercera
componentes son conocidas (una es un algebra simple en el sentido graduado y la
otra es un algebra exlerior). Queda pues por estudiar el algebra de Clifford de la
segunda componente y para ella tenemos el siguiente resultado ([46], [48]): Sean K
un cuerpo conmulalivo de caracieristica 2, (V, f) un K-espacio cuadrdtico donde V
‘es un K -espacio vectorial de dimensidn finitan y f : V — K una forma cuadrdtica
aditiva y anisotrdpica. Existe entonces una extension puramente inseparable L de K
de dimensidn 2°, 1 < s < n, tal que el dlgebra de Clifford Ck(V, f) es K-isomorfa
a la L-dlgebra exterior AL(L"*) (isomorfismo graduado). En particular el dlgebra
de Clifford Ck(V, f) es conmulativa y tiene solamente a 0 y 1 como idempotentes.
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K-teoria. Como decia antes, uno de los primeros articulos de la historia de la
K-teoria fue el que Villamayor public6 con A. Nobile [13]. En su primer viaje a
Montpellier en febrero-marzo de 1968, organizamos (en marzo de 1968) una reunién
de una semana sobre K-teoria y algebras de Clifford. No recuerdo exactamente
quiénes fueron los participantes de ese encuentro pero en las notas publicadas en ese
entonces figuran los nombres de H. Bass, L. Gruson, M. Karoubi, D. Lehmann y Shih
Wei-Shu ademads de Villa y yo. [Ese encuentro se conoci6é como el K-Coloquio o mas
bien, como el Primer K-Coloquio pues hubo un Segundo K-Coloquio’del 23 al 26 de
[ebrero de 1970 que coiucidio con el segundo viaje de Villamayor a Montpellier como
profesor de intercambio en enero-febrero-marzo de 1970. Entre los participantes de
ese segundo encuentro estan A. Frohlich, C. Contou-Carrére, M. Karoubi, M. Knus,
A. Larotonda, J. Larotonda, D. Lehman, M. I. Platzeck, Ph. Revoy, N. Roby,
C. A Ruiz, C. B. Thomas, Shih Wei-Shu, H. O. Singh Varma, J. R. Strooker, J. P.
Olivier ademaés de Villa y yo. La idea era realizar un encuentro bi-anual para exponer
los progresos realizados. Pero como todo, la teoria crecié muy rapidamente y con-
tinu6, en Montpellier, con dos reuniones mas sobre formas cuadraticas y algebras de
Clifford en 1975 y 1977. En los tres primeros meses de 1970 Villamayor dicté un
curso de K-teoria en la Universidad de Montpellier, el cual tenia por finalidad ex-
plicar el desarrollo de la teoria hasta ese momento. Las notas manuscritas del curso
todavia existen en Montpellier [60]. En ese periodo, como profesor de intercambio,
Villamayor pidié licencia a la Universidad de Montpellier para viajar a Strasbourg
(del 6 al 9 de febrero de 1970) donde una larga cooperacién con M. Karoubi ya
habia empezado y que lo llevé al aiio siguiente (enero-febrero-marzo de 1971), como
profesor de intercambio a la Universidad de Strasbourg. Su colaboracién con M.
Karoubi dio origen a una serie de importantes trabajos en K-teoria ([18], [21], [22],
[24], [26]) y més tarde en homologia ciclica [49]. También merecen ser senalados los
trabajos que Villamayor realizé con J. R. Strooker ([34], [35]). Una primera versién
de [35], bajo forma de pre-publicacién, tenia por titulo “Yet another K-theory 2”.

Singularidades. La contribucién de Villamayor en esta direccién fue muy impor-
tante. Con él colaboraron K. Mount (referencias [19], [29], [30], [31], [37], [42],
[43]), A. Evyatar ([32]), O. E. Villamayor (h) ([40]) y N. Hipps ([37], [42]). La
construccién algebraica de singularidades genéricas de Thom - Boardman es uno
de sus importantes aportes. La aplicacién de la K-teoria a la teoria de curvas al-
gebraicas soluciona un problema parcialmente resuelto por H. Bass en el caso de
curvas afines no singulares [25].

BACH - Buenos Aires Cyclic Homology Group. Esta fue una de las grandes
aventuras de la homologia ciclica. En 1986 Villamayor estuvo una semana cn la Uni-
versidade de Sao Paulo (yo estaba aprovechando ahi el afio sabatico que me habia
concedido la Universidad de Montpellier) y en ese entonces hicimos un articulito
en el cual calculdbamos la homologia de Hochschild de algunas dlgebras de grupos
[45]. Este fue, en cierta forma, el preludio de su subsecuente trabajo en homologia
ciclica ([44], [49], [50] y [52] al [56]). En el seno del grupo BACH, que él inspiré
y al cual dio su colaboracién hasta iltimo momento, Villamayor reunié un grupo
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de brillantes y jovenes matematicos argentinos. Quizas seria aqui el momento de
recordar un resultado de algebra homoldgica obtenido en colaboracién con M. L.
Bruschi [10] y publicado en una revista de poca difusion, la Revista de la Facultad
de Ciencias Fisico-Matematicas de La Plata en 1962.

El trabajo docente en la Universidad de Montpellier. La tercera visita de
Villamayor a Montpellier fuec como profesor asociado de abril a junio de 1973. Su
permanencia en la Universidad de Montpellier continué de octubre de 1973 a sep-
tiembre de 1974. En el afio escolar 1973/1974, él reemplazd a una colega [rancesa,
la matematica Monique Hakim, que se iba de Montpellier. Durante ese ano escolar,
Villamayor dicté dos cursos importlantes. Uno sobre “Geomelria Afin” [59] desti-
nado a los estudiantes de licenciatura (son 266 paginas de un texto impreso por la
Universidad) y un curso sobre “Curvas Algebraicas” (también para la licenciatura)
en el cual seguia el conocido libro de R. Walker sazonado con un lenguaje moderno.

Villamayor dejé en Montpellier el recuerdo de un matematico de primera linea, de
" un docente atento para con los estudiantes y de un hombre afable. Esto no quiere
decir que su relacién con sus colegas fuera siempre cordial. Sobre uno de ellos (que
llamaremos acd X), no muy escrupuloso y que para publicar mucho achicaba sus
textos, me dijo cierto dia: “X es como las moscas, muchas ... pero chiquititas.”

Villamayor apreciaba trabajos completos, aunque estuvieran contenidos en pocas
paginas.

Es todavia muy temprano para evaluar la influencia de Orlando Eugenio Villamayor
en la matematica y, en particular, en la matematica latino-americana y argentina.
Villamayor ha formado generaciones de buenos matematicos en su peregrinacién
comenzada como profesor en la Universidad de Cuyo (1949/1952 y 1954/1956) y
continuada por Cérdoba (1953), La Plata (1956 y 1959/1960), Bahia Blanca (1961)
y Buenos Aires (a partir de 1964). Su brillante carrera internacional dispensa toda
forma de panegirico. Los matematicos formados por él sembraran a su vez las buenas
semillas. Su recuerdo quedara vivo entre los que lo conocieron no solamente por sus
excepcionales cualidades de matematico sino también por sus cualidades humanas
y su manera muy especial de conservar sus amistades.

Artibano Micali
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[1] Sur les équations et les systémes linéaires dans les anneauz associatifs I, C.
R. Ac. Sc. Paris 240 (1955), 1681-1683.

2] Sur les équations et les systémes linéaires dans les anneauz associatifs 1I, C.
R. Ac. Sc. Paris 240 (1955), 1750-1751.

[3] On the theory of unilateral equations in associative rings, Revista Matematica
Cuyana 1 (1955), 1-40.
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ALBERTO PEDRO CALDERON

Matematico

El 16 de Abril de 1998 fallecié en Chicago el Profesor Alberto Pedro Calderén tras
una corta enféermedad. Habia nacido en Mendoza el 14 de Septiembre de 1920 en
el seno de una tradicional familia cuyos origenes en nuestro pais se remontan a los
primeros afios de la.colonizacién espafiola. Cursé estudios secundarios en Suiza
donde ya y por inspiracién de uno de sus profesores desarrollé su vocacién por la
matemadtica. A su regreso y por sabio consejo de su padre ingresé en la Facultad de
Ingenieria de la Universidad de Buenos Aires egresando en 1947 con el titulo de In-
geniero Civil. Su gusto por la matemadtica lo acercé a D. Julio Rey Pastor y més atin
a Alberto Gonzdlez Dominguez que con fino instinto reconoci6 el talento y originali-
dad que habia en Calderén. Después de una breve pero fructifera experiencia como
ingeniero en la empresa Yacimientos Petroliferos Fiscales fue designado ayudante de
Gonzilez Dominguez en la entonces Facultad de Ciencias Exactas, Fisicas y Natu-
rales. En 1948 asistié al seminario que dicté el insigne maestro Antoni Zygmund
que se hallaba visitando la Facultad de Ciencias. Su sorprendente actuacion en el
seminario, dio una nueva y mucho mas simple demostracién del famoso teorema de
Marcel Riesz sobre la funcién conjugada, hizo que Zygmund le propusiera ir a la

Universidad de Chicago para trabajar bajo su direccién, donde recibi6 su doctorado
en 1950.
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En 1951, en colaboracién con A. Zygmund, public6 en el Acta Mathematica el funda-
mental trabajo “On the existence of singular integrals” donde aplican sus resultados
para extender un teorema de Kellogg sobre el potencial Newtoniano que a decir de
Calderdn contenia el germen de la aplicacién de las integrales singulares a las ecua-
ciones diferenciales parciales. Estando en el Instituto Tecnolégico de Massachusetts
le encargaron que dictase un curso sobre ecuaciones en derivadas parciales, tema
que no era de su especialidad. Fue asi que entré en contacto con las ecuaciones
diferenciales en derivadas parciales y en 1958 publica el trabajo “Uniqueness in the
Cauchy problem for partial differential equations” que le dio fama y reconocimiento
universal. El esperaba que fuese el método de las integrales singulares y no tanto el
resultado lo que llamase la atencién . No fue asi por mucho tiempo, hasta que la evi-
dencia de posteriores aplicaciones hizo de su método tema de estudio obligado en el
drea de la ecuaciones diferenciales. En 1959 vuelve a la Universidad de Chicago con
el cargo de Professor of Mathematics, continuando su nunca interrumpida colabo-
racién con Zygmund. En 1965 obtiene un resultado sobre conmutadores de integrales
singulares que permite eliminar condiciones de Lipschitz sobre los coeficientes de las
ecuaciones diferenciales, dando un notable grado de generalidad a resultados propios
y ajenos conocidos. El método usado parecia de imposible aplicacién para resolver
el problema de los conmutadores de orden superior. Sin embargo, con el mismo or-
den de ideas publica en 1977 el trabajo “On the Cauchy integral on Lipschitz curves
and related operators” que contiene la solucién al problema de los conmutadores de
orden superior como caso particular y que abrié una nueva drea del andlisis.

Lo hasta aqui dicho destaca sélo algunos logros de Calderén que quien escribe esta
nota considera hitos en su obra matemédtica. Ha contribuido decisivamente a la
teoria de valores limites de funciones armoénicas y analiticas, a la teoria de inter-
polacién de operadores con su llamado Método Complejo, a la teoria ergddica, a
las series de Fourier, a las algebras de Banach, a la teoria de los operadores pseudo
diferenciales, a la teoria de los espacios de Hardy, a los problemas de contorno de
ecuaciones elipticas. Durante su vida public6 86 traba jos de investigacidn, el primero
en colaboracién con Gonzdlez Dominguez y Zygmund apareci6 en la Revista de la
Unién Matematica Argentina en 1949.

Sus trabajos han sido siempre aportes de gran originalidad habiendo abierto nuevas
areas dc la matematica cuya investigacién ha atraido a numerosisimos especialistas
en el mundo entero. Es altamente significativo que las referencias previas de sus
resultados podrian reducirse a resultados propios anteriores, lo que marca el grado
de originalidad de los mismos.

)

Su generosidad en dedicar tiempo y compartir sus ideas con sus discipulos era enorme
y més importante aiin la amistad y estimulo que les brindaba. Tuvo 27 discipulos
que completaron tesis doctorales bajo su direccién. De éstos, 13 fueron argentinos
que estudiaron con él, sea en Chicago o en universidades argentinas y muchisimos
jovenes matematicos se dedicaron al andlisis arménico y a las ecuaciones diferen-
ciales directa o indirectamente por su influencia.
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Fue Profesor en las Universidades de Ohio State University, Massachusetts Institute
of Technology, The University of Chicago y Universidad de Buenos Aires. Ademads
fue Investigador Superior de la Carrera del Investigador Cientifico y Técnico del
Consejo Nacional de Investigaciones Cientificas y Técnicas de la Argentina.

Recibi6 importantisimos premios entre los que se destacan el Bocher Memorial Prize
de la American Mathematical Society en 1979, el Wolf Prize in Mathematics de Is-
rael en 1989 y el Steele Prize (fundamental research work category) también de la
Amecrican Mathematical Society en 1989, entre otros.

Era micmbro de la American Academy of Arts and Sciences de los Estados Unidos
de América (1957), Académico Honorario de la Academia Nacional de Ciencias
Exactas, Fisicas y Naturales de la Argentina (1959), de la National Academy of Sci-
ences de los Estados Unidos de América (1968), miembro correspondiente de la Real
Academia Espaiola de Ciencias (1970), miembro de la Academia Latino Americana
de Ciencias, miembro extranjero asociado del Instituto de Francia (1984) , y de The
Third World Academy of Sciences de Trieste, Italia (1984).

Era Doctor Honoris Causa de las Universidades de Buenos Aires, Technion de Haifa,
Ohio State University y de la Universidad Auténoma de Madrid.

El Doctor Alberto Pedro Calderén es sin duda alguna uno de los mds importantes
matemaéticos de este siglo. Su obra matematica serd recordada y citada por siempre,
habiéndose ganado un lugar entre los grandes matematicos de todos los tiempos.

Supo también ganarse la estima y el afecto de cuantos lo trataron. En su conver-
sacion era profundo y ameno. En sus opiniones equilibrado. Jamas hacia criticas
negativas de nadie. Los que tuvieron el privilegio de conocerlo y gozar de su amistad
lo tendran siempre presente mientras vivan y hallaran consuelo por su ausencia en
su recuerdo. ‘

Carlos Segovia Ferndndez
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Curriculum vitae del Profesor Alberto P. Calderdn.
(de los archivos del Instituto Argentino de Matematica)

Born in: Mendoza, Argentina, September 14, 1920.

Civil Engineering Degree, Universidad de Buenos Aires, Argentina. 1947.

Doctor of Philosophy in Mathematics, University of Chicago, U.S.A., 1950.

I. On the Ergodic Theorems. II. On the Behavior of Harmonic Functions at the
Boundary. 111. On the Theorem of Marcinkiewicz and Zygmund.

e Honors academies:
o Member of the American Academy of Arts and Sciences, Boston, Mas-

sachusetts, 1958.

o Correspondent Member (1939), and Member (1984), of the National Aca-
demy of Exact, Physical and Natural Sciences, Buenos Aires, Argentina.

o Member of the National Academy of Sciences of the United States, Wash-
ington D.C., 1965.

o Correspondent Member of the Royal Academy of Sciences, Madrid, Spain,
1970. '

o Member of the Latin American Academy of Sciences, 1983.

o Foreign Associate ot the Institut de France, Paris, France, 1984.
o Member of the Third World Academy oF Sciences, Trieste, Italy , 1984.

e Prizes:

o Latin American Prize in Mathematics, awarded by IPCLAR (Instituto
para la Promocidén de las Ciencias, Letras, Artes y Realizaciones), Santa
Fe, Argentina, 1969.

Bécher Memorial Prize, awarded by American Mathematical Society,

1979.

o

o Consagracion Nacional Prize, Argentina, 1989.

o Wolf Prize, awarded by the Wolf Foundation, Jerusalem, Israel, 1989.
o Steele Prize, American Mathematical Society, 1989.

o National Medal of Science, United States of America, 1991.

‘s Degrees, positions, scholarships:

o Doctor Honoris Causa, University of Buenos Aires, Argentina, 1969.

o Doctor of Science, Honoris Causa Technion. Haifa, Israel, 1989.

o Doctor of Science, Honoris Causa Ohio State University, 1995.

o Louis Block Profesor of Mathematics, University of Chicago, 1968-1972.
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o University Professor of Mathematics, University of Chicago,1975-1985.
© Honorary Professor, University of Buenos Aires, 1975.
o Rockefeller Foundation Fellow, University of Chicago, 1949-1950.
e Teaching, visiting and research positions:
o Visiting Associate Professor, Ohio State University, Columbus, 1950-
1953.

o Temporary Member, Institute for Advénced Study, Princeton, New Jer-
sey, 1953-1955. ‘

o Associate Professor, Massachusetts Institute of Technology, 1955-1959.

o Professor, University of Chicago, 1959-1968.

o For other teaching positions see Honors.

o Visiting Professor at various times at the following universities: Univer-
sity of Buenos Aires, Cornell University, Stanford University, National
University of Bogotd, Colombia, College de France, Paris, University of
Paris (Sorbonne), Auténoma and Complutense Universities, Madrid, Uni-
versity of Rome, Gottingen University.

‘e Other professional activities:

o Former Associate Editor of the following journals: Transactions of the
American Mathematical Society, Illinois Journal of Mathematics, Journal
of Functional Analysis, Duke Mathematical Journal, Journal of Differen-
tial Equations, Advances in Mathematics.

¢ Former member of the Council of the American Mathematical Society.

o Consultant of the Organizing Committe of the International Congress of
Mathematicians, Nice, France, 1970.

o Former member of the Editorial Committee of the American Mathemat-
ical Society.

o Member of the Research Career of the National Council of Scientific and
Technical Research of Argentina.
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[2] On theorems of M. Riesz and A. Zygmund, Proc. Am. Math. Soc. I
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134

(4] Calderén, A. P. and Zygmund, A. On the theorem of Hausdorff-Young
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XLVIII REUNION ANUAL DE COMUNICACIONES CIENTIFICAS
DE LA UNION MATEMATICA ARGENTINA Y XXI REUNION DE
EDUCACION MATEMATICA.

En el Centro Regional Universitario de la Universidad Nacional del Comahue, -
Bariloche, desde el lunes 21 de septiembre hasta el viernes 25 de septiembre de
1998, se realizaron la XLVIII Reunién Anual de Comunicaciones Cientificas y la
XXI Reunién de Educacién Matemaética y el X Encuentro de estudlantes de mate-
matica.

Hubo en total 577 participantes. Se dictaron cursos de perfeccionamiento para do-
centes de nivel primario, secundario y universitario, y seis cursos para los alumnos
de Licenciatura en Matematica.

Las actividades de la XXI Reunién de Educacién Matemaética comenzaron el lunes
21. Durante su transcurso se dictaron 12 cursillos sobre temas variados. Del 23

al 25 se exibieron paneles sobre la ensefianza de la matemética y hubo veintiseis
comunicaciones.

La XLVIII reunién anual de comunicaciones cientificas se inici6 el miércoles 23 de
septiembre con la inscripcién de los participantes efectudndose por la tarde el acto
inaugural en el Hotel Panamericano. En esa oportunidad hicieron uso de la palabra

el Dr. Jorge Solomin y la Lic. Raquel Santinelli por la Comisién Organizadora
Local. :

La figura del Ingeniero Orlando E. Villamayor, desaparecido este afio, fue recor-
dada en las palabras de la Dra. Maria Julia Redondo. - De igual manera, el Dr.
Carlos Segovia Ferndndez destacé la trayectoria del Dr. Alberto Calderén, fallecido
también este aflo.

Se procedié a la entrega de los premios del concurso Néstor Riviére: el primer pre-
mio correspondi a los Sres. Damidn Pinasco, Juan Pablo Pinasco y Roméan Sasyk

alumnos de la U.B.A, y el segundo premio al Sr. - Miguel Pauletti alumno de la
U.N.L.

A continuacién la Dra. Eleonor Harboure presenté una semblanza del Dr. Néstor
Riviére. Después de un cuarto intermedio el Dr. Juan A. Tirao pronuncié la confer-
encia Dr. Julio Rley Pastorsobre el tema Teoria de representaciones y de Invariantes
de Grupos de Lie reductivos. La jornada culminé con un vino de honor ofrecido a
los participantes en el Hotel Pananericano.

Los dias 24 y 25 se expusieron las comunicaciones cientificas (se presentaron 168)
distribuidas en:

e Convexidad y Geometria Analitica.
e Ecuaciones en derivadas parciales.

o Teoria de aproximacion.
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e Fractales, Teoria de la medida. Estadistica.
e Logica y Geometria.

Geometria Diferencial.

Anélisis Armonico.

.
[ ]

Ecuaciones Diferenciales Ordinarias, Aplicaciones de la Matematica.

Anélisis Numérico.

Algebras Asociativas. Algebra Lineal.

Anélisis Funcional. Teoria de Operadores.

 Teoria de Lie. Teoria de Nimeros.
o Iisica Matemaética.
e Optimizacién. Teoria de Control. Teoria de Juegos.

Las conferencias ofrecidas durante la reunién fueron: El Teorema de Tichonoff para
formas débiles a cargo del Dr. Xavier Caicedo (Colombia), Parientes del Teorema
de la Corona, a cargo del Dr. Daniel Sudrez (U.B.A.), Los problemas geométricos
como recurso diddctico a cargo del Dr. Fausto Toranzos (U.B.A.), El uso de la vieja

mayéutica para rejuvenecer la enserianza de la matemdtica a cargo del Dr. Roberto
A. Macias (U.N.L.).

El dia 25 a las 17 horas tuvo lugar la Asamblea Anual de Socios de la U.M.A.

El congreso se clausuré el viernes 25 a las 20 horas con la conferencia Dr. A. Gonzdlez
Dominguez a cargo del Dr. Jorge Solomin sobre el tema Simetrias y Anomalias en
Mecdnica Clisica. Finalmente el vice-presidente de la U.M.A. Dr. Jorge Solomin,
agradecié a los presentes por su participacién y a todos los que colaboraron para el
desarrollo de la reunién.
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